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Conservative Dynamics

How to derive dissipation from conservative dynamics?

Hamiltonian system:

I Microscopic energy and momentum are conserved
I Microscopic dynamics invariant under time reversal
I Macroscopic equations dissipative



Brownian Motion

Particle interacting with environment:

Diffusion of particle position:

q(t)2 ∼ Dt as t →∞



Rayleigh gas

Particle (p,q), (ideal) gas (pi ,qi)
N
i=1

H =
p2

2M
+
∑

i

p2
i

2m
+ λ

∑
i

V (q − qi)

V short range

Particle+ gas = Hamiltonian dynamical system, deterministic,
time reversible dynamics



Lorentz gas

Take m→∞

I Fixed scatterers at xi

I Particle motion deterministic and time reversible

H =
p2

2M
+ λ

∑
i

V (q − xi)



Quantum Brownian Particle

Quantum (& lattice) version of Raleigh gas.

Particle hops on Zd and interacts with a free bose field

∂tρ = −i[H, ρ]

H = − 1
2M

∆ + Hfield + λ
∑
x∈Zd

V (q − x)Φ(x)

I ρ density matrix of particle + field
I q position of particle
I Φ(x) =

∫
dk(eikxa(k) + e−ikxa∗(k)) free field



Anderson model

Quantum (& lattice) version of Lorentz gas.

∂tρ = −i[H, ρ]

H = − 1
2M

∆ + λV (q)

I ρ density matrix of particle
I {V (q)}q∈Zd i.i.d.



Diffusion

Classical
t−1E(q(t)2) → D as t →∞

(or a.s. or convergence to Brownian motion... )

E = expectation w.r.t.
I initial state at t = 0 of the gas (Raleigh)
I Positions of the scatterers (Lorentz)

Quantum: replace q(t)2 by tr(ρ(t)q2) and E by
I Thermal initial state at t = 0 for the field
I Average over random potential (Anderson)



Weak coupling limit

For small λ these models exhibit diffusion on time scale 1/λ2.

Equivalently, they have Markovian scaling limits when space
and time are scaled by 1/λ2 and λ taken to zero.



Weak coupling limit

Lorentz gas
I In time t : t random scatterings with ∆v = O(λ)

I |v(t)| = |v(0)|+O(λ) (energy conservation).
(v(τ/λ2), λ2q(τ/λ2))→ (V (τ),X (τ))

V Brownian motion with constant energy V 2 = v(0)2.
(Kesten and Papanicolau, Durr, Goldstein and Lebowitz)

Anderson model: scaling limit for density matrix ρt (q,q′)

lim
λ→0

λ−2dρτ/λ2(
x
λ2 + y ,

x
λ2 − y) := f (x , y)

f satisfies a linear Boltzman equation (Erdös and Yau)

Limit motion diffusive: τ−1EX (τ)2 → D as τ →∞.



Beyond the weak coupling limit

Other Markovian limits: small density, large mass......

However we want λ fixed and t →∞.

Limits might not commute. E.g. in 2d Anderson localization
sets in time scale ec/λ2

Very few results for fixed system
I Periodic Lorentz gas (Bunimovich and Sinai)
I 1d Rayleigh gas (Sinai and Soloveichik, Szasz and Toth)
I Markovian in time random potential (Kang and Schenker)
I 3d Anderson: diffusion t ∼ λ−2−δ (Erdös, Salmhofer, Yau)
I 3d σ model (Disertori, Spencer, Zirnbauer)
I De Roeck and Fröhlich, De Roeck and A.K.



Annealed dynamics
Consider for simplicity Anderson model H = −∆ + λV

ρt = e−itHρ0eitH := e−itLρ0

with L = [H, ·]. Go to kinetic scale

U(λ)
τ := Sλ−2 ◦ e−iτ/λ2L ◦ S−1

λ−2

where Sλ−2 is spatial scaling. Set

T (λ)
τ = EU(λ)

τ

Weak coupling limit states that for fixed τ

lim
λ→0

T (λ)
τ = eτM

M is generator of a q-Markov process which diffuses:

S
τ

1
2
◦ eτM ◦ S−1

τ
1
2
→ T ∗0 as τ →∞



Diffusive limit

However, we are interested in τ →∞ with fixed λ. E.g.
diffusion constant is given by

D = λ−2 lim
τ→∞

τ−1tr q2T (λ)
τ

More generally, under diffusive scaling want to show

S
τ

1
2
◦ T (λ)

τ ◦ S−1

τ
1
2
→ T ∗ as τ →∞

where T ∗ ∼ e−(x−x ′)2/κ on diagonal ρ(x , x).

Erdös, Salmhofer and Yau proved

Sλ−κ/2 ◦ T (λ)
λ−κ ◦ S

−1
λ−κ/2 → T ∗0 as λ→ 0



Random walk in random environment

Fix λ. Then Markov property fails:

T (λ)
τ+τ ′ = EU(λ)

τ+τ ′ 6= EU(λ)
τ EU(λ)

τ ′ = T (λ)
τ T (λ)

τ ′

Let U := U(λ)
1 be the time 1 dynamics in kinetic time scale. Set

T := EU, b := U − EU

so U = T + b and we have for τ ∈ N

U(λ)
τ = (T + b)τ

Think of U as a random transition kernel with T its average
and b fluctuation with Eb = 0.



Renormalization

Since T = T (λ)
1 → eM as λ→ 0 we expect

T = eM+o(λ)

and T τ , τ = 1,2, . . . should be a a diffusive Markov chain.

b provides a random environment for it.

We want to study (T + b)τ as τ →∞.
Pick an integer L. Take time τ = L2n and rescale diffusively:

Un := SLn ◦ (T + b)L2n ◦ S−1
Ln

Want to show

Tn := EUn → T ∗ as n→∞



Renormalization

Do this step by step:

Un = Tn + bn, Tn := EUn

Tn+1 = E
(
SL ◦ (Tn + bn)L2 ◦ S−1

L

)
This is a perturbative finite time problem:

Tn+1 = SL ◦ T L2

n ◦ S−1
L + E(polynomial in bn)

bn+1 = SL ◦

(∑
i

T L2−i
n bnT i

n

)
◦ S−1

L +O(b2
n)



Renormalization

If we could show that moments of bn tend to zero as n→∞ i.e.
that the noise is irrelevant then

Tn → T ∗ as n→∞

In Anderson model this is hard but in a modification of the
Rayleigh gas introduced by De Roeck and Fröhlich it can be
done.



Rayleigh with spin

Interaction of spinning particle with free field environment.

Particle state space l2(Zd )⊗ C2

H = − 1
2M

∆ + Hspin + HE + λ
∑

x

V (q − x)Φ(x)

HE =

∫
ω(k)a∗(k)a(k)

I q: position of particle
I Φ(x) =

∫
dk(eikxa(k) + e−ikxa∗(k)) Free field

I V ∈ C2×2 supported near x = 0 couples particle position
and spin to field near particle

I Heavy particle: we take mass M ∝ λ−2



States

I Initial state (density matrix)

ρ0 = ρP,0 ⊗ ρE ,0

I Particle initial state localized near origin

〈q′,e′|ρP,0|q,e〉 ∼ δq,0δq′,0

with q,q′ ∈ Zd and e,e′ energy levels of Hspin.
I Environment initial state equilibrium Gibbs state

ρE ,0 =
e−βHE

Tr e−βHE



Dynamics
I Dynamics of full system

ρt = e−itHρ0eitH := e−itLρ0

with L = [H, ·].
I Reduced dynamics for the particle: trace over

environment

ρP,t = TrEρt = TrEe−itL(ρP ⊗ ρE ) := (Ee−itL)ρP

I TrE plays the role of E in Anderson model
I For M = O(1) weak coupling limit

lim
λ→0
Sλ−2 ◦ (Ee−iτ/λ2L) ◦ S−1

λ−2

is a diffusive Markov semigroup (Erdös)
I For M = O(1), λ 6= 0 similar difficulties as in Anderson

model



Markovian limit

For M = O(λ−2) things are simpler. During time 1/λ2

I Particle moves distance O(1)

I Spin and particle momentum thermalize
Weak coupling limit is obtained with no scaling of space. Let

T (λ)
τ = Ee−i τ

λ2 L
.

Then
lim
λ→0

T (λ)
τ = eτM

M is generator of a (quantum) Markov process where particle
moves ballistically between random jumps in spin and direction
of velocity.

Weak coupling limit dynamics is diffusive. Diffusion constant is
O(λ2) instead of O(λ−2) due to lack of spatial scaling.



Renormalization

Now fix λ and study large time asymptotics with RG.

To recall: write the full dynamics in time 1/λ2 as

e−iλ−2L = Ee−iλ−2L + b := T + b, Eb = 0.

Look then at times L2n/λ2, n = 1,2, . . . , rescale diffusively

Un := SLn ◦ (T + b)L2n ◦ S−1
Ln

and show
Tn := EUn → T ∗ as n→∞.

Study Un iteratively: Un = Tn + bn, with

Un+1 = SL ◦ (Tn + bn)L2 ◦ S−1
L

Need to show the noise bn vanishes as n→∞.



RWRE
Diffusive behavior of random walk in a random environment
depends on the environment correlations.

Our environment is produced by the interaction of the particle
with the field.

The field has dynamical correlations in the Gibbs state

E(Φ(t , x)Φ(0,0)) =

∫
eiω(k)t+ikx (e−βω(k) − 1)−1dk

The correlation function has long memory

sup
x
|E(Φ(t , x)Φ(0,0))| = O(|t |−a)

a depends on type of phonons: ω(k) ∼
√

k2 + m2 as k → 0
I Acoustic phonons (m = 0), a = (d − 1)/2
I Optical phonons (m 6= 0), a = d/2



Result

Let V be such that the weak coupling limit is diffusive (this is
generic) and a > 1 (optical phonons in d = 3)

Theorem (W. De Roeck, A.K.)

Then, for λ 6= 0 small enough, the particle motion is diffusive:

lim
t→∞

t−1tr q2ρt = Dλ

with Dλ = λ2(D0 + o(|λ|0)).

I D0 is the diffusion constant of the Markov semigroup eτM

I Earlier work by De Roeck and Fröhlich, d ≥ 4



Dyson expansion

The dynamics up to time scale 1/λ2 is controlled by Dyson
expansion i.e. we expand in powers of λ:

e−itL = e−it(LP+LE+λLI)

T (λ)
τ ρP = TrEe−itL(ρP ⊗ ρE ) =

∞∑
m=0

(−λ2)m
∫

0<t1<...<t2m<t

dt1 . . . t.2m

TrE

[
Vt−t2mLI(t2m) . . .Vt2−t1LI(t1)Vt1(ρP ⊗ ρE )

]
with t = τ/λ2 and Vs = e−isLP and LI(t) = eitLE LI . LI is linear in
the field =⇒ pairings of ti with field correlation function

‖ELI(ti)LI(tj)‖ ≤ (1 + |ti − tj |)−a



Dyson expansion

Dyson expansion converges for all τ but it yields useful bounds
only for τ < O(1):

I Ladder diagrams give Markovian semigroup:

T (λ)
τ = eτM + o(λ) if τ < O(1)

I Correlation functions of the random environment have
similar expansion yielding for t1 < t2 < · · · < tm

‖(E (b(t1)b(t2) . . . b(tm))connected ‖ ∼ δ
m

m∏
j=2

|tj − tj−1|−a

with δ = o(λ).



RG flow

To go to longer time scales we need to do the RG iteration with
the input given by the T -operator and noise b-correlation
functions obtained from the Dyson expansion.

Upshot: the noise is irrelevant under RG if a > 1.

We prove for the noise bn at scale Ln

‖(E(bn(t1)bn(t2) . . . bn(tm)connected‖ ∼ δm
n

m∏
j=2

|tj − tj−1|−a

with δn → 0 as n→∞.



Confined particle

When M =∞ we have a confined system interacting with
radiation field. Two cases:

• β <∞: return to (non) equilibrium

ρP,t → ρ∗ as t →∞

(W. De Roeck, A.K.)

• β =∞: return to ground state and asymptotic
completeness: every excited state relaxes to the ground state
by emission of photons whose dynamics is asymptotically free
(M. Griesemer, W. De Roeck and A.K., Faupin and Sigal)

Proof by high temperature expansion, no RG needed.



Markovian limits for extended systems

Weakly anharmonic coupled oscillators (px ,qx )x∈Zd

H =
∑
x∈Zd

(1
2 p2

x + λq4
x ) +

∑
|x−y |=1

(qx − qy )2

Time evolution has formally a Markovian limit as λ→ 0 and
time and space are scaled as t → t/λ2, x → x/λ2:

I Let µ0 be a gaussian measure on (px ,qx )x∈Zd with
covariance G0

I Let µλτ = S1/λ2φτ/λ2µ0 where φt is Hamiltonian evolution

I Then limλ→0 µ
λ
τ is a Gaussian measure with covariance Gτ .

I Gτsatisfies a closed equation which is diffusive with
diffusion constant O(1/λ2). (Spohn, Bricmont and A.K.)

Analogous to Rayleigh and Anderson models.



Markovian limits for extended systems

Coupled chaotic flows: (px ,qx )x∈Zd , H0(qx ,px ) chaotic
systems (Anosov, billiard)

H =
∑

x

H0(qx ,px ) + λ
∑
|x−y |=1

H1(qx ,px ,qy ,py )

Markovian limit t → t/λ2: local energy

Ex (q(τ/λ2),p(τ/λ2))→ ex (τ) as λ→ 0

with ex (t) a diffusion process. (Dolgopyat, Liverani)

The fast dynamics of H0 randomizes px ,qx which act as a noise
to the slow variables Ex .

This model is suitable for the RG in the manner of the heavy
particle with spin. For coupled chaotic maps see (J. Bricmont,
A.K. )



Conclusions

Our proof can be viewed as a scale by scale resummation of
the Dyson expansion.

It is not excluded that one could proceed along these lines also
in the case of Anderson model, band matrices or Quantum
Rayleigh gas.



Scaling1

Continuum version:

U̇(t , x) = κ∆U(t , x) +∇ · (b(t , x)U(t , x))

with
E(b(t , x)b(0,0)) = C(t , x).

Scale:
UL(t , x) := LdU(L2t ,Lx)

Get
U̇L(t , x) = κ∆UL(t , x) +∇ · (bL(t , x)UL(t , x))

with
bL(t , x) = Lb(L2t ,Lx)



Scaling 2

Hence renormalized noise correlation is

E(bL(t , x)bL(0,0) = L2C(L2t ,Lx) := CL(t , x).

Examples:

1.Time independent space decorrelated environment

C(t , x) = δ(x) =⇒ CL(t , x) = L2−dC(x).

Noise irrelevant d > 2.

2. No spatial decay, supx C(t , x) ∼ t−a =⇒

sup
x

CL(t , x) ∼ L2(1−a)t−a.

Noise irrelevant a > 1 =⇒ optical phonons in d = 3.
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