Univalent Foundations and the equivalence principle

Benedikt Ahrens

Institute for Advanced Study 2015-09-21

1 The equivalence principle

2 The equivalence principle in Univalent Foundations

1 The equivalence principle

2) The equivalence principle in Univalent Foundations

Equivalence principle

Reasoning in mathematics should be **invariant under** the appropriate notion of **equivalence**.

Equivalence principle

Reasoning in mathematics should be **invariant under** the appropriate notion of **equivalence**.

Notion of equivalence depends on the objects under consideration:

- equal numbers, functions,...
- isomorphic sets, groups, rings,...
- equivalent categories
- **biequivalent** bicategories

• . . .

Non-examples: statements violating equivalence principle

We can easily **violate** this principle:

Exercise

Find a statement about categories that is not invariant under the equivalence of categories

Non-examples: statements violating equivalence principle

We can easily **violate** this principle:

Exercise

Find a statement about categories that is not invariant under the equivalence of categories

A solution

"The category \mathcal{C} has exactly one object."

Maybe this statement is simply silly!

M. Makkai, Towards a Categorical Foundation of Mathematics: The basic character of the Principle of Isomorphism is that of a constraint on the language of Abstract Mathematics; a welcome one, since it provides for the separation of sense from nonsense. M. Makkai, Towards a Categorical Foundation of Mathematics: The basic character of the Principle of Isomorphism is that of a constraint on the language of Abstract Mathematics; a welcome one, since it provides for the separation of sense from nonsense.

Goal

to have a **syntactic criterion** for properties and constructions that are invariant under equivalence

• Recall: the statement

The category C has exactly one object.

is not invariant under equivalence of categories.

• In general, referring to **equality of objects** breaks invariance, but...

• Recall: the statement

The category C has exactly one object.

is not invariant under equivalence of categories.

- In general, referring to **equality of objects** breaks invariance, but...
- even the **definition** of category refers to equality of objects:

Problem

"If source(g) is equal to target(f), then $g \circ f$ exists."

• Recall: the statement

The category C has exactly one object.

is not invariant under equivalence of categories.

- In general, referring to **equality of objects** breaks invariance, but...
- even the **definition** of category refers to equality of objects:

Problem

"If source(g) is equal to target(f), then $g \circ f$ exists."

Can we give a definition of category without using equality of objects?

... and how to fix it.

Solution

Use a logic/language of **dependent types**, in which source(g) = target(f) is encoded by what type of thing f and g are.

... and how to fix it.

Solution

Use a logic/language of **dependent types**, in which source(g) = target(f) is encoded by what type of thing f and g are.

A category consists of

- a collection O of objects
- for each $x, y \in O$, a collection A(x, y) of arrows
- for each $x, y, z \in O$ and each $f \in A(x, y)$ and $g \in A(y, z)$, a composite $g \circ f \in A(x, z)$
- for each $x \in O$, an identity $id_x \in A(x,x)$
- •

... and how to fix it.

Solution

Use a logic/language of **dependent types**, in which source(g) = target(f) is encoded by what type of thing f and g are.

A category consists of

- a collection O of objects
- for each $x, y \in O$, a collection A(x, y) of arrows
- for each $x, y, z \in O$ and each $f \in A(x, y)$ and $g \in A(y, z)$, a composite $g \circ f \in A(x, z)$
- for each $x \in O$, an identity $id_x \in A(x,x)$
- •

Gives rise to **dependently typed language** by adding logical connectors.

Theorem (Freyd '76, Blanc '78)

A property of categories (expressed in 2-sorted first order logic) is invariant under equivalence iff it can be expressed in this dependently typed language, using equality for arrows but not for objects.

Theorem (Freyd '76, Blanc '78)

A **property** of categories (expressed in 2-sorted first order logic) is invariant under equivalence iff it can be expressed in this dependently typed language, using equality for arrows but not for objects.

• What about **constructions** on categories?

Theorem (Freyd '76, Blanc '78)

A property of categories (expressed in 2-sorted first order logic) is invariant under equivalence iff it can be expressed in this dependently typed language, using equality for arrows but not for objects.

- What about **constructions** on categories?
- What about other mathematical structures?

1 The equivalence principle

2 The equivalence principle in Univalent Foundations

- A language of **dependent types**, a.k.a. a **type theory**
- With an interpretation in ∞ -groupoids (i.e. Kan complexes)

Type theory	Interpretation
type <i>A</i>	∞ -groupoid A
term \boldsymbol{a} of type \boldsymbol{A}	object a of \infty-groupoid A
function $A \to B$	∞ -functor $A \to B$

- Universe of sets given by discrete ∞ -groupoids
- Properties and constructions are treated uniformly in UF

Univalence Axiom (Voevodsky): EP for types

An equivalence of types lifts to an equivalence of all constructions on those types.

Univalence Axiom (Voevodsky): EP for types

An equivalence of types lifts to an equivalence of all constructions on those types.

Definition

A map $f : A \to B$ of types is an **equivalence** if there is $g : B \to A$ such that

- for any $a: A, g(f(a)) \simeq a$
- for any $b: B, f(g(b)) \simeq b$

A group in Univalent Foundations is

$$\begin{array}{c} G \times G \\ \downarrow m \\ G \xrightarrow{-1} G \xleftarrow{e} 1 \end{array}$$

such that

- G is a discrete type, i.e. a "set"
- group axioms are satisfied

Lifting the equivalence principle to algebraic structures

A group isomorphism $G \to G'$ is

- a bijective function on the underlying types $G\to G'$
- compatible with the group structures on G and G'.

Lifting the equivalence principle to algebraic structures

A group isomorphism $G \to G'$ is

- a bijective function on the underlying types $G\to G'$
- compatible with the group structures on G and G'.

EP on types lifts to EP on groups:

Structure Identity Principle (Aczel, Coquand, Danielsson)

- An iso of groups lifts to an equivalence of all constructions on groups (in UF).
- In particular: any statement about groups is invariant under group iso,
- and similarly for other algebraic structures.

Express Structure Identity Principle differently:

SIP categorically:

In the categories of sets, groups, rings,..., any construction expressible in UF is invariant under **isomorphism**.

Express Structure Identity Principle differently:

SIP categorically:

In the categories of sets, groups, rings,..., any construction expressible in UF is invariant under **isomorphism**.

Going to equivalence of categories:

Theorem (A., Kapulkin, Shulman)

In the bicategory of **saturated** categories, any construction in Univalent Foundations is invariant under **equivalence**.

What is this **saturation** condition?

Saturation

Saturation, intuitively

In a saturated category, isomorphic objects are indistinguishible, i.e., they satisfy the same properties.

- Grp, Rng,...(categories of algebraic structures)
- $[\mathcal{C}, \mathcal{D}]$, if \mathcal{D} is saturated
- any full subcategory of a saturated category

- Generalize saturation condition to arbitrary (higher-categorical) structures given by a **signature**
- Prove EP for saturated such structures

- A., Kapulkin, Shulman: Univalent categories and the Rezk completion
- Blanc: Équivalence naturelle et formules logiques en théorie des catégories
- Coquand, Danielsson: Isomorphism is equality
- Freyd: Properties invariant within equivalence types of categories
- Makkai: Towards a Categorical Foundation of Mathematics
- Rezk: A model for the homotopy theory of homotopy theory
- Voevodsky: Univalent Foundations project