Computing maps between Fukaya categories via Morse trees

Nathaniel Bottman
Princeton/IAS
September 2017
§1: context

The Fukaya category of a symplectic manifold

The Fukaya category of a symplectic manifold

A symplectic manifold is $\left(M^{2 n}, \omega\right)$, with $\omega \in \Omega^{2}(M)$ closed, $\omega^{\wedge n}$ nonvanishing.

Eg: $(M, \omega)=$ (real surface, area form).

The Fukaya category of a symplectic manifold

A symplectic manifold is $\left(M^{2 n}, \omega\right)$, with $\omega \in \Omega^{2}(M)$ closed, $\omega^{\wedge n}$ nonvanishing.

Eg: $(M, \omega)=$ (real surface, area form).

A Lagrangian is $L^{n} \subset M^{2 n}$ with $\left.\omega\right|_{L}=0$.

Eg: $L=$ embedded curve.

The Fukaya category of a symplectic manifold

The Fukaya category of a symplectic manifold

 Roughly, the Fukaya category $\operatorname{Fuk}(M, \omega)$ has: - objects are Lagrangians $L \subset M$,- morphisms are $\operatorname{hom}(L, K):=\mathbb{K}\langle p\rangle_{p \in L \cap K}$.

The Fukaya category of a symplectic manifold

 Roughly, the Fukaya category $\operatorname{Fuk}(M, \omega)$ has:- objects are Lagrangians $L \subset M$,
- morphisms are $\operatorname{hom}(L, K):=\mathbb{K}\langle p\rangle_{p \in L \cap K}$.

Composition? Fix $a \in L^{2} \cap L^{1}, b \in L^{1} \cap L^{0}$; coefficient of $c \in L^{2} \cap L^{0}$ in $a \circ b$ is a count of rigid pseudoholomorphic triangles:

The Fukaya category of a symplectic manifold

 Roughly, the Fukaya category $\operatorname{Fuk}(M, \omega)$ has:- objects are Lagrangians $L \subset M$,
- morphisms are $\operatorname{hom}(L, K):=\mathbb{K}\langle p\rangle_{p \in L \cap K}$.

Composition? Fix $a \in L^{2} \cap L^{1}, b \in L^{1} \cap L^{0}$; coefficient of $c \in L^{2} \cap L^{0}$ in $a \circ b$ is a count of rigid pseudoholomorphic triangles:
...composition not associative!
but can make into an $A_{\infty^{-}}$-category by counting rigid polygons.

Functoriality for Fuk?

Idea (Bottman, building on MWW+Weinstein): build an $\left(A_{\infty}, 2\right)$-category, Symp, whose objects are M's and $\operatorname{hom}(M, N):=\operatorname{Fuk}\left(M^{-} \times N\right)$. E.g., need:
$\operatorname{Fuk}\left(M_{0}^{-} \times M_{1}\right) \otimes \operatorname{Fuk}\left(M_{1}^{-} \times M_{2}\right) \rightarrow \operatorname{Fuk}\left(M_{0}^{-} \times M_{2}\right)$

Idea (Bottman, building on MWW+Weinstein): build an ($A_{\infty}, 2$)-category, Symp, whose objects are M's and $\operatorname{hom}(M, N):=\operatorname{Fuk}\left(M^{-} \times N\right)$. E.g., need:
$\operatorname{Fuk}\left(M_{0}^{-} \times M_{1}\right) \otimes \operatorname{Fuk}\left(M_{1}^{-} \times M_{2}\right) \rightarrow \operatorname{Fuk}\left(M_{0}^{-} \times M_{2}\right)$
Do so by counting witch balls - pseudoholomorphic maps from the colored patches to symplectic manifolds, with "seam conditions" given by Lagrangian correspondences.

§2: 2-associahedra

Defining the 2-associahedra

To understand the algebraic structure of Symp, need to understand the degenerations that can take place in the domain moduli space $\overline{2 \mathcal{M}_{\mathbf{n}}}$, where:

$$
2 \mathcal{M}_{\mathbf{n}}:=\left\{\begin{array}{ccc|c}
\left(x_{1}, \ldots, x_{r}\right) & \in \mathbf{R}^{r} & x_{1}<\cdots<x_{r} \\
\left(y_{11}, \ldots, y_{1 n_{1}}\right) & \in & \mathbf{R}^{n_{1}} & y_{11}<\cdots<y_{1 n_{1}} \\
& \vdots & & \vdots \\
\left(y_{r 1}, \ldots, y_{r n_{r}}\right) & \in & \mathbf{R}^{n_{r}} & y_{r 1}<\cdots<y_{r n_{r}}
\end{array}\right\} / \mathbf{R}^{2} \rtimes \mathbf{R}_{>0}
$$

Theorem (B, arXiv: 1709.00119): For any $r \geq 1$ and $\mathbf{n} \in \mathbb{Z}_{\geq 0}^{r}$, the 2-associahedron $W_{\mathbf{n}}$ is a poset which is an abstract polytope.

Theorem (B, 2017): The 2-associahedra form a relative 2-operad over the associahedra.
Corollary: Can finally define the notion of $\left(A_{\infty}, 2\right)$-category!

Theorem ($B, 2017$): The 2-associahedra form a relative 2-operad over the associahedra.
Corollary: Can finally define the notion of $\left(A_{\infty}, 2\right)$-category!

$W_{2} \times W_{100} \times_{K_{3}} W_{200} \hookrightarrow W_{300}$

§3: computation via Morse trees?

Polygons in $T^{*} B$

Polygons in $T^{*} B$

Fix a metric g on B; get $g: T B \rightarrow T^{*} B$. Identify $T\left(T^{*} B\right) \simeq T B \otimes T^{*} B$ and define:
$J_{\epsilon} \in \operatorname{End}\left(T\left(T^{*} B\right)\right), J_{\epsilon}:=\left(\begin{array}{cc}0 & \epsilon g^{-1} \\ -\epsilon^{-1} g & 0\end{array}\right)$

Polygons in $T^{*} B$

Fix a metric g on B; get $g: T B \rightarrow T^{*} B$.
Identify $T\left(T^{*} B\right) \simeq T B \oplus T^{*} B$ and define:
$J_{\epsilon} \in \operatorname{End}\left(T\left(T^{*} B\right)\right), J_{\epsilon}:=\left(\begin{array}{cc}0 & \epsilon g^{-1} \\ -\epsilon^{-1} g & 0\end{array}\right)$
Question (Fukaya—Oh): Characterize J_{ϵ}-hol. strips (polygons) with bdry on $\Gamma(\mathrm{d} f)$'s?

$$
\Gamma\left(\mathrm{d} f_{0}\right)
$$

Polygons in $T^{*} B$

For small ϵ, fibers of $T^{*} B$ look small and strips become linear in the fibers:

Polygons in $T^{*} B$

For small ϵ, fibers of $T^{*} B$ look small and strips become linear in the fibers:

strip is J_{ϵ}-holomorphic $\Longrightarrow \dot{p}(t)=\epsilon \mathrm{d}\left(f_{1}-f_{0}\right)(p(t))$ $\Longrightarrow p\left(\epsilon^{-1} t\right)$ Morse flowline
$\Longrightarrow\left(\operatorname{hom}\left(\Gamma\left(\mathrm{d} f_{0}\right), \Gamma\left(\mathrm{d} f_{1}\right)\right), \mu^{1}\right) \simeq\left(C M\left(f_{1}-f_{0}\right), \mathrm{d}_{\text {Morse }}\right)$

Polygons in $T^{*} B$

And similarly for polygons in $T^{*} B$:

...how about witch balls?

Question: How about witch balls in cotangent bundles?

thanks!

