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S complex manifold of dimension n.

Bott-Chern cohomology

(p.q) _ kerdSnQ®9)(S,C)
HBC <57 C) - 55859(1’*1&71)(570) .

In general Hy (X, C) strictly finer than Hpy (X, C).
Hisc (S.R) = @ocpen Hi (S, R).
Holomorphic vector bundles have characteristic classes

in H](;C) (S,R) (Bott and Chern).

Jean-Michel Bismut Riemann-Roch-Grothendieck and Bott-Chern 3 /28



A theorem of RRG




Introduction

A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~1(s).

Jean-Michel Bismut Riemann-Roch-Grothendieck and Bott-Chern 4 /28



Introduction

A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~1(s).

@ F holomorphic vector bundle on M.

Jean-Michel Bismut Riemann-Roch-Grothendieck and Bott-Chern 4 /28



Introduction

A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~1(s).

@ F holomorphic vector bundle on M.

Theorem

Jean-Michel Bismut Riemann-Roch-Grothendieck and Bott-Chern 4 /28



Introduction

A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~1(s).

@ F holomorphic vector bundle on M.

Theorem

If R'p,F is locally free, then

Jean-Michel Bismut Riemann-Roch-Grothendieck and Bott-Chern 4 /28



A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~1(s).

@ F holomorphic vector bundle on M.

Theorem

If R'p,F is locally free, then

chge (RpoF) = p. [Tdse (TX) chpe (F)] in H) (S, R) .

Jean-Michel Bismut Riemann-Roch-Grothendieck and Bott-Chern 4 /28



A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~1(s).

@ F holomorphic vector bundle on M.

Theorem

If R'p,F is locally free, then
chge (RpoF) = p. [Tdse (TX) chpe (F)] in H) (S, R) .

Also ¢; ge (det R'p.F) = p. [Tdpe (TX) chpe (F)](l’l),
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Introduction

Remarks

e Families index theorem of Atiyah-Singer implies de
Rham version of this result.

o If M, S projective, the result follows from
Riemann-Roch-Grothendieck.

@ Our goal is to prove this result in full generality.
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Exotic Hodge theories

Hodge theory without a metric

e X smooth compact manifold.
@ One can scale the intersection product [ Y QNP

@ ...so as to obtain a nondegenerate Hermitian form.
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Exotic Hodge theories

Elementary examples

If dimg M =1, n (a(o),ﬂ(l)) = ifMoz A B,
n(aW,BO0) = —i [ anpB.

If dimg M =2, n (a(o),ﬂ(2)) = —z'fMoz AB. ..
n(aW,BY) =i, anB...

n (a@),ﬁ(o)) = ifMoz A B.

n is a Hermitian form of signature (oo, 00).
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Exotic Hodge theories

The adjoint of d

e d* adjoint of d with respect to 7.

@ Then d* =d.
e Hodge Laplacian [d,d*] = 0...which is not an elliptic
operator.

o If M complex, d = 9,8* = 0.
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Exotic Hodge theories

The case of a Hermitian vector bundle

o (E,g¢”,VF) Hermitian vector bundle with connection.
e Then VE* = V&,
e Curvature R is the Hodge Laplacian % [VE, VE*}.
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Exotic Hodge theories

A modified Hermitian form

Assume M complex and w a real (1,1) form.
Multiplication by iw is a self-adjoint operator.
6 (o, B) = n(a, e ) Hermitian form.

d* =d —idwh, 0 =0 — idw.

d,d*] = 0, [5, 5*} — _idow.

Holomorphic Laplacian vanishes if and only if 90w = 0.
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Exotic Hodge theories

A key idea used in the proof

e Interpolate between classical Hodge theory and the
above degenerate Hodge theories. . .

o ...through a family of hypoelliptic Hodge
Laplacians. . .

@ ...which have the best features of both.
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The case where the fibre is a point

o Take M =S, F = C.

@ The theorem to be proved is the known fact 1 = 1.
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The RRG theorem: three trivial cases

The case where S is a point

o If S'is a point, x (X, F) = [, Td (TX)ch (F).

e If X projective, this is RRHirzebruch.

e if X Kahler, this is local index theorem for
DX=3"+0"".

o If X non Kahler, proof by deformation in smooth
category to a classical Dirac operator (Atiyah-Singer).

@ The smooth deformation destroys the holomorphic
structure: Bott-Chern information is lost!

@ An aside: how to prove RRH analytically while
preserving A
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The case of Kahler fibrations

e wM closed (1,1) form which is fibrewise Kahler.

e By B. Gillet-Soulé, using fibrewise elliptic Hodge
theory. ..

@ ...construction of closed superconnection forms ay
such that %at =907

2t
o ..with ag = p, [Td (T'X, g"¥) ch (F, ¢")] , e =
ch (Rp.F, gfr-F

@ Analytic torsion forms oLty Qoo — (X
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The RRG theorem: three trivial cases

The case of Kahler fibrations

e wM closed (1,1) form which is fibrewise Kahler.

e By B. Gillet-Soulé, using fibrewise elliptic Hodge
theory. ..

@ ...construction of closed superconnection forms oy

=S
D, = 9y
such that 7oy = S =3 ...

o ..with ag = p, [Td (T'X, g"¥) ch (F, ¢")] , e =
ch (Rp.F, gfr-F

@ Analytic torsion forms MT = Qo — Qg =
ch (Rp*F, gtrF ) — [Td (TX gTX) ch (F g )}

e For the ¢;, curvature theorem for Quillen metrics.
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The RRG theorem: three trivial cases

A proof when the fibre is a point

o If M =S, fibration is Kéhler (take w™ = 0).
o IfwM=0,foranyt >0, 0, =1,get 1 =1, and T = 0.
e Forget about the Kahler property. ..

o ...and formally imitate the proof of RRG in the
Kéahler case.
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The RRG theorem: three trivial cases

The case where fibre is a point

e Pick an arbitrary (1,1) form w® on S = M.

@ Reproduce formally the construction of
superconnection forms.

=9
@ The forms «; given by a; = exp <_ ;2 4(152?,5)

o ay = 1inH](3:C) (S,C).

o Ast — 0, ay does not converge except if 3°05w5 =0
(implied by w® closed).

@ The term 5835w5 appears ‘because’ it is a Laplacian
in the exotic Hodge theory of S.
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The RRG theorem: three trivial cases

The case where the base is a point

e X compact complex manifold, w® a Kihler form (not
necessarily closed).

0 Set DX =0 +0 .
e In 1989, I proved that there is a local index theorem if
and only if 7" 0XWX = 0.

. . =X . .
e Exotic Laplacian 9~ 0¥w™ obstruction to local index
theorem.
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The RRG theorem: three trivial cases

A Lichnerowicz formula for the Bochner Laplacian

<5X +5X*)2 _ —%vi\i‘(M)@F’Q‘f‘%X—l-(RF N %Tr [RTX}>C
— (8%0%w) - % AT P

2

A (T X)

The term <5X8X iwX >c is of length 4 in the Clifford

algebra. Local index theory accepts only terms of length
< 2.

Jean-Michel Bismut
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The RRG theorem: three trivial cases

A proof of RRG when 9" oMM —

wM (1,1) form on M inducing a metric on

TX =TM/S such that oMM = .

Imitate the construction of the o; in the Kéhler case. ..
... using fibrewise elliptic Hodge theory.

The forms a; converge as t — 0.

This proves the theorem in this special case.

Jean-Michel Bismut
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RRG in Bott-Chern cohomology

The general case

Assume Rp,F to be locally free.
Pick w™ (1,1) form positive along fibres X.

°
°

e Using fibrewise elliptic Hodge theory. ..

@ ...we get superconnection forms oy on S. ..
°

... that represent chpc (RpsF). ..

Jean-Michel Bismut



RRG in Bott-Chern cohomology

The general case

o Assume Rp,F to be locally free.

e Pick w™ (1,1) form positive along fibres X.
e Using fibrewise elliptic Hodge theory. ..

@ ...we get superconnection forms oy on S. ..
o ...that represent chpc (Rp.F). ..

@ ...but have no limit as ¢t — 0. ..

Jean-Michel Bismut



RRG in Bott-Chern cohomology

The general case

o Assume Rp,F to be locally free.

e Pick w™ (1,1) form positive along fibres X.
e Using fibrewise elliptic Hodge theory. ..

@ ...we get superconnection forms oy on S. ..
.. that represent chpc (Rp.F). ..

.. but have no limit as ¢ — 0. ..

.. except when M oMM — ).

Jean-Michel Bismut
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The space X

e For simplicity, we work in case of single fibre.

o Let m: X — X be total space of T'X, with fibre ﬁ,
y € TX tautological section, y € TX corresponding
section of T'X.

o FEmbed X into X and use Koszul resolution
(Ox (A (T7X) , iy)).
o Al =3 +i,/b? acts on Q) (X, 7 (A (T*X) & F)).
o A} defines complex quasi-isomorphic to Dolbeault
complex on X.
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Exotic Hodge theory

e On Q) (X 7* (A (T*X)® F))...
o ...introduce duality which is essentially intersection
duality on X, and Hermitian duality fibrewise.

A

o r(z,y) = (z,-Y)
° ¢ (s@t,s’@)t’) =

in +1)/2 * K —iwX . .
(2m)2" (_1)p(p )/ fX <t 2 t/>gA-(T/*?)®FL she X‘S/dvTX'
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Exotic Hodge theory

On Q) (x 7 (A (T*X) ® F)). ..
...introduce duality which is essentially intersection
duality on X, and Hermitian duality fibrewise.

A

7"(3}',?//\) = (‘1'7 _y>
e(séét,s’@t’) =

in +1)/2 * K —iwX . .
(2m)2" (_1)p(p )/ fX <t 2 t/>gA-(T/*?)®FL she X‘S/dvTX'

It is of signature (0o, 00).
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Evaluation of the adjoint

o A/ =0" I L i/ b?.

e Aj adjoint of Aj.

o A} =0% +5ﬁ* +ig/U* + 7 A 0P — 0w + .
e Laplacian looks like

1

_ X X
2b2<A +|Y|TX)+ —Vy i XWX +.
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e Laplacian looks like

1
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e This Laplacian is hypoelliptic, analytically ‘good’
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Evaluation of the adjoint

o A/ =0" I L i/ b?.

e Aj adjoint of Aj.

o A} =0% +5ﬁ* +ig/U* + 7 A 0P — 0w + .
e Laplacian looks like

1

1 =X
o ( AV |Y|jTX) b =Vy — 0 KX

b

e This Laplacian is hypoelliptic, analytically ‘good’
compact resolvent, heat kernel. ..).

e As b — 0, this Hodge theory ‘converges’ to classical
Hodge theory.
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The hypoelliptic theory still fails!

e Except when 79X WX = 0, no local index theorem.

e Superconnection forms ap, deform the elliptic oy, and
remain in the same Bott-Chern class.

o Except when 5M6M wM =0, the ap, have bad
asymptotics as ¢ — 0.

@ The proof of general RRG theorem still fails.
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The solution

e Local index theorem true for a Hodge theory, in which
the Kihler form w® is replaced by |Y|zﬁ( wX

@ The corresponding hypoelliptic Laplacian is of the form

1

1 YA
o7 (= 1Y B Y P ) 5 Vv =¥ [ 00 +-

b

The new a4 remain in the same Bott-Chern class.

As t — 0, the new oy have a limit compatible with
RRG.

@ This proves RRG!
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e Fundamental equality |Y|§ﬁ w® = 0.
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The liptic theory

e Assume again M = S: fibre is a point.
e w¥a (1,1) formon S = M.

e Fundamental cquality |Y| ~w’ =0.

° oy :exp( 4ﬂ2t |Y| =% W >
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The liptic theory

Assume again M = S: fibre is a point.
w¥a (1,1) form on S = M.

Fundamental cquality |Y|2ﬁ wd = 0.
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oy = 1 so that 1 = 1.
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The liptic theory

Assume again M = S: fibre is a point.
w¥a (1,1) form on S = M.

Fundamental cquality |Y|2ﬁ wd = 0.

Qi = €xXp ( 47r2t |Y| X W >
oy = 1 so that 1 = 1.

The general proof gives us 1 = 1 even when M = 5!

Jean-Michel Bismut
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