## Measures on spaces of Riemannian metrics, IAS, Princeton, July 2, 2014

D. Jakobson (McGill), jakobson@math.mcgill.ca

- [CJW]: Y. Canzani, I. Wigman, DJ: arXiv:1002.0030, Jour. of Geometric Analysis, 2013
- [CCKJST]: B. Clarke, N. Kamran, L. Silberman, J. Taylor, Y. Canzani, DJ: arXiv:1309.1348

July 18, 2014

Level spacings conjectures (Bohigas, Gianoni, Schmit, 1984): spacings between eigenvalues of the Dirichlet Laplacian for ergodic (mixing) 2-dimensional billiards follow the GOE statistics.
Manifold version: $M$ - compact connected negatively curved manifold of dimension $n ; 0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots$ the eigenvalues of the Laplacian $\Delta$. Let $\mu_{i}=\lambda_{i}^{\overline{n / 2}}$ ("unfolding"). Then

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \delta\left(\mu_{k}-\mu_{k-1}\right) \rightarrow \boldsymbol{d} \mu_{G O E} .
$$

Conjecture fails for arithmetic hyperbolic manifolds (Luo-Sarnak), because of high multiplicity in the length spectrum; but was confirmed numerically for generic negatively curved manifolds, and for certain manifolds with boundary. Few rigorous results. One such result (Jakobson, Zelditch; idea suggested by Sarnak): On a negatively curved compact surface $S$, level spacings distribution for eigenvalues of the Laplacian $\Delta$ (if they exist); and the level spacings distribution for eigenvalues of the Schrödinger operator $\Delta+V$ do not depend on $V$.

The question seems difficult to answer for every Riemannian metric;
Idea: can we prove some results in this direction by averaging over different Riemannian metrics?
Previous related results due to Sarnak and Vanderkam, averaging over spaces of flat tori.

Fix a compact smooth Riemannian manifold $M^{n}$. We shall discuss several measures on manifolds of metrics on $M$.

- Measures on conformal classes of metrics: concentrated near a reference metric $g_{0}$, supported on regular (e.g. Sobolev, real-analytic) metrics a.s. Applications to the study of Gauss curvature.
- Measures on manifolds of metrics with the fixed volume form, applications to the study of $L^{2}$ (Ebin) distance function, and to integrability of the diameter, eigenvalue and volume entropy functionals.
- Remark: All measures are invariant by the action of diffeomorphisms.

Conformal class: $g_{0}$ - reference metric on $M$. Conformal class of $g_{0}:\left\{g_{1}=e^{f} \cdot g_{0}\right\} ; f$ is a random (suitably regular) function on $M$.
$\Delta_{0}$ - Laplacian of $g_{0}$. Spectrum:
$\Delta_{0} \phi_{j}+\lambda_{j} \phi_{j}=0, \quad 0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots$ Define $f$ by

$$
f(x)=-\sum_{j=1}^{\infty} a_{j} c_{j} \phi_{j}(x)
$$

$a_{j} \sim \mathcal{N}(0,1)$ are i.i.d standard Gaussians, $c_{j}=F\left(\lambda_{j}\right) \rightarrow 0$ (damping):

The covariance function
$r_{f}(x, y):=\mathbb{E}[f(x) f(y)]=\sum_{j=1}^{\infty} c_{j}^{2} \phi_{j}(x) \phi_{j}(y)$, for $x, y \in M$.
For $x \in M, f(x)$ is mean zero Gaussian of variance
$r_{f}(x, x)=\sum_{j=1}^{\infty} c_{j}^{2} \phi_{j}(x)^{2}$.

## Examples:

- Random Sobolev metric: $c_{j}=\lambda_{j}^{-s}$, $\Longrightarrow$ $r_{f}(x, y)=\sum_{j} \frac{\phi_{j}(x) \phi_{j}(y)}{\lambda_{j}^{2 s}}$, spectral zeta function.
- Random real-analytic metric $c_{j}=e^{-\lambda_{j} t}, \Longrightarrow$ $r_{f}(x, y)=\sum_{j} \phi_{j}(x) \phi_{j}(y) e^{-2 \lambda_{j} t}$, heat kernel.

Sobolev regularity: If

$$
\mathbb{E}\|f\|_{H^{s}}^{2}=\sum_{j} c_{j}^{2}\left(1+\lambda_{j}\right)^{s}<\infty
$$

then $f \in H^{s}(M)$ a.s. Weyl's law + Sobolev embedding imply Proposition: If $c_{j}=O\left(\lambda_{j}^{-s}\right), s>n / 2$, then $f \in C^{0}$ a.s; if $c_{j}=O\left(\lambda_{j}^{-s}\right), s>n / 2+1$, then $f \in C^{2}$ a.s.

- [CJW]: Let $n=2$, and let $g_{0}$ have non-vanishing Gauss curvature ( $M \neq \mathbf{T}^{2}$ ). Can estimate the probability that after a random conformal perturbation, the Gauss curvature will change sign somewhere on $M$.
- Techniques: curvature transformation in 2d under conformal changes of metrics, large deviation estimates (Borell, Tsirelson-Ibragimov-Sudakov, Adler-Taylor).
- $n \geq 3$ : related results for scalar curvature and $Q$-curvature.
- Random (Sobolev) embeddings into $\mathbf{R}^{k}$ : 1-dimensional i.i.d. Gaussians $\rightarrow k$-dimensional i.i.d. Gaussians. minimal surfaces spanned by random "knots." F. Moraan (1982): qeneral compact $M$, a.s. Whit ney embedding theorems + applications.
- Random (Sobolev) embeddings into $\mathbf{R}^{k}$ : 1-dimensional i.i.d. Gaussians $\rightarrow k$-dimensional i.i.d. Gaussians.
- F. Morgan (1979): $M=S^{1}, k=3$ : a.s. results about minimal surfaces spanned by random "knots."
embedding theorems + applications.
- We shall use similar ideas to define Gaussian measures on manifolds of metrics with fixed volume form; transverse to conformal classes.
- Random (Sobolev) embeddings into $\mathbf{R}^{k}$ : 1-dimensional i.i.d. Gaussians $\rightarrow k$-dimensional i.i.d. Gaussians.
- F. Morgan (1979): $M=S^{1}, k=3$ : a.s. results about minimal surfaces spanned by random "knots."
- F. Morgan (1982): general compact M, a.s. Whitney embedding theorems + applications.
on manifolds of metrics with fixed volume form; transverse
to conformal classes.
- Random (Sobolev) embeddings into $\mathbf{R}^{k}$ : 1-dimensional i.i.d. Gaussians $\rightarrow k$-dimensional i.i.d. Gaussians.
- F. Morgan (1979): $M=S^{1}, k=3$ : a.s. results about minimal surfaces spanned by random "knots."
- F. Morgan (1982): general compact M, a.s. Whitney embedding theorems + applications.
- We shall use similar ideas to define Gaussian measures on manifolds of metrics with fixed volume form; transverse to conformal classes.
- Metrics $=$ sections of $\operatorname{Pos}(M) \subset \operatorname{Sym}(M) \subset \operatorname{Hom}\left(T M, T^{*} M\right)$ (positive-definite, symmetric maps); symmetric matrices in local coordinates. GL $\left(T_{X} M\right)$ acts on $\operatorname{Pos}_{x}(M)$ with stabilizer isomorphic to $\mathrm{O}(n)$.
Fix a volume form $v$, consider $\operatorname{Met}_{v}(M) . S L\left(T_{x} M\right)$ acts on the fibre $\operatorname{Pos}_{x}^{v}(M)$ by

$$
h . g_{x}=h^{T} \circ g_{x} \circ h ;
$$

stabilizer isomorphic to $\mathrm{SO}(n)$. We have

$$
\operatorname{Pos}_{x}^{v}(M) \cong \operatorname{SL}_{n}(\mathbf{R}) / \mathrm{SO}_{n}
$$

- Metrics $=$ sections of $\operatorname{Pos}(M) \subset \operatorname{Sym}(M) \subset \operatorname{Hom}\left(T M, T^{*} M\right)$ (positive-definite, symmetric maps); symmetric matrices in local coordinates. GL $\left(T_{X} M\right)$ acts on $\operatorname{Pos}_{x}(M)$ with stabilizer isomorphic to $\mathrm{O}(n)$.
Fix a volume form $v$, consider $\operatorname{Met}_{v}(M) . S L\left(T_{x} M\right)$ acts on the fibre $\operatorname{Pos}_{x}^{v}(M)$ by

$$
h . g_{x}=h^{T} \circ g_{x} \circ h ;
$$

stabilizer isomorphic to $\mathrm{SO}(n)$. We have

$$
\operatorname{Pos}_{x}^{v}(M) \cong \operatorname{SL}_{n}(\mathbf{R}) / \mathrm{SO}_{n}
$$

- Fix $g^{0} \in \operatorname{Met}_{v} ; d v(x)=\sqrt{\left|\operatorname{det} g^{0}(x)\right|} d x_{1} \wedge \ldots \wedge d x_{n}$. Let $G_{x}=\operatorname{SL}\left(T_{x} M\right), K_{x}=\operatorname{SO}\left(g_{x}^{0}\right)$.
- $f_{x}$ frame in $T_{x} M$ orthonormal w.r.to $g_{x}^{0}, A_{x} \subset G_{x}$ positive diagonal matrices of determinant 1 (w.r. to $f_{x}$ ). Every $g_{x}^{1} \in \operatorname{Pos}_{x}^{V}(M)$ can be represented as

$$
g_{x}^{1}=\left(k_{x} a_{x}\right) g_{x}^{0}, \quad k_{x} \in K_{x}, a_{x} \in A_{x}
$$

unique up to $S_{n}$ acting on $f_{x}$.
Assumption: $M$ is parallelizable ( $\exists$ global section of the
frame bundle). Examples:

- All 3-manifolds;
- All Lie groups;
- The frame bundle of any manifold; - The sphere $S^{n}$ iff $n \in\{1,3,7\}$

Necessary condition: vanishing of the 2nd Stiefel-Whitney class. For orientable $\Longleftrightarrow$ spin.

- $f_{x}$ frame in $T_{x} M$ orthonormal w.r.to $g_{x}^{0}, A_{x} \subset G_{x}$ positive diagonal matrices of determinant 1 (w.r. to $f_{x}$ ). Every $g_{x}^{1} \in \operatorname{Pos}_{x}^{V}(M)$ can be represented as

$$
g_{x}^{1}=\left(k_{x} a_{x}\right) g_{x}^{0}, \quad k_{x} \in K_{x}, a_{x} \in A_{x}
$$

unique up to $S_{n}$ acting on $f_{x}$.

- Assumption: $M$ is parallelizable ( $\exists$ global section of the frame bundle). Examples:
- All 3-manifolds;
- All Lie groups;
- The frame bundle of any manifold;
- The sphere $S^{n}$ iff $n \in\{1,3,7\}$.

Necessary condition: vanishing of the 2nd Stiefel-Whitney class. For orientable $\Longleftrightarrow$ spin.
$M$ parallelizable. Choose a global section $f^{0}$ of the frame bundle orthonormal w.r. to $g^{0}$.
To define $g_{x}^{1}$, we apply to $f^{0}$ a composition of a rotation
$k_{x} \in \mathrm{SO}\left(T_{x} M\right)$ and a diagonal unimodular transformation $a_{x} \in \operatorname{SL}\left(T_{x} M\right)$ which will define an orthonormal basis $f_{x}^{1}$ for $g_{x}^{1}$. By construction, $g^{0}$ and $g^{1}$ will have the same volume form. We let $a_{x}=\exp (H(x))$, where $H: M \rightarrow \mathfrak{a} \cong \mathbf{R}^{n-1}$ is the Lie algebra of $\operatorname{Diag}_{0}(n) \subset \operatorname{SL}_{n}$. Similarly, let $k_{x}=\exp h(x)$, where $h: M \rightarrow \mathfrak{s o}_{n}$, the Lie algebra of $\mathrm{SO}_{n}$. Choice of $g^{0}+$ parallelizability makes the above construction well-defined.

We define Gaussian measures on $\{H: M \rightarrow \mathfrak{a}\}$ and $\left\{h: M \rightarrow \mathfrak{s o}_{n}\right\}$ as in Morgan. In the sequel, only need $H$; constructions are analogous.

Let

$$
\begin{equation*}
H(x)=\sum_{j=1}^{\infty} \pi_{n}\left(A_{j}\right) \beta_{j} \psi_{j}(x) \tag{1}
\end{equation*}
$$

where

- $\Delta \psi_{j}+\lambda_{j} \psi_{j}=0$;
- $A_{j}$ are i.i.d standard Gaussians in $\mathbf{R}^{n}$;
- $\pi_{n}: \mathbf{R}^{n} \rightarrow\left\{x \in \mathbf{R}^{n}: x \cdot(1, \ldots, 1)=0\right\} \simeq \mathbf{R}^{n-1}$ - projection into the hyperplane $\sum_{j=1}^{n} x_{j}=0$;
- $\beta_{j}=F_{2}\left(\lambda_{j}\right)>0$, where $F_{2}(t)$ is (eventually) monotone decreasing function of $t, F(t) \rightarrow 0$ as $t \rightarrow \infty$.
- Smoothness: Morgan showed Proposition 1: If $\beta_{j}=O\left(j^{-r}\right)$ where $r>(q+\alpha) / n+1 / 2$, then $H$ converges a.s. in $C^{q, \alpha}\left(M, \mathbf{R}^{n-1}\right)$.
- Smoothness: Morgan showed Proposition 1: If $\beta_{j}=O\left(j^{-r}\right)$ where $r>(q+\alpha) / n+1 / 2$, then $H$ converges a.s. in $C^{q, \alpha}\left(M, \mathbf{R}^{n-1}\right)$.
- Proposition 1 + Weyl's law $\Longrightarrow$ Proposition 2: If $\beta_{j}=O\left(\lambda_{j}^{-s}\right)$ where $s>q / 2+n / 4$, then $H$ converges a.s. in $C^{q}\left(M, \mathbf{R}^{n-1}\right)$.


## Lipschitz distance $\rho$ :

$$
\begin{equation*}
\rho\left(g_{0}, g_{1}\right)=\sup _{x \in M} \sup _{0 \neq \xi \in T_{x} M}\left|\ln \frac{g_{1}(\xi, \xi)}{g_{0}(\xi, \xi)}\right| \tag{2}
\end{equation*}
$$

A related expression appeared in the paper by Bando-Urakawa. If $g_{1}(x)=(k(x) d(x)) g_{0}(x)$ then $\rho$ only depends on the diagonal part $d(x)$.
Tail estimate for $\rho$ :
One can show that for large $R$,

$$
\begin{equation*}
\operatorname{Prob}\left\{\rho\left(g_{0}, g_{1}\right)>R\right\} \leq 2^{n}(n+\epsilon) \cdot \operatorname{Prob}\left\{\sup _{x \in M} d_{1}(x)>R / 2\right\} \tag{3}
\end{equation*}
$$

## Definition of $d_{1}$ :

Recall from (1): $H(x)=\sum_{j=1}^{\infty} \pi_{n}\left(A_{j}\right) \beta_{j} \psi_{j}(x)$.
Define $D(x)=\left(d_{1}(x), \ldots, d_{n}(x)\right)$ by

$$
D(x)=\sum_{j=1}^{\infty} A_{j} \beta_{j} \psi_{j}(x)
$$

("don't project $A_{j}$ ").
The covariance function for $d_{1}(x)$ :

$$
r_{d_{1}}(x, y)=\sum_{k=1}^{\infty} \beta_{k}^{2} \psi_{k}(x) \psi_{k}(y)
$$

Define $\sigma^{2}$ by

$$
\begin{equation*}
\sigma^{2}:=\sigma\left(d_{1}\right)^{2}:=\sup _{x \in M} r_{d_{1}}(x, x) \tag{4}
\end{equation*}
$$

Borell-TIS theorem applied to the random field $d_{1}$ implies Proposition 3. Let $\sigma$ be as in (4). Then

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \frac{\ln \operatorname{Prob}\left\{\rho\left(g_{0}, g_{1}\right)>R\right\}}{R^{2}} \leq \frac{-1}{8 \sigma^{2}} \tag{5}
\end{equation*}
$$

More precise result:
Proposition 4. There exists $\alpha>0$ such that for a fixed $\epsilon>0$ and for large enough $R$, we have

$$
\operatorname{Prob}\left\{\rho\left(g_{1}, g_{0}\right)>R\right\} \leq 2^{n}(n+\epsilon) \exp \left(\frac{\alpha R}{2}-\frac{R^{2}}{8 \sigma^{2}}\right)
$$

$\rho$ controls diameter and eigenvalues:
Proposition 5.
Assume that $d \operatorname{vol}\left(g_{0}\right)=d \operatorname{vol}\left(g_{1}\right)$ and $\rho\left(g_{0}, g_{1}\right)<R$. Then

$$
\begin{equation*}
e^{-R} \leq \frac{\operatorname{diam}\left(M, g_{1}\right)}{\operatorname{diam}\left(M, g_{0}\right)} \leq e^{R} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{-2 R} \leq \frac{\lambda_{k}\left(\Delta\left(g_{1}\right)\right)}{\lambda_{k}\left(\Delta\left(g_{0}\right)\right)} \leq e^{2 R} \tag{7}
\end{equation*}
$$

Propositions 4 and 5 imply
Theorem 6.
Let $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a monotonically increasing function such that for some $\delta>0$

$$
h\left(e^{y}\right)=O\left(\exp \left[y^{2}\left(1 /\left(8 \sigma^{2}\right)-\delta\right)\right]\right)
$$

Then $h\left(\operatorname{diam}\left(g_{1}\right)\right)$ is integrable with respect to the probability measure $d \omega\left(g_{1}\right)$ constructed earlier. and
Theorem 7. Let $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a monotonically increasing function such that for some $\delta>0$

$$
h\left(e^{2 y}\right)=O\left(\exp \left[y^{2}\left(1 /\left(8 \sigma^{2}\right)-\delta\right)\right]\right)
$$

Then $h\left(\lambda_{k}\left(\Delta\left(g_{1}\right)\right)\right)$ is integrable with respect to the probability measure $d \omega\left(g_{1}\right)$ constructed earlier. etc

Similar results can be established for volume entropy,

$$
h_{\mathrm{vol}}=\lim _{s \rightarrow \infty} \frac{\ln \operatorname{vol} B(x, s)}{s}
$$

- $L^{2}$ or Ebin distance between can be computed as follows [Ebin, Clarke]:

$$
\Omega_{2}^{2}\left(g^{0}, g^{1}\right):=\int_{M} d_{2, x}\left(g^{0}(x), g^{1}(x)\right)^{2} d v(x)
$$

where $d_{2, x}\left(g^{0}(x), g^{1}(x)\right)$ is the distance in $\mathrm{SL}_{n} / \mathrm{SO}_{n}$;

$$
=\int_{M}\langle H(x), H(x)\rangle_{g^{0}(x)} d v(x)
$$

- $L^{2}$ or Ebin distance between can be computed as follows [Ebin, Clarke]:

$$
\Omega_{2}^{2}\left(g^{0}, g^{1}\right):=\int_{M} d_{2, x}\left(g^{0}(x), g^{1}(x)\right)^{2} d v(x)
$$

where $d_{2, x}\left(g^{0}(x), g^{1}(x)\right)$ is the distance in $\mathrm{SL}_{n} / \mathrm{SO}_{n}$;

$$
=\int_{M}\langle H(x), H(x)\rangle_{g^{0}(x)} d v(x)
$$

- For us $\Omega_{2}^{2}$ is a random variable whose distribution we shall compute. Note: only depends on $H$, hence it suffices to consider the Gaussian measure on $\{H: M \rightarrow \mathfrak{a}\}$.

In local coordinates, let

$$
a_{x}=\operatorname{diag}\left(\exp \left(b_{1}(x)\right), \exp \left(b_{2}(x)\right), \ldots, \exp \left(b_{n}(x)\right)\right)
$$

where $\sum_{j=1}^{n} b_{j}(x)=0, \forall x \in M$. Then

$$
d_{x}\left(g_{x}^{0}, g_{x}^{1}\right)^{2}=\sum_{j=1}^{n} b_{j}(x)^{2}
$$

Accordingly,

$$
\Omega_{2}\left(g^{0}, g^{1}\right)^{2}=\int_{M}\left(\sum_{j=1}^{n} b_{j}(x)^{2}\right) d v(x)
$$

$\pi_{n}: \mathbf{R}^{n} \rightarrow\left\{x: \sum x_{j}=0\right\}$ standard projection. $P_{n}$ - matrix of $\pi_{n}$ (in the usual basis of $\mathbf{R}^{n}$ ) with singular values

$$
(1, \ldots, 1,0):=\mu_{i, n}, 1 \leq i \leq n .
$$

Then in distribution

$$
\Omega_{2}^{2} \stackrel{D}{=} \sum_{j} \beta_{j}^{2} \sum_{i=1}^{n} \mu_{i, n}^{2} W_{i, j}
$$

where $W_{i, j} \sim \chi_{1}^{2}$ are i.i.d. We get $\Omega_{2}^{2} \stackrel{D}{=} \sum_{j} \beta_{j}^{2} V_{j}$ where $V_{j} \sim \chi_{n-1}^{2}$ are i.i.d.

## Theorem 8.

Moment generating function of $\Omega_{2}^{2}$ :

$$
\begin{aligned}
& M_{\Omega_{2}^{2}}(t)=E\left(\exp \left(t \Omega_{2}^{2}\right)\right)=\prod_{j} \prod_{i=1}^{n} M_{\chi_{1}^{2}}\left(t \mu_{i, n}^{2} \beta_{j}^{2}\right) \\
= & \prod_{j} \prod_{i=1}^{n}\left(1-2 t \mu_{i, n}^{2} \beta_{j}^{2}\right)^{-1 / 2}=\prod_{j}\left(1-2 t \beta_{j}^{2}\right)^{-(n-1) / 2}
\end{aligned}
$$

Characteristic function of $\Omega_{2}^{2}$ :

$$
\prod_{j} \prod_{i=1}^{n}\left(1-2 i t \mu_{i, n}^{2} \beta_{j}^{2}\right)^{-1 / 2}=\prod_{j}\left(1-2 i t \beta_{j}^{2}\right)^{-(n-1) / 2}
$$

## Corollary 9.

Tail estimates for $\Omega_{2}^{2}$ : applying results of Laurent-Massart, one can show that

$$
\operatorname{Prob}\left\{\Omega_{2}^{2} \geq s^{2}\right\} \leq \exp \left(-s^{2} /\left(2 \beta_{1}^{2}\right)\right)
$$

