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The equivalence principle

Equivalence principle

Reasoning in mathematics should be invariant under the
appropriate notion of equivalence.

Notion of equivalence depends on the objects under
consideration:

• equal numbers, functions,. . .

• isomorphic sets, groups, rings,. . .

• equivalent categories

• biequivalent bicategories

• . . .
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Non-examples: statements violating equivalence principle

We can easily violate this principle:

Exercise

Find a statement about categories that is not invariant under
the equivalence of categories

•
##

cc • ' •

A solution

�The category C has exactly one object.�

Maybe this statement is simply silly!
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A language for invariant properties

M. Makkai, Towards a Categorical Foundation of Mathematics:

The basic character of the Principle of Isomorphism is
that of a constraint on the language of Abstract
Mathematics; a welcome one, since it provides for the
separation of sense from nonsense.

Goal

to have a syntactic criterion for properties and constructions
that are invariant under equivalence
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How to break the invariance principle for categories. . .

• Recall: the statement

The category C has exactly one object.

is not invariant under equivalence of categories.

• In general, referring to equality of objects breaks
invariance, but. . .

• even the de�nition of category refers to equality of objects:

Problem

�If source(g) is equal to target(f ), then g ◦ f exists.�

Can we give a de�nition of category without using equality of
objects?
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. . . and how to �x it.

Solution

Use a logic/language of dependent types, in which
source(g) = target(f ) is encoded by what type of thing f and g
are.

A category consists of

• a collection O of objects

• for each x , y ∈ O, a collection A(x , y) of arrows

• for each x , y , z ∈ O and each f ∈ A(x , y) and g ∈ A(y , z), a
composite g ◦ f ∈ A(x , z)

• for each x ∈ O, an identity idx ∈ A(x , x)

• . . .

Gives rise to dependently typed language by adding logical
connectors.
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Invariance for statements

Theorem (Freyd '76, Blanc '78)

A property of categories (expressed in 2-sorted �rst order logic)
is invariant under equivalence i� it can be expressed in this
dependently typed language, using equality for arrows but not for
objects.

• What about constructions on categories?

• What about other mathematical structures?
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Univalent Foundations

• A language of dependent types, a.k.a. a type theory

• With an interpretation in ∞-groupoids (i.e. Kan complexes)

Type theory Interpretation

type A ∞-groupoid A

term a of type A object a of ∞-groupoid A

function A→ B ∞-functor A→ B

• Universe of sets given by discrete ∞-groupoids

• Properties and constructions are treated uniformly in UF
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The Univalence Axiom

Univalence Axiom (Voevodsky): EP for types

An equivalence of types lifts to an equivalence of all
constructions on those types.

De�nition

A map f : A→ B of types is an equivalence if there is
g : B → A such that

• for any a : A, g(f (a)) ' a

• for any b : B, f (g(b)) ' b
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Algebraic structures in Univalent Foundations

A group in Univalent Foundations is

G × G

m
��

G
−1 // G 1

eoo

such that

• G is a discrete type, i.e. a �set�

• group axioms are satis�ed
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Lifting the equivalence principle to algebraic structures

A group isomorphism G → G ′ is

• a bijective function on the underlying types G → G ′

• compatible with the group structures on G and G ′.

EP on types lifts to EP on groups:

Structure Identity Principle (Aczel, Coquand, Danielsson)

• An iso of groups lifts to an equivalence of all constructions
on groups (in UF).

• In particular: any statement about groups is invariant
under group iso,

• and similarly for other algebraic structures.
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An equivalence principle for categories

Express Structure Identity Principle di�erently:

SIP categorically:

In the categories of sets, groups, rings,. . . , any construction
expressible in UF is invariant under isomorphism.

Going to equivalence of categories:

Theorem (A., Kapulkin, Shulman)

In the bicategory of saturated categories, any construction in
Univalent Foundations is invariant under equivalence.

What is this saturation condition?
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Saturation

Saturation, intuitively

In a saturated category, isomorphic objects are indistinguishible,
i.e., they satisfy the same properties.

Non-example

•
##

cc •

Examples of saturated categories

• Set

• Grp, Rng,. . . (categories of algebraic structures)

• [C,D], if D is saturated

• any full subcategory of a saturated category

Benedikt Ahrens Univalent Foundations and the equivalence principle 16/18



Goals

• Generalize saturation condition to arbitrary
(higher-categorical) structures given by a signature

• Prove EP for saturated such structures
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