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Bott-Chern cohomology

S complex manifold of dimension n.

Bott-Chern cohomology

H
(p,q)
BC (S,C) = ker dS∩Ω(p,q)(S,C)

∂
S
∂SΩ(p−1,q−1)(S,C)

.

In general H ·BC (X,C) strictly finer than H ·DR (X,C).

H
(=)
BC (S,R) =

⊕
0≤p≤nH

(p,p)
BC (S,R).

Holomorphic vector bundles have characteristic classes
in H

(=)
BC (S,R) (Bott and Chern).
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A theorem of RRG

p : M → S proper submersion of complex manifolds,
with fibre Xs = p−1(s).

F holomorphic vector bundle on M .

Theorem

If R·p∗F is locally free, then

chBC (R·p∗F ) = p∗ [TdBC (TX) chBC (F )] inH
(=)
BC (S,R) .

Also c1,BC (detR·p∗F ) = p∗ [TdBC (TX) chBC (F )](1,1).
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Remarks

Families index theorem of Atiyah-Singer implies de
Rham version of this result.

If M,S projective, the result follows from
Riemann-Roch-Grothendieck.

Our goal is to prove this result in full generality.
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Hodge theory without a metric

X smooth compact manifold.

One can scale the intersection product
∫
X
α ∧ β. . .

. . . so as to obtain a nondegenerate Hermitian form.
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Elementary examples

If dimRM = 1, η
(
α(0), β(1)

)
= i
∫
M
α ∧ β,

η
(
α(1), β(0)

)
= −i

∫
M
α ∧ β.

If dimRM = 2, η
(
α(0), β(2)

)
= −i

∫
M
α ∧ β. . .

η
(
α(1), β1

)
= i
∫
M
α ∧ β. . .

η
(
α(2), β(0)

)
= i
∫
M
α ∧ β.

η is a Hermitian form of signature (∞,∞).
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The adjoint of d

d∗ adjoint of d with respect to η.

Then d∗ = d.

Hodge Laplacian [d, d∗] = 0. . . which is not an elliptic
operator.

If M complex, ∂
∗

= ∂, ∂∗ = ∂.
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The case of a Hermitian vector bundle

(
E, gE,∇E

)
Hermitian vector bundle with connection.

Then ∇E∗ = ∇E.

Curvature RE is the Hodge Laplacian 1
2

[
∇E,∇E∗].
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A modified Hermitian form

Assume M complex and ω a real (1, 1) form.

Multiplication by iω is a self-adjoint operator.

θ (α, β) = η (α, e−iωβ) Hermitian form.

d∗ = d− idω∧, ∂∗ = ∂ − i∂ω.

[d, d∗] = 0,
[
∂, ∂

∗
]

= −i∂∂ω.

Holomorphic Laplacian vanishes if and only if ∂∂ω = 0.

Jean-Michel Bismut
Riemann-Roch-Grothendieck and Bott-Chern
10 / 28
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A key idea used in the proof

Interpolate between classical Hodge theory and the
above degenerate Hodge theories. . .

. . . through a family of hypoelliptic Hodge
Laplacians. . .

. . . which have the best features of both.
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The case where the fibre is a point

Take M = S, F = C.
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The case where S is a point

If S is a point, χ (X,F ) =
∫
X

Td (TX) ch (F ).

If X projective, this is RRHirzebruch.

if X Kähler, this is local index theorem for

DX = ∂
X

+ ∂
X∗

.

If X non Kähler, proof by deformation in smooth
category to a classical Dirac operator (Atiyah-Singer).

The smooth deformation destroys the holomorphic
structure: Bott-Chern information is lost!

An aside: how to prove RRH analytically while

preserving ∂
X

?
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The case of Kähler fibrations

ωM closed (1, 1) form which is fibrewise Kähler.

By B. Gillet-Soulé, using fibrewise elliptic Hodge
theory. . .

. . . construction of closed superconnection forms αt

such that ∂
∂t
αt = ∂

S
∂S

2iπ
γt
t

...

...with α0 = p∗
[
Td
(
TX, gTX

)
ch
(
F, gF

)]
, α∞ =

ch
(
Rp∗F, g

Rp∗F
)
.

Analytic torsion forms ∂
S
∂S

2iπ
T = α∞ − α0 =

ch
(
Rp∗F, g

Rp∗F
)
− p∗

[
Td
(
TX, gTX

)
ch
(
F, gF

)]
.

For the c1, curvature theorem for Quillen metrics.
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A proof when the fibre is a point

If M = S, fibration is Kähler (take ωM = 0).

If ωM = 0, for any t > 0, αt = 1, get 1 = 1, and T = 0.

Forget about the Kähler property. . .

. . . and formally imitate the proof of RRG in the
Kähler case.
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The case where fibre is a point

Pick an arbitrary (1, 1) form ωS on S = M .

Reproduce formally the construction of
superconnection forms.

The forms αt given by αt = exp
(
−i∂

S
∂SωS

4π2t

)
.

αt = 1 inH
(=)
BC (S,C).

As t→ 0, αt does not converge except if ∂
S
∂SωS = 0

(implied by ωS closed).

The term ∂
S
∂SωS appears ‘because’ it is a Laplacian

in the exotic Hodge theory of S.
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The case where the base is a point

X compact complex manifold, ωX a Kähler form (not
necessarily closed).

Set DX = ∂
X

+ ∂
X∗

.

In 1989, I proved that there is a local index theorem if

and only if ∂
X
∂XωX = 0.

Exotic Laplacian ∂
X
∂XωX obstruction to local index

theorem.

Jean-Michel Bismut
Riemann-Roch-Grothendieck and Bott-Chern
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theorem.
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A Lichnerowicz formula for the Bochner Laplacian

(
∂
X

+ ∂
X∗
)2

= −1

2
∇Λ·(T ∗X)⊗F,2
ei

+
KX

8
+

(
RF +

1

2
Tr
[
RTX

])c
−
(
∂
X
∂XiωX

)c
− 1

16

∥∥∥(∂X − ∂X)ωX∥∥∥2

Λ·(T ∗RX)
.

The term
(
∂
X
∂XiωX

)c
is of length 4 in the Clifford

algebra. Local index theory accepts only terms of length
≤ 2.
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A proof of RRG when ∂
M
∂MωM = 0

ωM (1, 1) form on M inducing a metric on

TX = TM/S such that ∂
M
∂MωM = 0.

Imitate the construction of the αt in the Kähler case. . .

. . . using fibrewise elliptic Hodge theory.

The forms αt converge as t→ 0.

This proves the theorem in this special case.
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The general case

Assume Rp∗F to be locally free.

Pick ωM (1, 1) form positive along fibres X.

Using fibrewise elliptic Hodge theory. . .

. . . we get superconnection forms αt on S. . .

. . . that represent chBC (Rp∗F ). . .

. . . but have no limit as t→ 0. . .

. . . except when ∂
M
∂MωM = 0.

.
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The space X

For simplicity, we work in case of single fibre.

Let π : X → X be total space of TX, with fibre T̂X,
ŷ ∈ T̂X tautological section, y ∈ TX corresponding
section of TX.

Embed X into X and use Koszul resolution
(OX (Λ· (T ∗X) , iy)).

A′′b = ∂
X

+ iy/b
2 acts on Ω(0,·) (X , π∗ (Λ· (T ∗X)⊗ F )).

A′′b defines complex quasi-isomorphic to Dolbeault
complex on X.
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Exotic Hodge theory

On Ω(0,·) (X , π∗ (Λ· (T ∗X)⊗ F )). . .

. . . introduce duality which is essentially intersection
duality on X, and Hermitian duality fibrewise.

r (x, ŷ) = (x,−ŷ).

ε
(
s⊗̂t, s′⊗̂t′

)
=

in

(2π)2n (−1)p(p+1)/2 ∫
X 〈r

∗t, t′〉
g

Λ·(T̂∗X)⊗F
r∗s ∧ e−iωXs′dvT̂X .

It is of signature (∞,∞).
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r (x, ŷ) = (x,−ŷ).
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Evaluation of the adjoint

A′′b = ∂
X

+ ∂
T̂X

+ iy/b
2.

A′b adjoint of A′′b .

A′b = ∂X + ∂
T̂X∗

+ iy/b
2 + y∗ ∧ /b2 − i∂ωX + . . ..

Laplacian looks like

1

2b2

(
−∆V

gT̂X + |Y |2gTX

)
+

1

b
∇Y − i∂

X
∂XωX + . . .

This Laplacian is hypoelliptic, analytically ‘good’
compact resolvent, heat kernel. . . ).

As b→ 0, this Hodge theory ‘converges’ to classical
Hodge theory.
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As b→ 0, this Hodge theory ‘converges’ to classical
Hodge theory.
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The hypoelliptic theory still fails!

Except when ∂
X
∂XωX = 0, no local index theorem.

Superconnection forms αb,t deform the elliptic αt, and
remain in the same Bott-Chern class.

Except when ∂
M
∂MωM = 0, the αb,t have bad

asymptotics as t→ 0.

The proof of general RRG theorem still fails.
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The solution

Local index theorem true for a Hodge theory, in which
the Kähler form ωX is replaced by |Y |2

gT̂X ω
X .

The corresponding hypoelliptic Laplacian is of the form

1

2b2

(
−∆V

gT̂X + |Y |2gTX |Y |2gT̂X

)
+

1

b
∇Y −|Y |2gT̂X ∂∂iω

X+·

The new αb,t remain in the same Bott-Chern class.

As t→ 0, the new αb,t have a limit compatible with
RRG.

This proves RRG!
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The liptic theory

Assume again M = S: fibre is a point.

ωS a (1, 1) form on S = M .

Fundamental equality |Y |2
gT̂X ω

S = 0.

αt = exp

(
−i∂

X̂
∂X̂

4π2t
|Y |2

gT̂X ω
S

)
.

αt = 1 so that 1 = 1.

The general proof gives us 1 = 1 even when M = S!
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