An algebro-geometric theory of modular forms taking values in the Weil representation

Luca Candelori

LSU
IAS, October 23rd, 2014

Theta functions

$$
\theta_{2,0}(q)=\sum_{n \in \mathbb{Z}} q^{n^{2}}=1+2 q+2 q^{4}+\ldots \quad \in \mathbb{Z} \llbracket q \rrbracket
$$

Theta functions

$$
\theta_{2,0}(q)=\sum_{n \in \mathbb{Z}} q^{n^{2}}=1+2 q+2 q^{4}+\ldots \quad \in \mathbb{Z} \llbracket q \rrbracket
$$

- If $q=e^{2 \pi i \tau}$, for $\tau \in \mathfrak{h}=\{z \in \mathbb{C}: \operatorname{Im}[z]>0\}$, then

$$
\theta_{2,0}\left(\frac{a \tau+b}{c \tau+d}\right)=\epsilon(c, d) \sqrt{c \tau+d} \theta_{2,0}(\tau)
$$

for any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4)$, where $\epsilon(c, d)^{4}=1$.

Theta functions as modular forms

Question

Is there a way to express the fact that $\theta_{2,0}(q)$ is a modular form of weight $1 / 2$ directly as a formal power series in $\mathbb{Z} \llbracket q \rrbracket$?

Theta functions as modular forms

Question

Is there a way to express the fact that $\theta_{2,0}(q)$ is a modular form of weight $1 / 2$ directly as a formal power series in $\mathbb{Z} \llbracket q \rrbracket$?

For $m \in 2 \mathbb{Z}_{>0}$ let

$$
\theta_{m, \nu}(q)=\sum_{n \equiv \nu \bmod _{n \in \mathbb{Z}} m} q^{n^{2} / 2 m}
$$

Theta functions as modular forms

Question

Is there a way to express the fact that $\theta_{2,0}(q)$ is a modular form of weight $1 / 2$ directly as a formal power series in $\mathbb{Z} \llbracket q \rrbracket$?

For $m \in 2 \mathbb{Z}_{>0}$ let

$$
\theta_{m, \nu}(q)=\sum_{n \equiv \nu \bmod _{n \in \mathbb{Z}} m} q^{n^{2} / 2 m}
$$

Question

Is there a way to express the fact that $\theta_{m, \nu}(q)$ is a modular form of weight $1 / 2$ directly as a formal power series in $\mathbb{Z} \llbracket q \rrbracket$?

Modular forms of integral weight

- Analytic picture: modular forms of weight $k \in \mathbb{Z}$ are holomorphic functions $f: \mathfrak{h} \rightarrow \mathbb{C}$ satisfying

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad \forall\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Modular forms of integral weight

- Analytic picture: modular forms of weight $k \in \mathbb{Z}$ are holomorphic functions $f: \mathfrak{h} \rightarrow \mathbb{C}$ satisfying

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad \forall\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

- Algebro-geometric picture: modular forms of weight $k \in \mathbb{Z}$ are sections

$$
f \in \Gamma\left(\mathcal{M}_{1}, \underline{\omega}^{\otimes k}\right)
$$

q-expansions of classical modular forms

- Analytic picture: the q-expansion of a modular form f of weight k is its Fourier expansion $f\left(e^{2 \pi i \tau}\right)$ at the cusp ∞.

q-expansions of classical modular forms

- Analytic picture: the q-expansion of a modular form f of weight k is its Fourier expansion $f\left(e^{2 \pi i \tau}\right)$ at the cusp ∞.
- Algebro-geometric picture: let

$$
\psi: \operatorname{Spec}(\mathbb{Z}((q))) \rightarrow \mathcal{M}_{1}
$$

be the classifying map of the Tate elliptic curve Tate(q). Then

$$
\psi^{*}(f)=f(q) \omega_{\text {can }}^{k}, \quad f(q) \in \mathbb{Z}((q))
$$

The q-expansion of f is the formal power series $f(q)$.

q-expansions of theta-functions

Definition

A formal power series $f(q)$ is a classical modular form of integral weight k if it is the q-expansion of an algebro-geometric modular form of integral weight k.

q-expansions of theta-functions

Definition

A formal power series $f(q)$ is a classical modular form of integral weight k if it is the q-expansion of an algebro-geometric modular form of integral weight k.

Question

Can we make a similar definition for power series that behave like $\theta_{m, \nu}(q)$, when viewed as analytic functions?

q-expansions of theta-functions

Definition

A formal power series $f(q)$ is a classical modular form of integral weight k if it is the q-expansion of an algebro-geometric modular form of integral weight k.

Question

Can we make a similar definition for power series that behave like $\theta_{m, \nu}(q)$, when viewed as analytic functions?

Question

Is there an algebro-geometric theory of modular forms of half-integral weight underlying these formal power series?

Further motivations

For modular forms of integral weight:

Algebro-geometric theory + Hecke theory

\rightarrow Motives \longrightarrow-functions

Further motivations

For modular forms of integral weight:

Algebro-geometric theory + Hecke theory
 \rightarrow Motives \longrightarrow L-functions

Question

Given a Hecke theory and an algebro-geometric theory of modular forms of half-integral weight, can we construct motives and L-functions attached to them? How would they look like?

Mumford's algebraic theta functions

- Starting point: On the equations defining abelian varieties I,II,III (Mumford, Invent. math. 1966-67)

Mumford's algebraic theta functions

- Starting point: On the equations defining abelian varieties I,II,III (Mumford, Invent. math. 1966-67)
- Mumford writes:

My aim is to set up a purely algebraic theory of theta-functions.

Mumford's algebraic theta functions

- Starting point: On the equations defining abelian varieties I,II,III (Mumford, Invent. math. 1966-67)
- Mumford writes:

My aim is to set up a purely algebraic theory of theta-functions.

There are several interesting topics which I have not gone into in this paper, but which can be investigated in the same spirit: for example, [...] a discussion of the transformation theory of theta-functions.

Mumford's algebraic theta functions

- For $(\pi: E \rightarrow S, e)$ an elliptic curve, $m \in 2 \mathbb{Z}_{\geq 0}$,

$$
\mathcal{L}_{m}:=\mathcal{O}_{E}(m e) \otimes\left(\Omega_{E / S}^{1}\right)^{\otimes m}
$$

Mumford's algebraic theta functions

- For $(\pi: E \rightarrow S, e)$ an elliptic curve, $m \in 2 \mathbb{Z}_{\geq 0}$,

$$
\mathcal{L}_{m}:=\mathcal{O}_{E}(m e) \otimes\left(\Omega_{E / S}^{1}\right)^{\otimes m}
$$

- Can 'evaluate' sections along e, via

$$
e^{*} \mathcal{L}_{m} \simeq \mathcal{O}_{S} .
$$

Mumford's algebraic theta functions

- For $(\pi: E \rightarrow S, e)$ an elliptic curve, $m \in 2 \mathbb{Z}_{\geq 0}$,

$$
\mathcal{L}_{m}:=\mathcal{O}_{E}(m e) \otimes\left(\Omega_{E / S}^{1}\right)^{\otimes m}
$$

- Can 'evaluate' sections along e, via

$$
e^{*} \mathcal{L}_{m} \simeq \mathcal{O}_{S}
$$

- Over \mathcal{M}_{1}, let \mathcal{J}_{m} be the sheaf

$$
\{\pi: E \rightarrow S\} \longmapsto \Gamma\left(S, \pi_{*} \mathcal{L}_{m}\right)
$$

Mumford's algebraic theta functions

- For $(\pi: E \rightarrow S, e)$ an elliptic curve, $m \in 2 \mathbb{Z}_{\geq 0}$,

$$
\mathcal{L}_{m}:=\mathcal{O}_{E}(m e) \otimes\left(\Omega_{E / S}^{1}\right)^{\otimes m}
$$

- Can 'evaluate' sections along e, via

$$
e^{*} \mathcal{L}_{m} \simeq \mathcal{O}_{S}
$$

- Over \mathcal{M}_{1}, let \mathcal{J}_{m} be the sheaf

$$
\{\pi: E \rightarrow S\} \longmapsto \Gamma\left(S, \pi_{*} \mathcal{L}_{m}\right)
$$

- The rule

$$
\{\pi: E \rightarrow S\} \longmapsto e^{*} \in \Gamma\left(S,\left(\pi_{*} \mathcal{L}_{m}\right)^{*}\right)
$$

gives a section $\theta_{\text {null, } m}$ of \mathcal{J}_{m}^{*}.

The Weil representation

$$
\theta_{\mathrm{null}, m}(q)=\left(\sum_{n \equiv \nu} q_{n \in \mathbb{Z}} q^{n^{2} / 2 m}=\theta_{m, \nu}(q)\right)_{\nu \in \mathbb{Z} / m \mathbb{Z}}
$$

The Weil representation

$$
\theta_{\text {null }, m}(q)=\left(\sum_{n \equiv \nu} \sum_{\substack{\bmod m}} q^{n^{2} / 2 m}=\theta_{m, \nu}(q)\right)_{\nu \in \mathbb{Z} / m \mathbb{Z}}
$$

- If $q=e^{2 \pi i \tau}$

$$
\theta_{\text {null }, m}\left(\frac{a \tau+b}{c \tau+d}\right)=\phi \rho_{m}(\gamma) \theta_{\text {null }, m}(\tau), \quad \phi^{2}=c \tau+d
$$

for all $\gamma=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi\right) \in \operatorname{Mp}_{2}(\mathbb{Z})$, where ρ_{m} is the Weil representation attached to the quadratic form $x \mapsto m x^{2} / 2$.

Vector-valued modular forms

Definition (Eichler-Zagier, Borcherds)

A vector-valued modular form of weight $k / 2$ and index m is a holomorphic function

$$
f: \mathfrak{h} \rightarrow \mathbb{C}[\mathbb{Z} / m \mathbb{Z}]
$$

such that

$$
f(M \tau)=\phi^{k} \rho_{m}(\gamma) f(\tau)
$$

for every $\gamma=(M, \phi) \in \operatorname{Mp}_{2}(\mathbb{Z})$.

Vector-valued modular forms

Definition (Eichler-Zagier, Borcherds)

A vector-valued modular form of weight $k / 2$ and index m is a holomorphic function

$$
f: \mathfrak{h} \rightarrow \mathbb{C}[\mathbb{Z} / m \mathbb{Z}]
$$

such that

$$
f(M \tau)=\phi^{k} \rho_{m}(\gamma) f(\tau)
$$

for every $\gamma=(M, \phi) \in \operatorname{Mp}_{2}(\mathbb{Z})$.

Fact: there are no non-zero vector-valued modular forms of weight $k / 2$ unless k is odd.

Metaplectic orbifolds and vector-valued modular forms

Vector-valued modular forms of weight $k / 2$ and index m are global sections of the vector bundle

$$
\mathcal{W}_{m} \otimes \underline{\omega}^{k / 2}
$$

over the metaplectic orbifold $\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$, where:

Metaplectic orbifolds and vector-valued modular forms

Vector-valued modular forms of weight $k / 2$ and index m are global sections of the vector bundle

$$
\mathcal{W}_{m} \otimes \underline{\omega}^{k / 2}
$$

over the metaplectic orbifold $\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$, where:

- $\underline{\omega}^{k / 2}$ is the line bundle corresponding to the 1-cocycle $\mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathcal{O}_{\mathfrak{h}}^{*}$ given by

$$
\begin{aligned}
\mathrm{Mp}_{2}(\mathbb{Z}) & \rightarrow \mathcal{O}_{\mathfrak{h}}^{*} \\
(M, \phi) & \longmapsto \phi^{k} .
\end{aligned}
$$

Metaplectic orbifolds and vector-valued modular forms

Vector-valued modular forms of weight $k / 2$ and index m are global sections of the vector bundle

$$
\mathcal{W}_{m} \otimes \underline{\omega}^{k / 2}
$$

over the metaplectic orbifold $\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$, where:

- $\underline{\omega}^{k / 2}$ is the line bundle corresponding to the 1-cocycle $\mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathcal{O}_{\mathfrak{h}}^{*}$ given by

$$
\begin{aligned}
\mathrm{Mp}_{2}(\mathbb{Z}) & \rightarrow \mathcal{O}_{\mathfrak{h}}^{*} \\
(M, \phi) & \longmapsto \phi^{k} .
\end{aligned}
$$

- \mathcal{W}_{m} is the local system of rank m given by the Weil representation

$$
\rho_{m}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

Algebro-geometric theory

To do list:

- Give an algebraic analog of the metaplectic orbifold $\mathrm{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$.
- Give an algebraic analog of $\underline{\omega}^{k / 2}$.
- Give an algebraic analog of \mathcal{W}_{m}.

Metaplectic stacks

Definition

A metaplectic stack is a μ_{2}-gerbe over the modular stack \mathcal{M}_{1}.

Metaplectic stacks

Definition

A metaplectic stack is a μ_{2}-gerbe over the modular stack \mathcal{M}_{1}.

- Metaplectic stacks are classified by $H^{2}\left(\mathcal{M}_{1}, \mu_{2}\right)$.

Metaplectic stacks

Definition

A metaplectic stack is a μ_{2}-gerbe over the modular stack \mathcal{M}_{1}.

- Metaplectic stacks are classified by $H^{2}\left(\mathcal{M}_{1}, \mu_{2}\right)$.
- $\mathcal{M}_{1}^{\text {an }} \simeq \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$ and any metaplectic stack over an analytic base is equivalent to either $\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$ or $\left(\mathrm{SL}_{2}(\mathbb{Z}) \times \mu_{2}\right) \backslash \mathfrak{h}$.

Metaplectic stacks

Definition

A metaplectic stack is a μ_{2}-gerbe over the modular stack \mathcal{M}_{1}.

- Metaplectic stacks are classified by $H^{2}\left(\mathcal{M}_{1}, \mu_{2}\right)$.
- $\mathcal{M}_{1}^{\text {an }} \simeq \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$ and any metaplectic stack over an analytic base is equivalent to either $\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$ or $\left(\mathrm{SL}_{2}(\mathbb{Z}) \times \mu_{2}\right) \backslash \mathfrak{h}$.
- Inspired by 'metaplectic correction' in geometric quantization theory.

The metaplectic stack $\mathcal{M}_{1 / 2}$

All schemes are over $\mathbb{Z}[1 / m], m \in 2 \mathbb{Z}_{>0}$.

- $\mathcal{M}_{1 / 2}=$ the category of pairs $(E / S,(\mathcal{Q}, \iota))$
- E / S is an elliptic curve
- \mathcal{Q} is an invertible \mathcal{O}_{s}-module with

$$
\iota: \mathcal{Q}^{\otimes 2} \stackrel{\widetilde{ }}{\rightarrow} \underline{\omega}_{E / S} .
$$

The metaplectic stack $\mathcal{M}_{1 / 2}$

All schemes are over $\mathbb{Z}[1 / m], m \in 2 \mathbb{Z}_{>0}$.

- $\mathcal{M}_{1 / 2}=$ the category of pairs $(E / S,(\mathcal{Q}, \iota))$
- E / S is an elliptic curve
- \mathcal{Q} is an invertible \mathcal{O}_{s}-module with

$$
\iota: \mathcal{Q}^{\otimes 2} \stackrel{\widetilde{ }}{\rightarrow} \underline{\omega}_{E / S} .
$$

- $\mathcal{M}_{1 / 2}$ is a DM stack, and a μ_{2}-gerbe $\mathcal{M}_{1 / 2} \rightarrow \mathcal{M}_{1}$.

The square root of $\underline{\omega}$

- $\mathcal{M}_{1 / 2}$ is canonically endowed with an invertible sheaf $\underline{\omega}^{1 / 2}$ defined by

$$
\{(E / S,(\mathcal{Q}, \iota))\} \longmapsto \Gamma(S, \mathcal{Q}) .
$$

The square root of $\underline{\omega}$

- $\mathcal{M}_{1 / 2}$ is canonically endowed with an invertible sheaf $\underline{\omega}^{1 / 2}$ defined by

$$
\{(E / S,(\mathcal{Q}, \iota))\} \longmapsto \Gamma(S, \mathcal{Q}) .
$$

- If $p: \mathcal{M}_{1 / 2} \rightarrow \mathcal{M}_{1}$ is the 'forget the quadratic form' functor, then

$$
p^{*} \underline{\omega} \simeq\left(\underline{\omega}^{1 / 2}\right)^{\otimes 2}
$$

Finite Heisenberg groups

$$
\mathcal{L}_{m}:=\mathcal{O}_{E}(m e) \otimes\left(\Omega_{E / S}^{1}\right)^{\otimes m}
$$

Finite Heisenberg groups

$$
\mathcal{L}_{m}:=\mathcal{O}_{E}(m e) \otimes\left(\Omega_{E / S}^{1}\right)^{\otimes m}
$$

- Let

$$
0 \rightarrow \mathbb{G}_{m} \rightarrow \mathscr{G}\left(\mathcal{L}_{m}\right)=\left.\mathcal{L}_{m}\right|_{E[m]} \rightarrow E[m] \rightarrow 0
$$

be the Heisenberg (or theta) group attached to \mathcal{L}_{m}.

Finite Heisenberg groups

$$
\mathcal{L}_{m}:=\mathcal{O}_{E}(m e) \otimes\left(\Omega_{E / S}^{1}\right)^{\otimes m}
$$

- Let

$$
0 \rightarrow \mathbb{G}_{m} \rightarrow \mathscr{G}\left(\mathcal{L}_{m}\right)=\left.\mathcal{L}_{m}\right|_{E[m]} \rightarrow E[m] \rightarrow 0
$$

be the Heisenberg (or theta) group attached to \mathcal{L}_{m}.

- The \mathcal{O}_{S}-module $\pi_{*} \mathcal{L}_{m}$ is an irreducible representation of $\mathscr{G}\left(\mathcal{L}_{m}\right)$, locally free of rank m over S.

Symmetric Heisenberg groups

- Since \mathcal{L}_{m} is symmetric, there is an involution

Symmetric Heisenberg groups

- Since \mathcal{L}_{m} is symmetric, there is an involution

- $\mathscr{G}\left(\mathcal{L}_{m}\right)$ is a μ_{2}-torsor over $E[m]$.

Schrödinger representations

Definition

A symmetric lagrangian subgroup $\mathscr{H} \subseteq \mathscr{G}\left(\mathcal{L}_{m}\right)$ is a subgroup scheme of rank m such that $\mathscr{H} \cap \mathbb{G}_{m} \simeq\{1\}, \delta_{-1}(h)=h^{-1}$ for all $h \in \mathscr{H}$, and

$$
E[m] \simeq H \times \widehat{H} \quad(\text { projection onto } E[m])
$$

as a symplectic module.

Schrödinger representations

Definition

A symmetric lagrangian subgroup $\mathscr{H} \subseteq \mathscr{G}\left(\mathcal{L}_{m}\right)$ is a subgroup scheme of rank m such that $\mathscr{H} \cap \mathbb{G}_{m} \simeq\{1\}, \delta_{-1}(h)=h^{-1}$ for all $h \in \mathscr{H}$, and

$$
E[m] \simeq H \times \widehat{H} \quad(\text { projection onto } E[m])
$$

as a symplectic module.

Definition

The Schrödinger representation $\mathcal{W}_{\mathscr{H}}$ is the locally free \mathcal{O}_{S}-module of functions $f: \mathscr{G}\left(\mathcal{L}_{m}\right) \rightarrow \mathcal{O}_{S}$ such that:
(i) $f(h g)=f(g), \quad \forall h \in \mathscr{H} \subseteq \mathscr{G}\left(\mathcal{L}_{m}\right)$,
(ii) $f(\lambda g)=\lambda f(g), \quad \forall \lambda \in \mathbb{G}_{m} \subseteq \mathscr{G}\left(\mathcal{L}_{m}\right)$.

Morphisms and the Weil representation

- $\mathscr{H} \backslash \mathscr{G}\left(\mathcal{L}_{m}\right)$ is a μ_{2}-torsor over $E[m] / H=\widehat{H}$.

Morphisms and the Weil representation

- $\mathscr{H} \backslash \mathscr{G}\left(\mathcal{L}_{m}\right)$ is a μ_{2}-torsor over $E[m] / H=\widehat{H}$.
- Morphisms of Schrödinger representations:

$$
\mathscr{G} \text {-module isomorphism } \quad \mathcal{W}_{\mathscr{H}} \rightarrow \mathcal{W}_{\mathscr{H}^{\prime}}
$$

induced by a μ_{2}-torsor isomorphism

$$
\begin{aligned}
& \mathscr{H} \backslash \mathscr{G}\left(\mathcal{L}_{m}\right) \longrightarrow \mathscr{H}^{\prime} \backslash \mathscr{G}\left(\mathcal{L}_{m}\right) \\
& \downarrow_{\widehat{H}} \longrightarrow \\
& \widehat{H}^{\prime}
\end{aligned}
$$

Morphisms and the Weil representation

- $\mathscr{H} \backslash \mathscr{G}\left(\mathcal{L}_{m}\right)$ is a μ_{2}-torsor over $E[m] / H=\widehat{H}$.
- Morphisms of Schrödinger representations:

$$
\mathscr{G} \text {-module isomorphism } \quad \mathcal{W}_{\mathscr{H}} \rightarrow \mathcal{W}_{\mathscr{H}^{\prime}}
$$

induced by a μ_{2}-torsor isomorphism

$$
\begin{aligned}
\mathscr{H} \backslash \mathscr{G}\left(\mathcal{L}_{m}\right) & \longrightarrow \mathscr{H}^{\prime} \backslash \mathscr{G}\left(\mathcal{L}_{m}\right) \\
\downarrow & \\
\widehat{H} & \longrightarrow \frac{H^{\prime}}{}
\end{aligned}
$$

- $\operatorname{Aut}\left(\mathcal{W}_{m}\right)=\mu_{2}($ compare with Weil $)$.

The Schrödinger gerbe

- $\mathcal{K}_{m}=$ the category of pairs $\left(E / S, \mathcal{W}_{\mathscr{H}}\right)$

The Schrödinger gerbe

- $\mathcal{K}_{m}=$ the category of pairs $\left(E / S, \mathcal{W}_{\mathscr{H}}\right)$
- \mathcal{K}_{m} is a metaplectic stack.

The Schrödinger gerbe

- $\mathcal{K}_{m}=$ the category of pairs $\left(E / S, \mathcal{W}_{\mathscr{H}}\right)$
- \mathcal{K}_{m} is a metaplectic stack.
- \mathcal{K}_{m} is canonically endowed with a locally free module \mathcal{W}_{m} or rank m

$$
\left\{\left(E / S, \mathcal{W}_{\mathscr{H}}\right)\right\} \longmapsto \Gamma\left(S, \mathcal{W}_{\mathscr{H}}\right) .
$$

Geometric vector-valued modular forms

Definition

Let m be a positive even integer and let $k \in \mathbb{Z}$. A \mathcal{W}_{m}-valued modular form of weight $k / 2$ is a global section of the sheaf

$$
\mathcal{W}_{m} \otimes \underline{\omega}^{k / 2}
$$

over the metaplectic stack $\mathcal{K}_{m} \times_{\mathcal{M}_{1}}^{\mu_{2}} \mathcal{M}_{1 / 2} \rightarrow \mathcal{M}_{1}$.

Analytic picture

- Over an analytic base,

$$
\mathcal{K}_{m}=\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}, \quad \mathcal{M}_{1 / 2}=\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}
$$

Analytic picture

- Over an analytic base,

$$
\mathcal{K}_{m}=\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}, \quad \mathcal{M}_{1 / 2}=\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}
$$

- $\underline{\omega}^{k / 2}$ is given by the 1 -cocycle

$$
\begin{aligned}
\mathrm{Mp}_{2}(\mathbb{Z}) & \rightarrow \mathcal{O}_{\mathfrak{h}}^{*} \\
(M, \phi) & \longmapsto \phi^{k} .
\end{aligned}
$$

Analytic picture

- Over an analytic base,

$$
\mathcal{K}_{m}=\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}, \quad \mathcal{M}_{1 / 2}=\operatorname{Mp}_{2}(\mathbb{Z}) \backslash \mathfrak{h}
$$

- $\underline{\omega}^{k / 2}$ is given by the 1 -cocycle

$$
\begin{aligned}
\mathrm{Mp}_{2}(\mathbb{Z}) & \rightarrow \mathcal{O}_{\mathfrak{h}}^{*} \\
(M, \phi) & \longmapsto \phi^{k} .
\end{aligned}
$$

- \mathcal{W}_{m} is given by the Weil representation

$$
\rho_{m}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

Vector-valued modular forms are 'modular'

Theorem

Let $k \in \mathbb{Z}$ be odd. Then the sheaf

$$
\mathcal{W}_{m} \otimes \underline{\omega}^{k / 2}
$$

of \mathcal{W}_{m}-valued modular forms of weight $k / 2$ descends to a locally free sheaf of rank m over \mathcal{M}_{1}.

Vector-valued modular forms are 'modular'

Theorem

Let $k \in \mathbb{Z}$ be odd. Then the sheaf

$$
\mathcal{W}_{m} \otimes \underline{\omega}^{k / 2}
$$

of \mathcal{W}_{m}-valued modular forms of weight $k / 2$ descends to a locally free sheaf of rank m over \mathcal{M}_{1}.

- Fact: when k is even, there are no nonzero \mathcal{W}_{m}-valued modular forms of weight $k / 2$.

The algebraic Eichler-Zagier Theorem

\mathcal{J}_{m} is the sheaf

$$
\{\pi: E \rightarrow S\} \longmapsto \Gamma\left(S, \pi_{*} \mathcal{L}_{m}\right)
$$

Theorem

There is a canonical isomorphism

$$
\mathcal{W}_{m} \otimes \underline{\omega}^{-1 / 2} \simeq \mathcal{J}_{m}
$$

of locally free modules of rank m over \mathcal{M}_{1}.

The algebraic Eichler-Zagier Theorem

\mathcal{J}_{m} is the sheaf

$$
\{\pi: E \rightarrow S\} \longmapsto \Gamma\left(S, \pi_{*} \mathcal{L}_{m}\right)
$$

Theorem

There is a canonical isomorphism

$$
\mathcal{W}_{m} \otimes \underline{\omega}^{-1 / 2} \simeq \mathcal{J}_{m}
$$

of locally free modules of rank m over \mathcal{M}_{1}.

Proof.

Use Stone-Von Neumann-Mackey.

The transformation law of theta constants

$$
\theta_{\text {null }, m}=\left(\sum_{n \equiv \nu} \sum_{n \in \mathbb{Z}} q^{n^{n^{2}} / 2 m}=\theta_{m, \nu}(q)\right)_{\nu \in \mathbb{Z} / m \mathbb{Z}} \in \Gamma\left(\mathcal{M}_{1}, \mathcal{J}_{m}^{*}\right)
$$

The transformation law of theta constants

$$
\theta_{\text {null }, m}=\left(\sum_{n \equiv \nu} \sum_{n \in \mathbb{Z}} q^{n^{2} / 2 m}=\theta_{m, \nu}(q)\right)_{\nu \in \mathbb{Z} / m \mathbb{Z}} \in \Gamma\left(\mathcal{M}_{1}, \mathcal{J}_{m}^{*}\right)
$$

- By the algebraic Eichler-Zagier Theorem:

$$
\mathcal{W}_{m}^{*} \otimes \underline{\omega}^{1 / 2} \simeq \mathcal{J}_{m}^{*}
$$

The transformation law of theta constants

$$
\theta_{\text {null }, m}=\left(\sum_{n \equiv \nu} \sum_{n \in \mathbb{Z}} q^{\bmod ^{2} / 2 m}=\theta_{m, \nu}(q)\right)_{\nu \in \mathbb{Z} / m \mathbb{Z}} \in \Gamma\left(\mathcal{M}_{1}, \mathcal{J}_{m}^{*}\right)
$$

- By the algebraic Eichler-Zagier Theorem:

$$
\mathcal{W}_{m}^{*} \otimes \underline{\omega}^{1 / 2} \simeq \mathcal{J}_{m}^{*} .
$$

- Thus:

$$
\theta_{\mathrm{null}, m} \in \Gamma\left(\mathcal{M}_{1}, \mathcal{W}_{m}^{*} \otimes \underline{\omega}^{1 / 2}\right),
$$

a \mathcal{W}_{m}^{*}-valued modular form of weight $1 / 2$.

Additional results

- The sheaf \mathcal{W}_{m} is locally constant for the étale topology in \mathcal{K}_{m}.

Additional results

- The sheaf \mathcal{W}_{m} is locally constant for the étale topology in \mathcal{K}_{m}.
- q-expansions for \mathcal{W}_{m}-valued modular forms: pull-back by

$$
\psi: \operatorname{Spec}(\mathbb{Z}((q))) \rightarrow \mathcal{M}_{1}
$$

Additional results

- The sheaf \mathcal{W}_{m} is locally constant for the étale topology in \mathcal{K}_{m}.
- q-expansions for \mathcal{W}_{m}-valued modular forms: pull-back by

$$
\psi: \operatorname{Spec}(\mathbb{Z}((q))) \rightarrow \mathcal{M}_{1}
$$

- We can define holomorphic \mathcal{W}_{m}-valued modular forms and compute the dimension of these spaces.

Additional results

- The sheaf \mathcal{W}_{m} is locally constant for the étale topology in \mathcal{K}_{m}.
- q-expansions for \mathcal{W}_{m}-valued modular forms: pull-back by

$$
\psi: \operatorname{Spec}(\mathbb{Z}((q))) \rightarrow \mathcal{M}_{1}
$$

- We can define holomorphic \mathcal{W}_{m}-valued modular forms and compute the dimension of these spaces.
- From $\theta_{2,0}(q)$, we can construct a geometric theory of modular forms of half-integral weight, in the sense of Shimura.

What to do with this theory

- Expand the theory to include vector-valued modular forms attached to any quadratic form (applications: classical modular forms, Shimura lifts, Borcherds products...).

What to do with this theory

- Expand the theory to include vector-valued modular forms attached to any quadratic form (applications: classical modular forms, Shimura lifts, Borcherds products...).
- Hecke theory, 'motives' and L-functions for vector-valued modular forms (applications: Galois representations?).

What to do with this theory

- Expand the theory to include vector-valued modular forms attached to any quadratic form (applications: classical modular forms, Shimura lifts, Borcherds products...).
- Hecke theory, 'motives' and L-functions for vector-valued modular forms (applications: Galois representations?).
- A theory of p-adic vector-valued modular forms (applications: p-adic generating series for L-values, p-adic Gross-Kohnen-Zagier...)

