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Motivated by questions from number theory,
Mabhler studied the properties of convex bodies
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K C R" convex
K*={y eR"|{(y,x) <1, Vx € K}
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Mahler's Volume

Let X be an n-dimensional normed space with unit ball Bx
Consider the dual space X*, and denote its unit ball by Bx-
Set v(X) = Vol(Bx) - Vol(Bx-+), (“Mahler’s Volume").

This is a dimensionless invariant, which captures the “roundness”
or “pointedness” of a centrally symmetric convex body.

Blaschke-Santalé inequality: v(X) is maximized precisely for
Euclidean spaces (i.e., where B is an ellipsoid).

Mabhler’s question: what are the least “round” or the
“most pointed” centrally symmetric convex sets in IR"?
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Mahler's Conjecture (1939)

Let X be an n-dimensional normed space with unit ball Bx
Consider the dual space X*, and denote its unit ball by Bx-
Set v(X) = Vol(Bx) - Vol(Bx-~), (“Mahler's Volume").

Mahler’s conjecture: If X is n-dimensional then v(X) > 4"/n!
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Holds for n =2 (Mahler). A solution for the case n = 3 was
announced by Hiroshi Iriyeh and Masataka Shibata in 2017.

Partial Results by: Ball, Barthe, Bourgain, Giannopoulos,
Gordon, Kim, Kuperberg, Lutwak, Meyer, Milman, Nazarov,
Paouris, Petrov, Pisier, Ryabogin, Reisner, Saint-Raymond,
Schneider, Stancu, Vritsiou, Zvavitch, ......
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Let X be an n-dimensional normed space with unit ball Bx.
Consider the dual space X*, and denote its unit ball by Bxx.
Set v(X) = Vol(Bx) - Vol(Bx-), (“Mahler Volume").
Mahler’s conjecture: If X is n-dimensional then v(X) > 4"/n!

Holds for n = 2 (Mahler). A solution for the case n = 3 was
announced by Hiroshi Iriyeh and Masataka Shibata in 2017.

Theorem [Bourgain-Milman ‘87]: There exists ¢ > 0 such that

n

V(X) Z Cnﬁ

Currently, the best known constant is ¢ = 71/4 (Kuperberg, 2008).
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Why is this conjecture so difficult?
Possible answer: there is no unique minimizer!

Other minimizers: Hanner-Lima polytopes (constructed recursively
by product and dual operations starting from a line segment).

A quote from Terry Tao’s blog (March, 2007): “It is really
difficult to conceive of any sort of flow or optimisation procedure
which would converge to exactly these bodies and no others; a
radically different type of argument might be needed.”

Key point in this talk: the abundance of the above family of
(conjecturally) minimizers might be an “optical illusion”....

YOU SHOULD PUT ON YOUR SYMPELCTIC GLASSES!
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Symplectic Geometry

(X, w) symplectic manifold (w closed & non-degenerte 2-form).

» Origin: Newtonian mechanics, dynamical systems, geometric
optics, calculus of variations,....

> Important feature: have infinitely many symmetries,
Symp(X,w) ={f: X = X|f*w = w} oo-dim Lie group.

» Bad News: no local invariants (Darboux's theorem 1882),
locally (X, w) “looks like" (IR2", wgq = dp A dq)
y

(XQH.W‘) ~

(]RBH.W.“ = i: dai \ t/.lh)
i=1

o T
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Existence of Global Invariants

Gromov’ s non squeezing theorem (1985):

f\

f lefxol(RZ") B Symp(Rz“) I_f and OI’lly lf‘
«o [ / Q Rsr

B2n (R)

<;/‘”\/\/‘V‘\/\/

Zzn(r) _ BZ(r)xcn—l
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Symplectic Measurements
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Symplectic Measurements

Let (R®*" = R] ® R}, w) be the classical phase space.
A symplectic capacity is a map ¢ : P(R?") — [0, c0], such that
» UC V= c(U) <c(V) (Monotonicity)
> c(p(U)) = |a|c(V), for p*w = aw (Conformality)
» ¢(B?") = ¢(Z?") = 7t (Non-triviality & Normalization)
Note:
1. Scales like a 2-dimensional invariant.

2. Last property disqualifies any volume-related invariant.

3. Existence of a single capacity implies Gromov’'s NST.
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Two Examples (Symplectic Embeddings)

» cc(U) = sup{mr?| B>(r) " U} (Gromov width)

» Z(U) =inf{mr?| U “OF Z2"(r)}  (Cylindrical capacity)

2
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» cc(U) = sup{mr?| B>(r) " U} (Gromov width)

» Z(U) =inf{mr?| U “OF Z2"(r)}  (Cylindrical capacity)

2

Note: for every (normalized) symplectic capacity ¢ one has

CGSCSCZ
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Some Other Examples (partial list)

Capacity “Technology"'
Gromov's width J-holomorphic curves (1985)
Hofer-Zehnder oo-dim functional analysis (1990)
Hofer's displacement energy oo-dim functional analysis (1991)
Viterbo's capacity generating functions (1992)
Floer-Hofer capacity Floer homology (1994)
homological capacity symplectic homology (1994)
Hutching's ECH capacities embedded contact homology (2011)
Cieliebak-Mohnke capacity | punctured holomorphic curves (2014)
Tamarkin's “sheaf capacity” microlocal theory of sheaves (2015)
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Question: What is the symplectic size of a cube?

Short answer: no one really knows....
The symplectic size of the cube @ = [—1, 12"

is 4, i.e., c(Q) = 4 for every symplectic capacity.

NOTE: volume obstructions only give c(Q) < n

Theorem [Gluskin, O, 2017]: Assume n >> 1,
1) 3A € O(2n) such that ¢(AQ) ~ /n (for any capacity).

) E,(chz(AQ)) ~ oe(m (# Haar measure on 0(2n))

N u{Ac 0(2n) | cuz(AQ) — Eu(crz(AQ))| > t} < e
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Conjecture (Viterbo 2001): For every convex body K C IR?",
and every symplectic capacity c, one has

c(K) _ (Vol(K)\Y"
c(B) = (v01<3>>

» Among all convex domains with a given volume the Euclidean
ball has the maximal "symplectic size".

» Holds for the Gromov width cg by monotonicity.

1
n

» Equivalent formulation: ¢(K) < (n!Vol(K))
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Conjecture (Viterbo, 2001) For every convex body K C IR?",
and every symplectic capacity ¢, one has
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Thm (Artstein—Avidan, O, Milman, 2008) There exists a
universal constant A > 0 such that
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Viterbo's Systolic Conjecture

Conjecture (Viterbo, 2001) For every convex body K C IR?",
and every symplectic capacity ¢, one has

3=

c(K) < (n!'Vol(K))

Thm (Artstein—Avidan, O, Milman, 2008) There exists a
universal constant A > 0 such that

S

c(K) < A(n!'Vol(K))

Thm (Abbondandolo, Bramham, Hryniewicz, Salomao, 2017)
There exists a C3-neighborhood & of the Euclidean ball within the
set of all convex smooth domains in IR* such that Viterbo's
conjecture holds for every K € £
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From Viterbo's Conjecture to Mahler’s (and back)

Conjecture (Viterbo): Let K C IR?" be a convex body. Then for
any symplectic capacity ¢ one has

1
c(K) < (n!'Vol(K)) "
Conjecture (Mahler): Let X be an n-dim normed space. Then,

v(X) = Vol(Bx) - Vol(Bx~) > 4"/ n!
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From Viterbo's Conjecture to Mahler’s (and back)

Conjecture (Viterbo): Let K C IR?" be a convex body. Then for
any symplectic capacity ¢ one has

1
c(K) < (n!'Vol(K)) "
Conjecture (Mahler): Let X be an n-dim normed space. Then,
v(X) = Vol(Bx) - Vol(Bx~) > 4"/ n!
Thm (Artstein-Avidan, Karasev, O, 2014): Mahler’s conjecture
is equivalent to a special case of Viterbo's conjecture.

MAIN IDEA OF THE PROOF: there is a symplectic capacity
for which ¢(Bx x Bx+) = 4 for any convex body Bx C R".

This is closely related with Finsler billiard dynamics!
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Symplectic viewpoint on Hanner-Lima polytopes

Hanner-Lima polytopes are the conjectured minimizers in Mahler's
conjecture, while the Euclidean ball is the conjectured minimizer in
Viterbo's systolic conjecture.
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Symplectic viewpoint on Hanner-Lima polytopes

Hanner-Lima polytopes are the conjectured minimizers in Mahler's
conjecture, while the Euclidean ball is the conjectured minimizer in
Viterbo's systolic conjecture.

KEY POINT: symplectically, they are the same.

FACT [related to action-angle coordinates from Hamiltonian dynamics]:

Thm [Karasev, Schlenk (in progress)]: every Hanner-Lima polytope
is symplectomorphic to a Euclidean ball with the same volume

19/34
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R?" = R] xR, w = dpAdq (Phase space).
I' C R?>" smooth compact hypersurface.

I'=H10), H:R?>" — R (Energy surface).

ker(w|r) integral curves = characteristic foliation

l Remark: closed characteristics = p= oOH
~ _9q
I periodic solutions of Hamiltonian Eq. { = ?TH
P
Action spectrum: A(T') = {| [, A| ; 7 closed characteristic}, w = dA.

Theorem [Hofer—Zehnder]: For ¥ C IR?" smooth and convex
min A(dX) is a symplectic capacity.

Theorem [Artstein-Avidan, Karasev, O]: One has cyz(Bx X Bx+) = 4
for any centrally symmetric convex body Bx C IR".
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Characteristic foliation on d(Bx x Bx+)

Consider H(q, p) = max{||q| 8. ||pllB,. } (singular function)
The 1-level set is (Bx X Bx+).

(VIIPIIBX*, 0), (q.p) € int(Bx) x 0Bx:,
Xu(q.p) = (0 —~Vllallex), (g.p) € 9Bx x int(Bx:),
(2,?) (q.p) € 9(Bx) x 9(Bx-)
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Characteristic foliation on d(Bx x Bx+)

Consider H(q, p) = max{||q| 8. ||pllB,. } (singular function)
The 1-level set is (Bx X Bx+).
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(2.?) (q.p) € 9(Bx) x 9(Bx~)

wo = Vg2l B,

(Vlp|lBy..0), (q,p) € int(Bx) x 0Bx-,
Xn(q,p) =

vi = V| p1llB,.

ws = V| g3]| g,
P2

vo = V|p2||5,.

28 /34



Characteristic foliation on d(Bx x Bx+)

Consider H(q, p) = max{||q| 8. ||pllB,. } (singular function)
The 1-level set is (Bx X Bx+).

(0, =Vlallgy), (g.p) € 9Bx x int(Bx-),
(2.?) (q.p) € 9(Bx) x 9(Bx~)

wo = Vg2l B,

(Vlp|lBy..0), (q,p) € int(Bx) x 0Bx-,
Xn(q,p) =

vi = V| p1llB,.

ws = V| g3]| g,
P2

vo = V|p2||5,.

29 /34



Characteristic foliation on d(Bx x Bx+)

Theorem (Artstein-Avidan, O)

If Bx C IRg and Bx- C Ry are convex then cuz(Bx x Bx+) is the
Bx«-length of the shortest periodic Bx+-billiard trajectory in Bx.

w2 = V||q2 By

w3 = V|3 By
P2

vo = V||p2| 5.

v = V||p1l[,-
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Characteristic foliation on d(Bx x Bx+)

Theorem (Artstein-Avidan, O)

If Bx C IRg and Bx- C Ry are convex then cuz(Bx x Bx+) is the
Bx«-length of the shortest periodic Bx+-billiard trajectory in Bx.

Theorem (Artstein-Avidan, Karasev, O)

For every symmetric convex Bx C Ry one has cuz(Bx X Bx+) = 4.

q

—q
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An Interesting Recent Development.....

Let K C IR?" be a convex polytope.

71,1\1,.
Question: What can be said about the " N

minimal closed characteristic on 0K?
(e.g., could it be in the singular strata?)

Theorem [P. Kislev, 2018]: Let K C IR?" be a convex polytope.
Then there is a minimizer orbit which visits each facet of K at
most once. Moreover,

1

-1
CHZ(K> - E |:0’€5k,: ,r(r;i?)XEM(K) ISJ;SkF IBO'(i)ﬁU(i)w(na(i)y ng(l))] '

kr
M(K) = { (B2, 1B > 0, Zi iy = 1, ) pini = 0},
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An Interesting Recent Development.....

Let K C IR?" be a convex polytope.

'ﬂ,]\[,.
Question: What can be said about the " '\

minimal closed characteristic on 0K?
(e.g., could it be in the singular strata?)

Theorem [P. Kislev, 2018]: Let K C IR?" be a convex polytope.
Then there is a minimizer orbit which visits each facet of K at
most once. Moreover,

1 -1
W) = 3 e, i, Por Pt et )]

ke
k k
M(K) = {(ﬁf);il |Bi >0, T Bihi =1, ) Bini = 0}-
i=1
CAN THIS BE COMPARED WITH THE VOLUME OF K?
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Subadditivity Conjecture for Symplectic Capacities

Conjecture (Akopyan, Karasev, Pertov, 2014): If a convex
body ¥ C IR?" is covered by a finite set of convex bodies {Z;}
then, for some symplectic capacity, one has

c(Z) <) e(Z)
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Subadditivity Conjecture for Symplectic Capacities

Conjecture (Akopyan, Karasev, Pertov, 2014): If a convex
body ¥ C IR?" is covered by a finite set of convex bodies {Z;}
then, for some symplectic capacity, one has

c(Z) <) e(Z)

Theorem (P. Kislev, 2018): Subadditivity holds for hyperplane
cuts of convex domains.
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THANK YOU VERY MUCH!
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