Motivations Vector-valued modular forms Metaplectic stacks Algebro-geometric theory Further results Further directions

An algebro-geometric theory of modular forms taking values in the Weil representation

Luca Candelori

LSU

IAS, October 23rd, 2014

Theta functions

$$heta_{2,0}(q) = \sum_{n \in \mathbb{Z}} q^{n^2} = 1 + 2q + 2q^4 + \ldots \hspace{0.5cm} \in \mathbb{Z}\llbracket q
rbracket$$

Theta functions

$$heta_{2,0}(q) = \sum_{n \in \mathbb{Z}} q^{n^2} = 1 + 2q + 2q^4 + \ldots \in \mathbb{Z}\llbracket q
rbracket$$

• If
$$q=e^{2\pi i au}$$
, for $au\in\mathfrak{h}=\{z\in\mathbb{C}:\mathrm{Im}[z]>0\}$, then

$$heta_{2,0}\left(rac{a au+b}{c au+d}
ight)=\epsilon(c,d)\sqrt{c au+d}\, heta_{2,0}(au)$$

for any
$$\gamma=\left(egin{array}{c} a & b \ c & d \end{array}
ight)\in \mathsf{F}_0(4)$$
, where $\epsilon(c,d)^4=1$

Theta functions as modular forms

Question

Is there a way to express the fact that $\theta_{2,0}(q)$ is a modular form of weight 1/2 *directly* as a formal power series in $\mathbb{Z}\llbracket q \rrbracket$?

Theta functions as modular forms

Question

Is there a way to express the fact that $\theta_{2,0}(q)$ is a modular form of weight 1/2 *directly* as a formal power series in $\mathbb{Z}\llbracket q \rrbracket$?

For $m \in 2\mathbb{Z}_{>0}$ let

$$heta_{m,
u}(q) = \sum_{\substack{n \equiv
u \mod m \\ n \in \mathbb{Z}}} q^{n^2/2m}$$

Theta functions as modular forms

Question

Is there a way to express the fact that $\theta_{2,0}(q)$ is a modular form of weight 1/2 *directly* as a formal power series in $\mathbb{Z}\llbracket q \rrbracket$?

For $m \in 2\mathbb{Z}_{>0}$ let

$$heta_{m,
u}(q) = \sum_{\substack{n \equiv
u \mod m \\ n \in \mathbb{Z}}} q^{n^2/2m}$$

Question

Is there a way to express the fact that $\theta_{m,\nu}(q)$ is a modular form of weight 1/2 directly as a formal power series in $\mathbb{Z}\llbracket q \rrbracket$?

Modular forms of integral weight

 Analytic picture: modular forms of weight k ∈ Z are holomorphic functions f : h → C satisfying

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^kf(au),\qquad orall\left(egin{array}{c} a&b\\c&d\end{array}
ight)\in\mathrm{SL}_2(\mathbb{Z}).$$

Modular forms of integral weight

 Analytic picture: modular forms of weight k ∈ Z are holomorphic functions f : h → C satisfying

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^kf(au),\qquad orall\left(egin{array}{c} a&b\\c&d\end{array}
ight)\in\mathrm{SL}_2(\mathbb{Z}).$$

Algebro-geometric picture: modular forms of weight k ∈ Z are sections

$$f \in \Gamma(\mathcal{M}_1, \underline{\omega}^{\otimes k})$$

q-expansions of classical modular forms

 Analytic picture: the q-expansion of a modular form f of weight k is its Fourier expansion f(e^{2πiτ}) at the cusp ∞.

q-expansions of classical modular forms

- Analytic picture: the q-expansion of a modular form f of weight k is its Fourier expansion f(e^{2πiτ}) at the cusp ∞.
- Algebro-geometric picture: let

$$\psi: \operatorname{Spec}(\mathbb{Z}((q))) \to \mathcal{M}_1$$

be the classifying map of the Tate elliptic curve Tate(q). Then

$$\psi^*(f) = f(q) \, \omega_{\operatorname{can}}^k, \qquad f(q) \in \mathbb{Z}(\!(q)\!)$$

The q-expansion of f is the formal power series f(q).

q-expansions of theta-functions

Definition

A formal power series f(q) is a classical modular form of integral weight k if it is the q-expansion of an algebro-geometric modular form of integral weight k.

q-expansions of theta-functions

Definition

A formal power series f(q) is a classical modular form of integral weight k if it is the q-expansion of an algebro-geometric modular form of integral weight k.

Question

Can we make a similar definition for power series that behave like $\theta_{m,\nu}(q)$, when viewed as analytic functions?

q-expansions of theta-functions

Definition

A formal power series f(q) is a classical modular form of integral weight k if it is the q-expansion of an algebro-geometric modular form of integral weight k.

Question

Can we make a similar definition for power series that behave like $\theta_{m,\nu}(q)$, when viewed as analytic functions?

Question

Is there an algebro-geometric theory of modular forms of half-integral weight underlying these formal power series?

Further motivations

For modular forms of integral weight:

 $\begin{array}{l} \mbox{Algebro-geometric theory} \\ \mbox{Hecke theory} \end{array}$

Further motivations

For modular forms of integral weight:

Algebro-geometric theory + Hecke theory

Question

Given a Hecke theory and an algebro-geometric theory of modular forms of half-integral weight, can we construct motives and *L*-functions attached to them? How would they look like?

• Starting point: *On the equations defining abelian varieties I*,*II*,*III* (Mumford, Invent. math. 1966-67)

- Starting point: *On the equations defining abelian varieties I*,*II*,*III* (Mumford, Invent. math. 1966-67)
- Mumford writes:

My aim is to set up a purely algebraic theory of theta-functions.

- Starting point: *On the equations defining abelian varieties I*,*II*,*III* (Mumford, Invent. math. 1966-67)
- Mumford writes:

My aim is to set up a purely algebraic theory of theta-functions.

There are several interesting topics which I have not gone into in this paper, but which can be investigated in the same spirit: for example, [...] a discussion of the transformation theory of theta-functions.

• For
$$(\pi: E
ightarrow S, e)$$
 an elliptic curve, $m \in 2\mathbb{Z}_{\geq 0}$,

$$\mathcal{L}_m := \mathcal{O}_E(m e) \otimes (\Omega^1_{E/S})^{\otimes m}$$

• For
$$(\pi: E
ightarrow S, e)$$
 an elliptic curve, $m \in 2\mathbb{Z}_{\geq 0}$

$$\mathcal{L}_m := \mathcal{O}_E(m e) \otimes (\Omega^1_{E/S})^{\otimes m}$$

• Can 'evaluate' sections along e, via

$$e^*\mathcal{L}_m\simeq \mathcal{O}_S.$$

• For
$$(\pi : E \to S, e)$$
 an elliptic curve, $m \in 2\mathbb{Z}_{\geq 0}$
 $\mathcal{L}_m := \mathcal{O}_E(m e) \otimes (\Omega^1_{E/S})^{\otimes m}$

• Can 'evaluate' sections along e, via

$$e^*\mathcal{L}_m\simeq \mathcal{O}_S.$$

• Over \mathcal{M}_1 , let \mathcal{J}_m be the sheaf

$${\pi: E \to S} \longmapsto \Gamma(S, \pi_* \mathcal{L}_m)$$

• For
$$(\pi : E \to S, e)$$
 an elliptic curve, $m \in 2\mathbb{Z}_{\geq 0}$
 $\mathcal{L}_m := \mathcal{O}_E(m e) \otimes (\Omega^1_{E/S})^{\otimes m}$

• Can 'evaluate' sections along e, via

$$e^*\mathcal{L}_m\simeq \mathcal{O}_S.$$

• Over \mathcal{M}_1 , let \mathcal{J}_m be the sheaf

$$\{\pi: E \to S\} \longmapsto \Gamma(S, \pi_* \mathcal{L}_m)$$

• The rule

$$\{\pi: E \to S\} \longmapsto e^* \in \Gamma(S, (\pi_*\mathcal{L}_m)^*)$$

gives a section $\theta_{\mathrm{null},m}$ of \mathcal{J}_m^* .

The Weil representation

$$heta_{\mathrm{null},m}(q) = \left(\sum_{\substack{n \equiv
u \mod m \\ n \in \mathbb{Z}}} q^{n^2/2m} = heta_{m,
u}(q)
ight)_{
u \in \mathbb{Z}/m\mathbb{Z}}$$

The Weil representation

$$heta_{\mathrm{null},m}(q) = \left(\sum_{\substack{n \equiv
u \mod m \\ n \in \mathbb{Z}}} q^{n^2/2m} = heta_{m,
u}(q)
ight)_{
u \in \mathbb{Z}/m\mathbb{Z}}$$

• If
$$q = e^{2\pi i \tau}$$

$$heta_{\mathrm{null},m}\left(rac{a au+b}{c au+d}
ight)=\phi\,
ho_m(\gamma)\, heta_{\mathrm{null},m}(au),\quad \phi^2=c au+d$$

for all $\gamma = \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \phi \right) \in Mp_2(\mathbb{Z})$, where ρ_m is the Weil representation attached to the quadratic form $x \mapsto mx^2/2$.

Vector-valued modular forms

Definition (Eichler-Zagier, Borcherds)

A vector-valued modular form of weight k/2 and index m is a holomorphic function

 $f:\mathfrak{h}\to\mathbb{C}[\mathbb{Z}/m\mathbb{Z}]$

such that

$$f(M\tau) = \phi^k \rho_m(\gamma) f(\tau)$$

for every $\gamma = (M, \phi) \in Mp_2(\mathbb{Z})$.

Vector-valued modular forms

Definition (Eichler-Zagier, Borcherds)

A vector-valued modular form of weight k/2 and index m is a holomorphic function

$$f:\mathfrak{h}\to\mathbb{C}[\mathbb{Z}/m\mathbb{Z}]$$

such that

$$f(M\tau) = \phi^k \rho_m(\gamma) f(\tau)$$

for every $\gamma = (M, \phi) \in Mp_2(\mathbb{Z})$.

Fact: there are no non-zero vector-valued modular forms of weight k/2 unless k is odd.

Metaplectic orbifolds and vector-valued modular forms

Vector-valued modular forms of weight k/2 and index m are global sections of the vector bundle

$$\mathcal{W}_m \otimes \underline{\omega}^{k/2}$$

over the metaplectic orbifold $Mp_2(\mathbb{Z}) \setminus \mathfrak{h}$, where:

Metaplectic orbifolds and vector-valued modular forms

Vector-valued modular forms of weight k/2 and index m are global sections of the vector bundle

$$\mathcal{W}_m \otimes \underline{\omega}^{k/2}$$

over the metaplectic orbifold $Mp_2(\mathbb{Z}) \setminus \mathfrak{h}$, where:

• $\underline{\omega}^{k/2}$ is the line bundle corresponding to the 1-cocycle $\operatorname{Mp}_2(\mathbb{Z}) \to \mathcal{O}_{\mathfrak{h}}^*$ given by

$$\begin{split} \mathrm{Mp}_2(\mathbb{Z}) &\to \mathcal{O}_{\mathfrak{h}}^* \\ (M,\phi) &\longmapsto \phi^k \end{split}$$

Metaplectic orbifolds and vector-valued modular forms

Vector-valued modular forms of weight k/2 and index m are global sections of the vector bundle

$$\mathcal{W}_m \otimes \underline{\omega}^{k/2}$$

over the metaplectic orbifold $Mp_2(\mathbb{Z}) \setminus \mathfrak{h}$, where:

• $\underline{\omega}^{k/2}$ is the line bundle corresponding to the 1-cocycle $\operatorname{Mp}_2(\mathbb{Z}) \to \mathcal{O}_{\mathfrak{h}}^*$ given by

$$\begin{split} \mathrm{Mp}_2(\mathbb{Z}) &\to \mathcal{O}_{\mathfrak{h}}^* \\ (M,\phi) &\longmapsto \phi^k \end{split}$$

• \mathcal{W}_m is the local system of rank m given by the Weil representation

$$\rho_m : \mathrm{Mp}_2(\mathbb{Z}) \to \mathrm{GL}(\mathbb{C}[\mathbb{Z}/m\mathbb{Z}])$$

Algebro-geometric theory

To do list:

- Give an algebraic analog of the metaplectic orbifold $\operatorname{Mp}_2(\mathbb{Z}) \backslash\!\!\backslash \mathfrak{h}.$
- Give an algebraic analog of $\underline{\omega}^{k/2}$.
- Give an algebraic analog of \mathcal{W}_m .

Definition

A metaplectic stack is a μ_2 -gerbe over the modular stack \mathcal{M}_1 .

Definition

A metaplectic stack is a μ_2 -gerbe over the modular stack \mathcal{M}_1 .

• Metaplectic stacks are classified by $H^2(\mathcal{M}_1, \mu_2)$.

Definition

A metaplectic stack is a μ_2 -gerbe over the modular stack \mathcal{M}_1 .

- Metaplectic stacks are classified by $H^2(\mathcal{M}_1, \mu_2)$.
- *M*₁^{an} ≃ SL₂(ℤ) \\ h and any metaplectic stack over an analytic base is equivalent to either Mp₂(ℤ) \\ h or (SL₂(ℤ) × μ₂) \\ h.

Definition

A metaplectic stack is a μ_2 -gerbe over the modular stack \mathcal{M}_1 .

- Metaplectic stacks are classified by $H^2(\mathcal{M}_1, \mu_2)$.
- *M*₁^{an} ≃ SL₂(ℤ) \\ h and any metaplectic stack over an analytic base is equivalent to either Mp₂(ℤ) \\ h or (SL₂(ℤ) × μ₂) \\ h.
- Inspired by 'metaplectic correction' in geometric quantization theory.

The metaplectic stack $\mathcal{M}_{1/2}$

All schemes are over $\mathbb{Z}[1/m]$, $m \in 2\mathbb{Z}_{>0}$.

- $\mathcal{M}_{1/2}$ = the category of pairs $(E/S, (Q, \iota))$
 - E/S is an elliptic curve
 - Q is an invertible \mathcal{O}_S -module with

$$\iota: \mathcal{Q}^{\otimes 2} \xrightarrow{\simeq} \underline{\omega}_{E/S}.$$

The metaplectic stack $\mathcal{M}_{1/2}$

All schemes are over $\mathbb{Z}[1/m]$, $m \in 2\mathbb{Z}_{>0}$.

- $\mathcal{M}_{1/2}$ = the category of pairs $(E/S, (Q, \iota))$
 - E/S is an elliptic curve
 - Q is an invertible \mathcal{O}_S -module with

$$\iota: \mathcal{Q}^{\otimes 2} \xrightarrow{\simeq} \underline{\omega}_{E/S}.$$

• $\mathcal{M}_{1/2}$ is a DM stack, and a μ_2 -gerbe $\mathcal{M}_{1/2} \rightarrow \mathcal{M}_1$.

The square root of $\underline{\omega}$

• $\mathcal{M}_{1/2}$ is canonically endowed with an invertible sheaf $\underline{\omega}^{1/2}$ defined by

 $\{(E/S,(\mathcal{Q},\iota))\} \longmapsto \Gamma(S,\mathcal{Q}).$

The square root of $\underline{\omega}$

• $\mathcal{M}_{1/2}$ is canonically endowed with an invertible sheaf $\underline{\omega}^{1/2}$ defined by

$$\{(E/S,(\mathcal{Q},\iota))\} \longmapsto \Gamma(S,\mathcal{Q}).$$

• If $p: \mathcal{M}_{1/2} \to \mathcal{M}_1$ is the 'forget the quadratic form' functor, then

$$p^*\underline{\omega} \simeq \left(\underline{\omega}^{1/2}\right)^{\otimes 2}$$

Finite Heisenberg groups

$$\mathcal{L}_m := \mathcal{O}_E(m e) \otimes (\Omega^1_{E/S})^{\otimes m}$$

Finite Heisenberg groups

$$\mathcal{L}_m := \mathcal{O}_E(m e) \otimes (\Omega^1_{E/S})^{\otimes m}$$

Let

$$0 \to \mathbb{G}_m \to \mathscr{G}(\mathcal{L}_m) = \mathcal{L}_m|_{E[m]} \to E[m] \to 0$$

be the Heisenberg (or theta) group attached to \mathcal{L}_m .

Finite Heisenberg groups

$$\mathcal{L}_m := \mathcal{O}_E(m \, e) \otimes (\Omega^1_{E/S})^{\otimes m}$$

Let

$$0 \to \mathbb{G}_m \to \mathscr{G}(\mathcal{L}_m) = \mathcal{L}_m|_{E[m]} \to E[m] \to 0$$

be the Heisenberg (or theta) group attached to \mathcal{L}_m .

 The O_S-module π_{*}L_m is an irreducible representation of *G*(L_m), locally free of rank m over S.

Symmetric Heisenberg groups

• Since \mathcal{L}_m is symmetric, there is an involution

Symmetric Heisenberg groups

• Since \mathcal{L}_m is symmetric, there is an involution

• $\mathscr{G}(\mathcal{L}_m)$ is a μ_2 -torsor over E[m].

Schrödinger representations

Definition

A symmetric lagrangian subgroup $\mathscr{H} \subseteq \mathscr{G}(\mathcal{L}_m)$ is a subgroup scheme of rank *m* such that $\mathscr{H} \cap \mathbb{G}_m \simeq \{1\}$, $\delta_{-1}(h) = h^{-1}$ for all $h \in \mathscr{H}$, and

$${m E}[m]\simeq {m H} imes \widehat{m H}$$
 (projection onto ${m E}[m])$

as a symplectic module.

Schrödinger representations

Definition

A symmetric lagrangian subgroup $\mathscr{H} \subseteq \mathscr{G}(\mathcal{L}_m)$ is a subgroup scheme of rank *m* such that $\mathscr{H} \cap \mathbb{G}_m \simeq \{1\}$, $\delta_{-1}(h) = h^{-1}$ for all $h \in \mathscr{H}$, and

$${m E}[m]\simeq {m H} imes \widehat{m H}$$
 (projection onto ${m E}[m])$

as a symplectic module.

Definition

The Schrödinger representation $\mathcal{W}_{\mathscr{H}}$ is the locally free \mathcal{O}_{S} -module of functions $f : \mathscr{G}(\mathcal{L}_{m}) \to \mathcal{O}_{S}$ such that: (i) $f(hg) = f(g), \quad \forall h \in \mathscr{H} \subseteq \mathscr{G}(\mathcal{L}_{m}),$ (ii) $f(\lambda g) = \lambda f(g), \quad \forall \lambda \in \mathbb{G}_{m} \subseteq \mathscr{G}(\mathcal{L}_{m}).$

Morphisms and the Weil representation

•
$$\mathscr{H} \setminus \mathscr{G}(\mathcal{L}_m)$$
 is a μ_2 -torsor over $E[m]/H = \widehat{H}$.

Morphisms and the Weil representation

- $\mathscr{H} \setminus \mathscr{G}(\mathcal{L}_m)$ is a μ_2 -torsor over $E[m]/H = \widehat{H}$.
- Morphisms of Schrödinger representations:

 \mathscr{G} -module isomorphism $\mathcal{W}_{\mathscr{H}} \to \mathcal{W}_{\mathscr{H}'}$

induced by a μ_2 -torsor isomorphism

$$\begin{split} \mathscr{H} ackslash \mathscr{G}(\mathcal{L}_m) & \longrightarrow & \mathscr{H}' ackslash \mathscr{G}(\mathcal{L}_m) \ & \downarrow & \downarrow \ & \widehat{H} & \longrightarrow & \widehat{H'} \end{split}$$

Morphisms and the Weil representation

- $\mathscr{H} \setminus \mathscr{G}(\mathcal{L}_m)$ is a μ_2 -torsor over $E[m]/H = \widehat{H}$.
- Morphisms of Schrödinger representations:

 \mathscr{G} -module isomorphism $\mathcal{W}_{\mathscr{H}} \to \mathcal{W}_{\mathscr{H}'}$

induced by a μ_2 -torsor isomorphism

$$\begin{split} \mathscr{H} ackslash \mathscr{G}(\mathcal{L}_m) & \longrightarrow & \mathscr{H}' ackslash \mathscr{G}(\mathcal{L}_m) \ & \downarrow & \downarrow \ & \widehat{H} & \longrightarrow & \widehat{H'} \end{split}$$

•
$$\operatorname{Aut}(\mathcal{W}_m) = \mu_2$$
 (compare with Weil).

The Schrödinger gerbe

• \mathcal{K}_m = the category of pairs $(E/S, \mathcal{W}_{\mathscr{H}})$

The Schrödinger gerbe

• \mathcal{K}_m = the category of pairs $(E/S, \mathcal{W}_{\mathscr{H}})$

• \mathcal{K}_m is a metaplectic stack.

The Schrödinger gerbe

• \mathcal{K}_m = the category of pairs $(E/S, \mathcal{W}_{\mathscr{H}})$

• \mathcal{K}_m is a metaplectic stack.

• \mathcal{K}_m is canonically endowed with a locally free module \mathcal{W}_m or rank m

$$\{(E/S, \mathcal{W}_{\mathscr{H}})\} \longmapsto \Gamma(S, \mathcal{W}_{\mathscr{H}}).$$

Geometric vector-valued modular forms

Definition

Let *m* be a positive even integer and let $k \in \mathbb{Z}$. A \mathcal{W}_m -valued modular form of weight k/2 is a global section of the sheaf

 $\mathcal{W}_m \otimes \underline{\omega}^{k/2}$

over the metaplectic stack $\mathcal{K}_m \times_{\mathcal{M}_1}^{\mu_2} \mathcal{M}_{1/2} \to \mathcal{M}_1$.

Analytic picture

• Over an analytic base,

$$\mathcal{K}_m = \mathrm{Mp}_2(\mathbb{Z}) \mathbb{h}, \quad \mathcal{M}_{1/2} = \mathrm{Mp}_2(\mathbb{Z}) \mathbb{h}$$

Analytic picture

• Over an analytic base,

$$\mathcal{K}_m = \operatorname{Mp}_2(\mathbb{Z}) \mathbb{h}, \quad \mathcal{M}_{1/2} = \operatorname{Mp}_2(\mathbb{Z}) \mathbb{h}$$

$$\begin{split} \mathrm{Mp}_2(\mathbb{Z}) &\to \mathcal{O}_\mathfrak{h}^* \\ (M,\phi) &\longmapsto \phi^k \end{split}$$

Analytic picture

• Over an analytic base,

$$\mathcal{K}_m = \operatorname{Mp}_2(\mathbb{Z}) \mathbb{h}, \quad \mathcal{M}_{1/2} = \operatorname{Mp}_2(\mathbb{Z}) \mathbb{h}$$

•
$$\underline{\omega}^{k/2}$$
 is given by the 1-cocycle
 $Mp_2(\mathbb{Z}) o \mathcal{O}^*_{\mathfrak{h}}$
 $(M, \phi) \longmapsto \phi^k$

• \mathcal{W}_m is given by the Weil representation

$$\rho_m : \mathrm{Mp}_2(\mathbb{Z}) \to \mathrm{GL}(\mathbb{C}[\mathbb{Z}/m\mathbb{Z}])$$

Vector-valued modular forms are 'modular'

Theorem

Let $k \in \mathbb{Z}$ be odd. Then the sheaf

 $\mathcal{W}_m \otimes \underline{\omega}^{k/2}$

of W_m -valued modular forms of weight k/2 descends to a locally free sheaf of rank m over M_1 .

Vector-valued modular forms are 'modular'

Theorem

Let $k \in \mathbb{Z}$ be odd. Then the sheaf

 $\mathcal{W}_m \otimes \underline{\omega}^{k/2}$

of W_m -valued modular forms of weight k/2 descends to a locally free sheaf of rank m over M_1 .

• Fact: when k is even, there are no nonzero \mathcal{W}_m -valued modular forms of weight k/2.

The algebraic Eichler-Zagier Theorem

 \mathcal{J}_m is the sheaf

$$\{\pi: E \to S\} \longmapsto \Gamma(S, \pi_* \mathcal{L}_m)$$

Theorem

There is a canonical isomorphism

$$\mathcal{W}_m \otimes \underline{\omega}^{-1/2} \simeq \mathcal{J}_m$$

of locally free modules of rank m over \mathcal{M}_1 .

The algebraic Eichler-Zagier Theorem

 \mathcal{J}_m is the sheaf

$$\{\pi: E \to S\} \longmapsto \Gamma(S, \pi_* \mathcal{L}_m)$$

Theorem

There is a canonical isomorphism

$$\mathcal{W}_m \otimes \underline{\omega}^{-1/2} \simeq \mathcal{J}_m$$

of locally free modules of rank m over \mathcal{M}_1 .

Proof.

Use Stone-Von Neumann-Mackey.

The transformation law of theta constants

$$heta_{\mathrm{null},m} = \left(\sum_{\substack{n \equiv
u \mod m \\ n \in \mathbb{Z}}} q^{n^2/2m} = heta_{m,
u}(q)
ight)_{
u \in \mathbb{Z}/m\mathbb{Z}} \in \quad \Gamma(\mathcal{M}_1,\mathcal{J}_m^*)$$

The transformation law of theta constants

$$heta_{\mathrm{null},m} = \left(\sum_{\substack{n \equiv
u \mod m \\ n \in \mathbb{Z}}} q^{n^2/2m} = heta_{m,
u}(q)
ight)_{
u \in \mathbb{Z}/m\mathbb{Z}} \in \quad \Gamma(\mathcal{M}_1,\mathcal{J}_m^*)$$

• By the algebraic Eichler-Zagier Theorem:

$$\mathcal{W}_m^* \otimes \underline{\omega}^{1/2} \simeq \mathcal{J}_m^*.$$

The transformation law of theta constants

$$heta_{\mathrm{null},m} = \left(\sum_{\substack{n \equiv
u \mod m \\ n \in \mathbb{Z}}} q^{n^2/2m} = heta_{m,
u}(q)
ight)_{
u \in \mathbb{Z}/m\mathbb{Z}} \in \quad \Gamma(\mathcal{M}_1,\mathcal{J}_m^*)$$

• By the algebraic Eichler-Zagier Theorem:

$$\mathcal{W}_m^* \otimes \underline{\omega}^{1/2} \simeq \mathcal{J}_m^*.$$

• Thus:

$$\theta_{\operatorname{null},m} \in \Gamma(\mathcal{M}_1, \mathcal{W}_m^* \otimes \underline{\omega}^{1/2}),$$

a \mathcal{W}_m^* -valued modular form of weight 1/2.

• The sheaf \mathcal{W}_m is locally constant for the étale topology in \mathcal{K}_m .

- The sheaf \mathcal{W}_m is locally constant for the étale topology in \mathcal{K}_m .
- q-expansions for \mathcal{W}_m -valued modular forms: pull-back by

 $\psi: \operatorname{Spec}(\mathbb{Z}((q))) \to \mathcal{M}_1$

- The sheaf \mathcal{W}_m is locally constant for the étale topology in \mathcal{K}_m .
- q-expansions for \mathcal{W}_m -valued modular forms: pull-back by

 $\psi : \operatorname{Spec}(\mathbb{Z}((q))) \to \mathcal{M}_1$

• We can define *holomorphic* \mathcal{W}_m -valued modular forms and compute the dimension of these spaces.

- The sheaf \mathcal{W}_m is locally constant for the étale topology in \mathcal{K}_m .
- q-expansions for \mathcal{W}_m -valued modular forms: pull-back by

 $\psi : \operatorname{Spec}(\mathbb{Z}((q))) \to \mathcal{M}_1$

- We can define *holomorphic* \mathcal{W}_m -valued modular forms and compute the dimension of these spaces.
- From $\theta_{2,0}(q)$, we can construct a geometric theory of modular forms of half-integral weight, in the sense of Shimura.

What to do with this theory

• Expand the theory to include vector-valued modular forms attached to any quadratic form (applications: classical modular forms, Shimura lifts, Borcherds products...).

What to do with this theory

- Expand the theory to include vector-valued modular forms attached to any quadratic form (applications: classical modular forms, Shimura lifts, Borcherds products...).
- Hecke theory, 'motives' and *L*-functions for vector-valued modular forms (applications: Galois representations?).

What to do with this theory

- Expand the theory to include vector-valued modular forms attached to any quadratic form (applications: classical modular forms, Shimura lifts, Borcherds products...).
- Hecke theory, 'motives' and *L*-functions for vector-valued modular forms (applications: Galois representations?).
- A theory of *p*-adic vector-valued modular forms (applications: *p*-adic generating series for *L*-values, *p*-adic Gross-Kohnen-Zagier...)