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In this lecture, a singularity for a locally Lipschitz real valued
function U is a point where U is not differentiable.

We will denote by Sing(U) the set of singularities of U. Its,
complement, i.e. the set of points where U is differentiable, is
denoted by Diff(U).

We will give some properties of the set Sing(U) when U is a
viscosity solution of the Hamilton-Jacobi equation, under the
“usual” (i.e. Tonelli) regularity of the Hamiltonian.
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We recall that global smooth solutions of the Hamilton-Jacobi
equation rarely exist.

Therefore a theory of generalized solutions is necessary.
We will speak about the viscosity solutions, since we will deal with
Hamiltonians on a cotangent space that are convex in the
momentum.
However to make our lecture accessible to a wide audience, after
stating the results in full generality, we will concentrate our
methods on distances to closed subsets in Euclidean space.



We recall that global smooth solutions of the Hamilton-Jacobi
equation rarely exist.
Therefore a theory of generalized solutions is necessary.

We will speak about the viscosity solutions, since we will deal with
Hamiltonians on a cotangent space that are convex in the
momentum.
However to make our lecture accessible to a wide audience, after
stating the results in full generality, we will concentrate our
methods on distances to closed subsets in Euclidean space.



We recall that global smooth solutions of the Hamilton-Jacobi
equation rarely exist.
Therefore a theory of generalized solutions is necessary.
We will speak about the viscosity solutions, since we will deal with
Hamiltonians on a cotangent space that are convex in the
momentum.

However to make our lecture accessible to a wide audience, after
stating the results in full generality, we will concentrate our
methods on distances to closed subsets in Euclidean space.



We recall that global smooth solutions of the Hamilton-Jacobi
equation rarely exist.
Therefore a theory of generalized solutions is necessary.
We will speak about the viscosity solutions, since we will deal with
Hamiltonians on a cotangent space that are convex in the
momentum.
However to make our lecture accessible to a wide audience, after
stating the results in full generality, we will concentrate our
methods on distances to closed subsets in Euclidean space.



Our results are valid for any compact manifold, but to fix ideas, we
will restrict to the case of the torus TN = RN/ZN .

A function H : TN × RN → R is a Tonelli Hamiltonian if it
satisfies the following conditions:

1) H is C2.

2) (C2 Strict Convexity) At every (x , p), the second partial
derivative ∂2ppH(x , p) is definite > 0. In particular H(x , p) is
strictly convex in p.

3) (Superlinearity) H(x , p)/‖p‖ → +∞, as ‖p‖ → +∞.

A prototype example of such a Tonelli Hamiltonian is

H(x , p) =
1

2
‖p‖2 + V (x).

The important feature of Tonelli Hamiltonian is that they allow
action to be defined by a Lagrangian convex in the speed. This in
turn allows to apply the calculus of variations to find minimizers of
action (rather than just critical points).
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Viscosity solutions for Tonelli Hamiltonians

Explaining the general definition of a viscosity solution would take
us too far away. Instead, we take advantage of the fact that H is
Tonelli to give the following equivalent definition.

Definition

The continuous function U : TN × [0,+∞[→ R is a viscosity
solution of the (evolution) Hamilton-Jacobi equation

∂tU + H(x , ∂xU) = 0, (0.1)

if it is a semi-concave function (i.e. locally the sum of a concave
and a smooth function) on TN×]0,+∞[, and satisfies equation
(0.1) almost everywhere.

Note that a concave function is differentiable almost everywhere (it
is locally Lipschitz). Therefore U is differentiable almost
everywhere, and the last condition in the definition makes sense.
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Existence of viscosity solutions

Although, as we already said C1 solutions for the Hamilton-Jacobi
equation may fail to exist, there are always viscosity solutions. This
is the reason Pierre-Louis Lions and Mike Crandall introduced
them in the 1980’s. Of course, they relied on previous work of
other people, including Hopf and Kruzhkov.

Theorem

Given any continuous function u0 : TN → R, there exists a
(unique) viscosity solution U : TN × [0,+∞[→ R of the evolution
equation ∂tU + H(x , ∂xU) = 0, such that u0(x) = U(x , 0), for
every x ∈ TN .

The important ingredient that is used in our work is that these
solutions have backward “characteristics” at every point, and that
these characteristics depend continuously on the end point on the
set where the solution is differentiable.
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Main result

Our main result is the following

Theorem

Let U : TN × [0,+∞[→ R be a viscosity solution of the evolution
equation

∂tU + H(x , ∂xU) = 0.

The set Sing+(U) = Sing(U) ∩ TN×]0,+∞[ is locally connected.
If Sing+(U) 6= ∅, then every connected component C of Sing+(U)
is unbounded in TN × [0,+∞[, i.e for every t > 0, the intersection
C ∩ TN × [t,+∞[ is not empty.

We will now comment on the two aspects of the result: first the
local connectedness, then the unboundedness of the connected
components.
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Local connectedness

Since a viscosity solution U is a semi-concave function (i.e. locally
the sum of a concave and a smooth function) on TN×]0,+∞[,
one should expect the set Sing+(U) to look locally as the set of
singularities of a concave function.
To fix the ideas, let us consider the singularities of a “generic”
concave function f : R→ R. Hence the derivative f ′ should be a
“generic” non-increasing function. The set of singularities for f is
the set of jumps of f ′. This set of jumps is of course countable but
in the “generic” case it should have non-isolated points. But a
countable locally connected set in a metric space has only isolated
points.
A consequence of our theorem is therefore:

Viscosity solutions of Hamilton-Jacobi Equations for Tonelli
Hamiltonians form a very small subset of the set of
semi-concave functions
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Propagation of singularities

Of course, both parts of the theorem are related to work on
propagation of singularities along paths done by Paolo Albano,
Piermarco Cannarsa, Wei Cheng, Marco Mazzola, Carlo Sinestrari,
Yifeng Yu, and many others.

In the works above, under some hypothesis, it is shown that for a
given (x0, t0) ∈ Sing+(U), there exists a path γ : [t0, t0 + ε[→ TN ,
with γ : (t0) = x0, and (γ(t), t) ∈ Sing+(U), for all t ∈ [t0, t0 + ε[.

These results are essentially local (i.e. γ(t) may have no limit as
t → t0 + ε or could converge to a point of differentiability) except,
to my knowledge, in a couple of recent exceptions.

If these results were global then they would prove a better result
than the second part of theorem stated above: namely, that the
path connected components of Sing+(U) are unbounded.
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The first exception I have in mind is:

P. Albano, Propagation of singularities for solutions of
Hamilton-Jacobi equations, J. Math. Anal. Appl., 411 (2014),
684–687.

In this work, the propagation along paths problem is addressed for
the closure Sing(U) rather than for the set of singularities itself.
The second exception I have in mind is:

P. Cannarsa, M. Mazzola, & C. Sinestrari, Global Propagation of
singularities for time dependent Hamilton-Jacobi equations DCDS,
35 (2015), 4225–4239.

The authors show that there is global propagation of singularities
along paths for Hamiltonians of the form:

H(p) =
1

2
〈Ap, p〉, where A is a positive definite N × N real matrix.
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In this last paper, the authors give a description of the state of the
art in 2015.

They also note that, in general, the problem has a
negative answer if H is allowed Lipschitz dependence in (t, x)
(Example 5.6.7, in the book by Cannarsa and Sinestrari). They
conclude with:
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Indeed, being able to characterize the value function as the unique solution of (2)
is the starting point towards a rigorous approach to dynamic programing.

The notion of viscosity solutions, introduced in the seminal papers [9] and [10],
provides the right class of generalized solutions to study existence, uniqueness, and
stability issues for problem (2). The reader will find an overview of the main features
of this theory in [5], for first order equations, and [13], for second order problems.

On the other hand, it is also well known that Hamilton-Jacobi equations have no
global smooth solutions, in general, because solutions may develop singularities—
i.e., discontinuities of the gradient—in finite time due to crossing of characteristics.

Indeed, the maximal regularity one may expect for solutions of (2) is that, for
any t > 0, u(t, ·) is locally semiconcave on Rn, that is, u(t, ·) can be represented
as the sum of a concave and a smooth function on each compact subset of Rn.
In fact, the notion of semiconcave solution was used in the past even to provide
existence and uniqueness results for (2) before the theory of viscosity solution was
developed, see [12], [14], and [15]. Nowadays, semiconcavity is still an important
property in the study of Hamilton-Jacobi when related to optimal control problems
in euclidean spaces ([7]) and even on Riemannian manifolds ([19]). However, it is
rather regarded as a regularizing e↵ect of the nonlinear semigroup associated with
(2)—in some sense, a sign of irreversibility in Hamilton-Jacobi dynamics.

Another evidence of irreversibility for the equation

ut(t, x) + H
�
x,ru(t, x)

�
= 0 (t, x) 2 (0, T ) ⇥ Rn (3)

is the persistence of singularities, that is, the fact that once a singularity is created,
it will propagate forward in time up to +1. Unlike the gain of semiconcavity, such
a phenomenon is not well understood so far.

What is su�ciently clear to this date is the local propagating structure of the
singular set of a viscosity solution u of (3): if (t0, x0) 2 [0, +1) ⇥ Rn is a singular
point of u, then there exists a Lipschitz arc � : [t0, t0 + ⌧) ! Rn such that (t, �(t))
is singular for all t 2 [t0, t0 +⌧), see [3], [20], and [8]. Therefore, the question we are
now interested in is to provide conditions to ensure that ⌧ = +1. We note that, in
general, this problem has a negative answer if H is allowed Lipschitz dependence
in (t, x) even for n = 1, see [7, Example 5.6.7].

A di↵erent—yet related—problem is the study of the propagation of the closure of
the singular set of u which, in this context, coincides with the C1 singular support
of u. This set is obviously larger than the singular set itself and can indeed be
strictly so, even when the initial datum is of class C1 with a Lipschitz gradient.
For instance, [6, Example 4.20] gives an example where the Hausdor↵ dimension
of the C1 singular support is strictly greater than the dimension of the singular
set. The propagating structure of the C1 singular support is now understood fairly
well. The first result, of local nature, was obtained in [6, Theorem 3.3] for smooth
initial conditions. Then, the global propagation of the C1 singular support has been
proved by Albano [1] without any smoothness restriction on the data. This analysis
has been refined in [18], pointing out an interesting connection with specific families
of generalized characteristics of (3).

Nevertheless, establishing whether genuine singularities propagate indefinitely or
not remains a largely open problem.

A first, simple case where the answer to the above problem is positive is when
n = 1 and H is su�ciently smooth. Indeed, the x-derivative of u turns out to be a
solution of a conservation law for which the results in [11] ensure the persistence ofOur work was motivated by a lecture of Piermarco Cannarsa (April
2014, Avignon), where he mentioned his work with Yifeng Yu:
Dynamics of the propagation of singularities for semiconcave
functions, J. Eur. Math. Soc. 11 (2009), 999–1024,
in which they proved under some hypothesis, the non-isolation of
singularities for the stationary equation

H(x ,Dxu) = c .
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What really intrigued me was that they were using the
Jordan-Brouwer separation theorem in the proof.

This aroused again my strong (unsupported) belief that
singularities in weak KAM theory are deeply related to the
topology and the Aubry set.

Without Piermarco’s very inspiring lecture none of this work would
have been done.
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We start afresh!



Distance function

The ideas here can be applied verbatim to distance functions to
closed sets in complete Riemannian manifolds.

To keep simple, we will restrict to RN with its canonical Euclidean
distance
It will give a good idea of the results, and the methods of proof.
We will, denote by ‖·‖ the usual Euclidean norm on RN .
If C ⊂ RN is a closed subset, we denote by δC : RN → R the
distance function to C .

δC (x) = inf
c∈C
‖x − c‖.

The function δC is 1-Lipschitz.
On RN \ C , the function δC is a prototype of a viscosity solution of
a stationary Hamilton-Jacobi equation.
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We study the set of points Sing(δC ) where δC is not differentiable.

In fact, we will concentrate on

Sing+(δC ) = Sing(δC ) \ C ,

since it is easy to see that δC is differentiable at every point of C̊
and not differentiable at every point of ∂C .
In that case, our theorem becomes

Theorem

The set Sing+(δC ) is locally connected. Moreover, for every
bounded connected component U of RN \ C, the intersection
U ∩ Sing+(δC ) is non-empty and connected.

The non-emptyness above follows from the fact that δC achieves a
maximum on such a bounded component, and it cannot be
differentiable at such a maximum, as we will see later.
We will also discuss the non-bounded connected components of
RN \ C later on.



We study the set of points Sing(δC ) where δC is not differentiable.
In fact, we will concentrate on

Sing+(δC ) = Sing(δC ) \ C ,

since it is easy to see that δC is differentiable at every point of C̊
and not differentiable at every point of ∂C .
In that case, our theorem becomes

Theorem

The set Sing+(δC ) is locally connected. Moreover, for every
bounded connected component U of RN \ C, the intersection
U ∩ Sing+(δC ) is non-empty and connected.

The non-emptyness above follows from the fact that δC achieves a
maximum on such a bounded component, and it cannot be
differentiable at such a maximum, as we will see later.
We will also discuss the non-bounded connected components of
RN \ C later on.



We study the set of points Sing(δC ) where δC is not differentiable.
In fact, we will concentrate on

Sing+(δC ) = Sing(δC ) \ C ,

since it is easy to see that δC is differentiable at every point of C̊
and not differentiable at every point of ∂C .

In that case, our theorem becomes

Theorem

The set Sing+(δC ) is locally connected. Moreover, for every
bounded connected component U of RN \ C, the intersection
U ∩ Sing+(δC ) is non-empty and connected.

The non-emptyness above follows from the fact that δC achieves a
maximum on such a bounded component, and it cannot be
differentiable at such a maximum, as we will see later.
We will also discuss the non-bounded connected components of
RN \ C later on.



We study the set of points Sing(δC ) where δC is not differentiable.
In fact, we will concentrate on

Sing+(δC ) = Sing(δC ) \ C ,

since it is easy to see that δC is differentiable at every point of C̊
and not differentiable at every point of ∂C .
In that case, our theorem becomes

Theorem

The set Sing+(δC ) is locally connected. Moreover, for every
bounded connected component U of RN \ C, the intersection
U ∩ Sing+(δC ) is non-empty and connected.

The non-emptyness above follows from the fact that δC achieves a
maximum on such a bounded component, and it cannot be
differentiable at such a maximum, as we will see later.
We will also discuss the non-bounded connected components of
RN \ C later on.



We study the set of points Sing(δC ) where δC is not differentiable.
In fact, we will concentrate on

Sing+(δC ) = Sing(δC ) \ C ,

since it is easy to see that δC is differentiable at every point of C̊
and not differentiable at every point of ∂C .
In that case, our theorem becomes

Theorem

The set Sing+(δC ) is locally connected. Moreover, for every
bounded connected component U of RN \ C, the intersection
U ∩ Sing+(δC ) is non-empty and connected.

The non-emptyness above follows from the fact that δC achieves a
maximum on such a bounded component, and it cannot be
differentiable at such a maximum, as we will see later.

We will also discuss the non-bounded connected components of
RN \ C later on.



We study the set of points Sing(δC ) where δC is not differentiable.
In fact, we will concentrate on

Sing+(δC ) = Sing(δC ) \ C ,

since it is easy to see that δC is differentiable at every point of C̊
and not differentiable at every point of ∂C .
In that case, our theorem becomes

Theorem

The set Sing+(δC ) is locally connected. Moreover, for every
bounded connected component U of RN \ C, the intersection
U ∩ Sing+(δC ) is non-empty and connected.

The non-emptyness above follows from the fact that δC achieves a
maximum on such a bounded component, and it cannot be
differentiable at such a maximum, as we will see later.
We will also discuss the non-bounded connected components of
RN \ C later on.



We recall some well-known facts about this function δC .

For every x ∈ RN , the set

PC (x) = {c ∈ C | ‖x − c‖ = δC (x)}

of points of C , where the distance δC (x) is attained, is a
non-empty compact subset of C .
This set PC (x) = {c ∈ C | ‖x − c‖ = δC (x)} is called the set of
projections of x on C .
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The projection PC (a) consists of 2 points, and PC (b) is a singleton.



We denote by Reg(C ) the set of points in RN where PC (x) is
single valued, and by Reg+(C ) = Reg(C ) \ C .

The set Reg(C ) is the disjoint union of C and Reg+(C ).
For a point x ∈ Reg(C ), we will denote by xC the unique point in
PC (x).
It is a classical simple exercise, using compactness arguments, to
show that projection map RegC → C , x 7→ xC is continuous.

Lemma

If x ∈ RN , and c ∈ PC (x), the open segment

]c , x [= {(1− t)x + tc | t ∈]0, 1[}

is contained in Reg(C ). In fact, for every s ∈]0, 1[, we have

PC ((1− s)x + sc) = {c}, and δC ((1− s)x + sc) = (1− s)δC (x).

Therefore, the set Reg+ C is dense in RN \ C .
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Proof of the Lemma

y xc

y = (1− s)x+ sc

ĉ ∈ PC(y)

ĉ

y − c = (1− s)(y − x)

We have the inequalities

‖x − y‖+ ‖y − ĉ‖ ≥ ‖x − ĉ‖ ≥ ‖x − c‖
= ‖x − y‖+ ‖y − c‖
≥ ‖x − y‖+ ‖y − ĉ‖

Therefore all inequalities are equality. This implies that
‖y − c‖ = ‖y − ĉ‖, and that x , y and ĉ are aligned. Hence c = ĉ ,
and δC (y) = ‖y − c‖ = (1− s)‖x − c‖ = (1− s)δC (x).
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ĉ

y − c = (1− s)(y − x)

We have the inequalities
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Therefore all inequalities are equality. This implies that
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Differentiability of δC

As is well-known there is a strong relationship between projections
and differentiability of δC .

Theorem

The function δC is differentiable at x /∈ C if and only if
x ∈ Reg+(C ).At a point x /∈ C where δC is differentiable, the
gradient ∇xδC of δC at x is given by

∇xδC =
x − xC
‖x − xC‖

.

Therefore the derivative of δC is continuous on the set of points
where it is defined.

Note that this implies that the gradient ∇xδC is always of norm 1,
wherever it exists. Hence δC cannot be differentiable at its
maximum on a bounded connected component of RN \ C .
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Combining the lemma above and the theorem we get

Corollary

The function δC is differentiable on the set

CC = {(1− t)x + tc | x /∈ C , c ∈ PC (x), t ∈]0, 1[}.

We define the map Φ : Reg+(C )× [0, 1]→ RN , with

ϕ(x , t) = tx + (1− t)xC .

This map is continuous since this is the case for x 7→ xC .
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Here are the properties of Φ:

(1) For every s ∈ [0, 1], and every x ∈ Reg+(C ), we have

δC (Φ(x , s)) = (1− s)δC (x).

(2) We have Φ(x , 0) = x , for every x ∈ Reg+(C ).

(3) For every s < 1, we have Φ((x , t), s) ∈ Reg+(C ) ⊂ RN \ C .
Therefore the image Φ(Reg+(C )× [0, 1[) avoids Sing+(U),
which is the complement of Reg+(C ) in RN \ C

The first item follows from the Lemma above. Item (2), follows
from the definition of Φ. Item (3), for s ∈]0, 1[ follows from the
fact that ]c , x [= {sc + (1− s)x | s ∈]0, 1[} ⊂ Reg+(C ) for every
x /∈ C , and every c ∈ PC (x)

The structure of Sing+(δC ) will follow from the existence of
that map Φ and its properties given above.
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Connectedness criteria

We need tools to prove connectedness of a subset.

We start with
the following one, which we leave as an exercise.

Lemma

Let S be a subset of a metric space X . Then S is connected if
and only if it satisfies the following condition:

For every subset F ⊂ X \ S, closed in X , the set S is
contained in a unique connected component of X \ F .

To be able to prove the connectedness properties, we need a way
to single out a unique component of X \ F .
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This is done by the following (apparently new) theorem.

Theorem (Proper Homotopy Track)

Suppose F ⊂ M is a closed subset of the connected
finite-dimensional manifold M. If Φ : F × [0, 1[→ M is a proper
homotopy with Φ(x , 0) = x, for every x ∈ F , then the track
Φ(F × [0, 1[) of the homotopy Φ covers all the connected
components of M \ F except at most one.

Recall that a continuous map f : X → Y is said to be proper if for
every compact subset K ⊂ Y , the inverse image f −1(K ) is
compact.
What the theorem says is that there is a high price to pay to send
a closed subset of a manifold to ”infinity”.
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In the figure, we illustrate the two classical ways to send
F = SN−1, the unit sphere for the Euclidean norm on M = RN . In
the homothety case, the unbounded component is covered, in the
translation case the bounded component is covered.



It is possible to show that, for F = SN−1 ⊂ M = RN , the
theorem above is equivalent to Brouwer’s fixed point theorem.

Therefore the proof must use some non-trivial tool from topology.

We postpone further discussion and proof of the theorem above to
the end of the lecture.
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The homotopy track theorem leeds to a criteria for connectedness
that is well adapted to our situation.

Proposition (Homotopical Criterion for Connectedness)

Let S ⊂ M be a subset of the connected finite-dimensional
manifold M.

If we can find a continuous homotopy
Φ : (M \ S)× [0, 1[→ M such that:

(i) for every x ∈ M \ S, we have Φ(x , 0) = x,

(ii) the image Φ((M \ S)× [0, 1[) avoids S,

(iii) for every subset F ⊂ M \ S which is closed in M, the
restriction Φ|F : F × [0, 1[→ M is proper,

then S is connected.
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Proof.

We have to show that for each subset F ⊂ M \ S , closed in X ,
the set S is contained in a unique connected component of X \ F .

By the Proper Homotopy Track Theorem, there is at most one
connected component C of M \ F which is not entirely contained
in Φ(F × [0, 1[). Since S avoids both F , and the image of Φ,
necessarily S is contained in C .

We would like to apply this proposition in our situation. In this
case, we have M = RN \ C ,S = Sing+(δC ),M \ S = Reg+(C ),
and the homotopy

Φ : Reg+(C )× [0, 1[→ Reg+(C ) ⊂ RN \ C
(x , s) 7→ sxC + (1− s)x .

Condition (i) of the proposition Φ(x , 0) = x is satisfied. Condition
(ii) is also satisfied since already the image of Φ avoids Sing+(δC ),
the complement of Reg+(C ) in RN \ C .
The crux of the matter is the validity of the properness condition.
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Therefore let us consider a subset F ⊂ Reg+(C ) which is closed in
RN \ C , and a compact set K ⊂ RN \ C .

We want to show that from any sequence (xn, sn) ∈ F × [0, 1[,
with Φ(xn, sn) = kn ∈ K , we can extract from (xn, sn), a
subsequence converging to a point in F × [0, 1[.
We call cn the projection of xn on C .
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We have

δC (xn) = ‖xn − cn‖ ≥ (1− sn)‖xn − cn‖ = δC (kn) = ‖kn − cn‖,

where the inequality follows from sn ≤ 1.
Since K is compact, disjoint from C , and δC = 0 only on C , we
can find α, β > 0 such that α ≤ δC ≤ β on K . This yields

β ≥ (1− sn)‖xn − cn‖ = ‖kn − cn‖ ≥ α.

Since K is compact κ = supz∈K‖z‖ < +∞. This implies that
supn‖cn‖ ≤ β + κ < +∞.
Therefore, extracting if necessary, we can assume that

kn → k ∈ K , cn → c ∈ C , and sn → s ∈ [0, 1].

If we assume ξ = supn‖xn‖ < +∞, then extracting further, we can
assume that xn → x .
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We obtained above

δC (xn) = ‖xn − cn‖ ≥ (1− sn)‖xn − cn‖ = ‖kn − cn‖ ≥ α > 0.

This yields in the limit

δC (x) ≥ (1− s)δC (x) ≥ α > 0.

Therefore s > 1, and x /∈ C . Since x = lim xn, and all the xn are in
F , which is closed in RN \ C , we conclude that x ∈ F . In
particular, we get

Lemma

If F ⊂ Reg+(C ) is a closed and bounded subset of RN \ C, then
the restriction Φ : F × [0, 1[→ RN \ C is proper.



This lemma, together with the Homotopical Criterion for
Connectedness, proves:

Theorem

If U is bounded connected component of RN \ C, then
U ∩ Sing(δC ) is connected.

We now consider the case when F ⊂ Reg+(C ) is not bounded.
The lack of properness comes from the fact that the sequence xn
goes to ∞, i.e. ‖xn‖ → +∞.
In this case, extracting if necessary, the segment [cn, xn] ”tends” to
a half line ` starting at c ∈ C .
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Since for every z ∈ [cn, xn], we have δC (z) = ‖z − cn‖, in the limit,
we obtain

δC (z) = ‖z − c‖, for every z ∈ `.
Therefore, the lack of properness comes from the Aubry set of C ,
which we we now introduce.
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The Aubry set of a closed set

Definition

The Aubry set I(C ) is the set of points x ∈ RN , for which there
exists a half line ` starting at a point c ∈ C , and such that

δC (z) = ‖z − c‖, for every z ∈ `.

It is not difficult to show that I(C ) is a closed subset of RN which
is contained in Reg(C ), and avoids every bounded connected
component of RN \ C .
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The analysis above yields the theorem:

Theorem

For every connected component U of RN \ (C ∪ I(C )), the
intersection U ∩ Sing(δC ) is connected. Moreover, if U is not
bounded then this intersection U ∩ Sing(δC ) is also unbounded.

The statement of the theorem is also reminiscent of the work:
P. Cannarsa & R. Peirone, Unbounded components of the singular
set of the distance function in Rn, TAMS 353 (2001) 4567–4581.
To obtain the local connectedness, one has to go further and
localise the argument given above to appropriate open subsets of
RN \ (C ∪ I(C )).
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Proof of Proper Homotopy Track Theorem

We would like now to explain the proof of Proper Homotopy Track
Theorem.

Theorem

Suppose F ⊂ M is a closed subset of the connected
finite-dimensional manifold M. If Φ : F × [0, 1[→ M is a proper
homotopy with Φ(x , 0) = x, for every x ∈ F , then the track
Φ(F × [0, 1[) of the homotopy Φ covers all the connected
components of M \ F except at most one.

Although the general case requires some more serious arguments,
for the sake of simplicity, we will give a proof in the case where
F = ∂D, the boundary of the smooth compact domain D, and the
image Φ(∂D × [0, 1[) of Φ does not cover the whole of M \ D.
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The red part is F = ∂D.
We will show that D ⊂ Φ(∂D × [0, 1[).



Suppose x /∈ D is not contained in Φ(∂D × [0, 1[).

Since the map
Φ is proper its image Φ(∂D × [0, 1[) is closed. Therefore we can
find a small open neighborhood V ⊂ M \ D of x with
V ∩ Φ(∂D × [0, 1[) = ∅.
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Since ∂D is smooth, we can define the smooth manifold N by

N = M \ D̊ ∪∂D ∂D × [0, 1[,

where z ∈ ∂D is identified with (z , 0) ∈ ∂D × [0, 1[.

Using that ∂D is a smooth submanifold, we can find a closed
neighborhood of ∂D in D diffeomorphic to ∂D × [0, 1], with ∂D
identified with ∂D × {0}. The set D̂ = D \ ∂D × [0, 1[ is a smaller
copy of D included in D̊.
The abstract space N is homeomorphic to M \ D̂, an open subset
of M.
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The set D̂ is in lgreen. The part of D between ∂D and D̂ is
diffeomorphic to ∂D × [0, 1[.
The manifold N is diffeomorphic to the complement of the green
region.



Since Φ|∂D × {0} is the “identity”, we can extend Φ by the
identity on M \ D̊ to a continuous map Φ̃ : N → TN×]0,+∞[.

D

D

Φ̃ is the identity outside of D̊, and Φ̃ sends the dark green segment
through a point in ∂D to the blue segment through the same point
in ∂D.
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The map Φ̃ is proper like Φ.

Since the manifolds N and M have the same dimension, and the
target M of Φ̃ is connected, this proper map has a well defined
degree mod 2.

This degree is “essentially” the number of points mod 2 of the
inverse image by Φ̃ of a “generic point” in M.

We claim that the degree of Φ̃ is 1.
To prove our claim, we observe that the neighborhood V of x is
disjoint from Φ(∂D × [0, 1[), therefore contained in
Φ̃−1(V ) ⊂ M \ D. Moreover, since V ⊂ M \ D, on which Φ̃ is the
identity, we see that every point in the open set V gets covered
exactly once by Φ̃, hence the degree is one.
Since the degree of Φ̃ is 1, degree theory implies that Φ̃ is
surjective. In particular, the domain D is contained in the image of
Φ̃. But Φ̃ is the identity on N \ D × [0, 1[= M \ D, therefore
D ⊂ Φ(∂D × [0, 1[), as we wanted to prove.
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The local connectedness argument

We now describe the “localization” process that provide the local
connectedness.

Since Sing+(δC )∩ I(C ) = ∅, we start with an open bounded set O
contained in RN \ (C ∪ I(C )).
We now construct a homotopy ΦO : O ∩ Reg+(C )× [0, 1[→ O
from Φ.
For every x ∈ O ∩ Reg+(C ), we define

s(x) = sup{s ∈ [0, 1] | Φ(x , s ′) ∈ O, for every s ′ ∈ [0, s]}.

Since O is open, and Φ is continuous, the function s is > 0 and
lower semi-continuous on O ∩ Reg+(C ).



The local connectedness argument

We now describe the “localization” process that provide the local
connectedness.
Since Sing+(δC )∩ I(C ) = ∅, we start with an open bounded set O
contained in RN \ (C ∪ I(C )).

We now construct a homotopy ΦO : O ∩ Reg+(C )× [0, 1[→ O
from Φ.
For every x ∈ O ∩ Reg+(C ), we define

s(x) = sup{s ∈ [0, 1] | Φ(x , s ′) ∈ O, for every s ′ ∈ [0, s]}.

Since O is open, and Φ is continuous, the function s is > 0 and
lower semi-continuous on O ∩ Reg+(C ).



The local connectedness argument

We now describe the “localization” process that provide the local
connectedness.
Since Sing+(δC )∩ I(C ) = ∅, we start with an open bounded set O
contained in RN \ (C ∪ I(C )).
We now construct a homotopy ΦO : O ∩ Reg+(C )× [0, 1[→ O
from Φ.

For every x ∈ O ∩ Reg+(C ), we define

s(x) = sup{s ∈ [0, 1] | Φ(x , s ′) ∈ O, for every s ′ ∈ [0, s]}.

Since O is open, and Φ is continuous, the function s is > 0 and
lower semi-continuous on O ∩ Reg+(C ).



The local connectedness argument

We now describe the “localization” process that provide the local
connectedness.
Since Sing+(δC )∩ I(C ) = ∅, we start with an open bounded set O
contained in RN \ (C ∪ I(C )).
We now construct a homotopy ΦO : O ∩ Reg+(C )× [0, 1[→ O
from Φ.
For every x ∈ O ∩ Reg+(C ), we define

s(x) = sup{s ∈ [0, 1] | Φ(x , s ′) ∈ O, for every s ′ ∈ [0, s]}.

Since O is open, and Φ is continuous, the function s is > 0 and
lower semi-continuous on O ∩ Reg+(C ).



The local connectedness argument

We now describe the “localization” process that provide the local
connectedness.
Since Sing+(δC )∩ I(C ) = ∅, we start with an open bounded set O
contained in RN \ (C ∪ I(C )).
We now construct a homotopy ΦO : O ∩ Reg+(C )× [0, 1[→ O
from Φ.
For every x ∈ O ∩ Reg+(C ), we define

s(x) = sup{s ∈ [0, 1] | Φ(x , s ′) ∈ O, for every s ′ ∈ [0, s]}.

Since O is open, and Φ is continuous, the function s is > 0 and
lower semi-continuous on O ∩ Reg+(C ).



The positivity, and the lower-semi-continuity of s imply that the set

WO = {(x , s) | s < s(x , t)}

is an open subset of (O ∩ Reg+(C ))× [0, 1[ containing
(O ∩ Reg+(C ))× {0}, that is diffeomorphic to
(O ∩ Reg+(C ))× [0, 1[ by a diffeomorphism which is the identity
on (O ∩ Reg+(C ))× {0}.

Therefore the homotopy ΦO we are looking for is the restriction of
Φ to WO .
Again the crux of the matter is to understand when
ΦO : WO ∩ (F × [0, 1[)→ O is proper for a set F ⊂ O ∩ Reg+(C )
which is closed in O.
Like we did before, let us fix a compact subset K ⊂ O, and assume
that xn ∈ F , sn ∈ [0, s(xn)[ are such that Φ(xn, sn) = kn ∈ K .
The problem is to show that, up to extraction, the sequence
converges to a point in WO ∩ (F × [0, 1[).
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Like before we introduce the projection cn of xn on C .
Since O is bounded, as before, up to extraction, we can assume
that xn → x , cn → c ∈ C , kn → k ∈ K , and sn → s ∈ [0, 1].

Since cn is the projection of xn on c , we obtain that c ∈ Pc(x).
Moreover, from kn ∈ [cn, xn], we also obtain k ∈ [c , x ]
If we could show that [k , x ] ∈ O, then necessarily x ∈ F , and by
continuity Φ(x , s ′) ∈ [k , x ] ⊂ O, for each s ′ ∈ [0, s], which implies
s < s(x), and therefore (x , s) ∈WO ∩ (F × [0, 1[), as required.
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This suggests to introduce the following concept.

Definition

An open subset O ⊂ RN(C ∪ I(C )) is said to be adapted to
Sing(δC ), if it satisfies

(1) O ∩ I(C ) = ∅,
(2) for every x /∈ C , if c ∈ PC (x), and k ∈ [c , x ] ∩ O, then

[k , x ] ⊂ O.

It is not difficult to see that a connected component of an open
subset O ⊂ RN(C ∪ I(C )) adapted to Sing(δC ) is itself adapted to
Sing(δC ).
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Therefore the analysis above yields the following proposition.

Proposition

Let O ⊂ RN(C ∪ I(C )) be an open subset adapted to Sing(δC ).
For every connected component V of O, the intersection
V ∩ Sing(δC ) is connected.

The local connectedness of Sing+(δC ) follows from the following
proposition.

Proposition

Let O ⊂ RN(C ∪ I(C )) be an open subset. We can find an open
subset Ô ⊂ O such that Ô is adapted to Sing(δC ), and
O ∩ Sing(U) = Ô ∩ Sing(δC ).
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O ∩ Sing(U) = Ô ∩ Sing(δC ).



The proof of the proposition above is easy. In fact, let us define the
set AO as the union of intervals [c , x ] with x /∈ O, and c ∈ PC (x).

It is not difficult to show that AO is closed, and AO ∩O ⊂ Reg(C ).
Therefore the set Ô = O \ (AO ∪ I+(U)) is open and contains
O ∩ Sing(U), and by construction Ô is adapted to Sing(δC ).
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