Computing maps between Fukaya categories via Morse trees

> Nathaniel Bottman Princeton/IAS September 2017

§1: context

A symplectic manifold is (M^{2n}, ω) , with $\omega \in \Omega^2(M)$ closed, $\omega^{\wedge n}$ nonvanishing.

Eg: $(M, \omega) =$ (real surface, area form).

A symplectic manifold is (M^{2n}, ω) , with $\omega \in \Omega^2(M)$ closed, $\omega^{\wedge n}$ nonvanishing.

Eg: $(M, \omega) =$ (real surface, area form).

A Lagrangian is $L^n \subset M^{2n}$ with $\omega|_L = 0$.

Eg: L = embedded curve.

Roughly, the Fukaya category $\operatorname{Fuk}(M,\omega)$ has:

- objects are Lagrangians $L\subset M$,
- morphisms are $\hom(L, K) := \mathbb{K} \langle p \rangle_{p \in L \cap K}$.

Roughly, the Fukaya category $\mathrm{Fuk}(M,\omega)$ has:

- objects are Lagrangians $L\subset M$,
- morphisms are $\hom(L, K) := \mathbb{K} \langle p \rangle_{p \in L \cap K}$.

Composition? Fix $a \in L^2 \cap L^1, b \in L^1 \cap L^0$; coefficient of $c \in L^2 \cap L^0$ in $a \circ b$ is a count of rigid pseudoholomorphic triangles: $b = L^0$

Roughly, the Fukaya category $\mathrm{Fuk}(M,\omega)$ has:

- objects are Lagrangians $L\subset M$,
- morphisms are $\hom(L, K) := \mathbb{K} \langle p \rangle_{p \in L \cap K}$.

Composition? Fix $a \in L^2 \cap L^1, b \in L^1 \cap L^0$; coefficient of $c \in L^2 \cap L^0$ in $a \circ b$ is a count of rigid pseudoholomorphic triangles: $b = L^0$

...composition **not** associative! Just can make into an A_{∞} -category by counting rigid polygons.

Functoriality for Fuk?

Idea (Bottman, building on MWW+Weinstein): build an $(A_{\infty}, 2)$ -category, Symp, whose objects are *M*'s and $\hom(M, N) := \operatorname{Fuk}(M^- \times N)$. E.g., need: $\operatorname{Fuk}(M_0^- \times M_1) \otimes \operatorname{Fuk}(M_1^- \times M_2) \to \operatorname{Fuk}(M_0^- \times M_2)$

Idea (Bottman, building on MWW+Weinstein): build an $(A_{\infty}, 2)$ -category, Symp, whose objects are *M*'s and $\hom(M, N) := \operatorname{Fuk}(M^- \times N)$. E.g., need: $\operatorname{Fuk}(M_0^- \times M_1) \otimes \operatorname{Fuk}(M_1^- \times M_2) \to \operatorname{Fuk}(M_0^- \times M_2)$

Do so by counting **witch balls** – pseudoholomorphic maps from the colored patches to symplectic manifolds, with "seam conditions" given by Lagrangian correspondences.

§2: 2-associahedra

Defining the 2-associahedra

To understand the algebraic structure of Symp, need to understand the degenerations that can take place in the domain moduli space $\overline{2M_n}$, where:

$$2\mathcal{M}_{\mathbf{n}} := \left\{ \begin{array}{cccc} (x_{1}, \dots, x_{r}) &\in \mathbf{R}^{r} & x_{1} < \dots < x_{r} \\ (y_{11}, \dots, y_{1n_{1}}) &\in \mathbf{R}^{n_{1}} & y_{11} < \dots < y_{1n_{1}} \\ \vdots & \vdots & \vdots \\ (y_{r1}, \dots, y_{rn_{r}}) &\in \mathbf{R}^{n_{r}} & y_{r1} < \dots < y_{rn_{r}} \end{array} \right\} / \mathbf{R}^{2} \rtimes \mathbf{R}_{>0}$$

Theorem (B, arXiv: 1709.00119): For any $r \ge 1$ and $\mathbf{n} \in \mathbb{Z}_{\ge 0}^r$, the 2-associahedron $W_{\mathbf{n}}$ is a poset which is an abstract polytope.

Theorem (B, 2017): The 2-associahedra form a relative 2-operad over the associahedra. Corollary: Can finally define the notion of $(A_{\infty}, 2)$ -category!

§3: computation via Morse trees?

Polygons in T^*B Fix a metric g on B; get $g: TB \to T^*B$. Identify $T(T^*B) \simeq TB \otimes T^*B$ and define: $J_{\epsilon} \in \operatorname{End}(T(T^*B)), J_{\epsilon} := \begin{pmatrix} 0 & \epsilon g^{-1} \\ -\epsilon^{-1}g & 0 \end{pmatrix}$

Polygons in T^*B Fix a metric g on B; get $g: TB \to T^*B$. Identify $T(T^*B) \simeq TB \oplus T^*B$ and define: $J_{\epsilon} \in \operatorname{End}(T(T^*B)), J_{\epsilon} := \begin{pmatrix} 0 & \epsilon g^{-1} \\ -\epsilon^{-1}g & 0 \end{pmatrix}$

Question (Fukaya—Oh): Characterize J_{ϵ} -hol. strips (polygons) with bdry $\Gamma(df_0)$ on $\Gamma(df)$'s? T^*B

 $\Gamma(\mathrm{d} f_1)$

For small ϵ , fibers of T^*B look small and strips become linear in the fibers:

For small ϵ , fibers of T^*B look small and strips become linear in the fibers:

And similarly for polygons in T^*B :

...how about witch balls?

Question: How about witch balls in cotangent bundles?

thanks!