A tale of two conjectures: from Mahler to Viterbo

Yaron Ostrover

Tel Aviv University

IAS, November 2018

Mahler's Conjecture

Kurt Mahler (1903-1988) - known for his works in Number Theory (algebraic numbers, p-adic numbers, Diophantine approximation, and the "geometry of numbers").

Mahler's Conjecture

Kurt Mahler (1903-1988) - known for his works in Number Theory (algebraic numbers, p-adic numbers, Diophantine approximation, and the "geometry of numbers").

Motivated by questions from number theory, Mahler studied the properties of convex bodies and lattices together with their reciprocals.

Mahler's Conjecture

Kurt Mahler (1903-1988) - known for his works in Number Theory (algebraic numbers, p-adic numbers, Diophantine approximation, and the "geometry of numbers").

Motivated by questions from number theory, Mahler studied the properties of convex bodies and lattices together with their reciprocals.

 $\mathcal{K} \subset \mathbb{R}^n$ convex $\mathcal{K}^* = \{ y \in \mathbb{R}^n \, | \, \langle y, x \rangle \leq 1, \, \, \forall x \in \mathcal{K} \}$

Let X be an *n*-dimensional normed space with unit ball B_X

Let X be an *n*-dimensional normed space with unit ball B_X Consider the dual space X^* , and denote its unit ball by B_{X^*}

Let X be an *n*-dimensional normed space with unit ball B_X Consider the dual space X^* , and denote its unit ball by B_{X^*} Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler's Volume").

Let X be an *n*-dimensional normed space with unit ball B_X Consider the dual space X^* , and denote its unit ball by B_{X^*} Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler's Volume"). This is a dimensionless invariant, which captures the "roundness" or "pointedness" of a centrally symmetric convex body.

Let X be an *n*-dimensional normed space with unit ball B_X Consider the dual space X^* , and denote its unit ball by B_{X^*} Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler's Volume"). This is a dimensionless invariant, which captures the "roundness" or "pointedness" of a centrally symmetric convex body.

Blaschke-Santaló inequality: $\nu(X)$ is maximized precisely for Euclidean spaces (i.e., where B_X is an ellipsoid).

Let X be an *n*-dimensional normed space with unit ball B_X Consider the dual space X^* , and denote its unit ball by B_{X^*} Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler's Volume"). This is a dimensionless invariant, which captures the "roundness" or "pointedness" of a centrally symmetric convex body.

Blaschke-Santaló inequality: $\nu(X)$ is maximized precisely for Euclidean spaces (i.e., where B_X is an ellipsoid).

Mahler's question: what are the least "round" or the "most pointed" centrally symmetric convex sets in \mathbb{R}^n ?

Let X be an *n*-dimensional normed space with unit ball B_X Consider the dual space X^* , and denote its unit ball by B_{X^*} Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler's Volume"). Mahler's conjecture: If X is *n*-dimensional then $\nu(X) > 4^n/n!$

4 / 34

Let X be an *n*-dimensional normed space with unit ball B_X Consider the dual space X^* , and denote its unit ball by B_{X^*} Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler's Volume").

Mahler's conjecture: If X is *n*-dimensional then $\nu(X) \ge 4^n/n!$

Let X be an *n*-dimensional normed space with unit ball B_X . Consider the dual space X^* , and denote its unit ball by B_{X^*} . Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler Volume"). **Mahler's conjecture**: If X is *n*-dimensional then $\nu(X) \ge 4^n/n!$ **Holds for** n = 2 (Mahler). Let X be an *n*-dimensional normed space with unit ball B_X . Consider the dual space X^* , and denote its unit ball by B_{X^*} . Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler Volume"). **Mahler's conjecture**: If X is *n*-dimensional then $\nu(X) \ge 4^n/n!$ Holds for n = 2 (Mahler). A solution for the case n = 3 was announced by Hiroshi Iriyeh and Masataka Shibata in 2017.

Let X be an *n*-dimensional normed space with unit ball B_X . Consider the dual space X^* , and denote its unit ball by B_{X^*} . Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler Volume"). **Mahler's conjecture**: If X is *n*-dimensional then $\nu(X) > 4^n/n!$ Holds for n = 2 (Mahler). A solution for the case n = 3 was announced by Hiroshi Iriyeh and Masataka Shibata in 2017. **Partial Results by:** Ball, Barthe, Bourgain, Giannopoulos, Gordon, Kim, Kuperberg, Lutwak, Meyer, Milman, Nazarov, Paouris, Petrov, Pisier, Ryabogin, Reisner, Saint-Raymond, Schneider, Stancu, Vritsiou, Zvavitch,

Let X be an *n*-dimensional normed space with unit ball B_X . Consider the dual space X^* , and denote its unit ball by B_{X^*} . Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler Volume"). Mahler's conjecture: If X is *n*-dimensional then $\nu(X) \ge 4^n/n!$ Holds for n = 2 (Mahler). A solution for the case n = 3 was announced by Hiroshi Iriyeh and Masataka Shibata in 2017. Theorem [Bourgain-Milman '87]: There exists c > 0 such that

$$\nu(X) \ge c^n \frac{4^n}{n!}$$

Let X be an *n*-dimensional normed space with unit ball B_X . Consider the dual space X^* , and denote its unit ball by B_{X^*} . Set $\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*})$, ("Mahler Volume"). Mahler's conjecture: If X is *n*-dimensional then $\nu(X) \ge 4^n/n!$ Holds for n = 2 (Mahler). A solution for the case n = 3 was announced by Hiroshi Iriyeh and Masataka Shibata in 2017. Theorem [Bourgain-Milman '87]: There exists c > 0 such that

$$\nu(X) \ge c^n \frac{4^n}{n!}$$

Currently, the best known constant is $c = \pi/4$ (Kuperberg, 2008).

Why is this conjecture so difficult?

Why is this conjecture so difficult?

Possible answer: there is no unique minimizer!

Why is this conjecture so difficult?

Possible answer: there is no unique minimizer!

Other minimizers: Hanner-Lima polytopes (constructed recursively by product and dual operations starting from a line segment).

Why is this conjecture so difficult?

Possible answer: there is no unique minimizer!

Other minimizers: Hanner-Lima polytopes (constructed recursively by product and dual operations starting from a line segment).

A quote from Terry Tao's blog (March, 2007): "It is really difficult to conceive of any sort of flow or optimisation procedure which would converge to exactly these bodies and no others; a radically different type of argument might be needed."

Why is this conjecture so difficult?

Possible answer: there is no unique minimizer!

Other minimizers: Hanner-Lima polytopes (constructed recursively by product and dual operations starting from a line segment).

A quote from Terry Tao's blog (March, 2007): "It is really difficult to conceive of any sort of flow or optimisation procedure which would converge to exactly these bodies and no others; a radically different type of argument might be needed."

Key point in this talk: the abundance of the above family of (conjecturally) minimizers might be an "optical illusion"....

Why is this conjecture so difficult?

Possible answer: there is no unique minimizer!

Other minimizers: Hanner-Lima polytopes (constructed recursively by product and dual operations starting from a line segment).

A quote from Terry Tao's blog (March, 2007): "It is really difficult to conceive of any sort of flow or optimisation procedure which would converge to exactly these bodies and no others; a radically different type of argument might be needed."

Key point in this talk: the abundance of the above family of (conjecturally) minimizers might be an "optical illusion"....

YOU SHOULD PUT ON YOUR SYMPELCTIC GLASSES!

 (X, ω) symplectic manifold (ω closed & non-degenerte 2-form).

 (X, ω) symplectic manifold (ω closed & non-degenerte 2-form).

 Origin: Newtonian mechanics, dynamical systems, geometric optics, calculus of variations,....

 (X, ω) symplectic manifold (ω closed & non-degenerte 2-form).

- Origin: Newtonian mechanics, dynamical systems, geometric optics, calculus of variations,....
- ▶ Important feature: have infinitely many symmetries, $Symp(X, \omega) = \{f : X \to X \mid f^*\omega = \omega\}$ ∞-dim Lie group.

 (X, ω) symplectic manifold (ω closed & non-degenerte 2-form).

- Origin: Newtonian mechanics, dynamical systems, geometric optics, calculus of variations,....
- ▶ Important feature: have infinitely many symmetries, $Symp(X, \omega) = \{f : X \to X \mid f^*\omega = \omega\}$ ∞-dim Lie group.
- Bad News: no local invariants (Darboux's theorem 1882), locally (X, ω) "looks like" (ℝ²ⁿ, ω_{std} = dp ∧ dq)

Existence of Global Invariants

Symplectic Measurements

Let $(\mathbb{R}^{2n} = \mathbb{R}^n_q \oplus \mathbb{R}^n_p, \omega)$ be the classical phase space.

Symplectic Measurements

Let $(\mathbb{R}^{2n} = \mathbb{R}^n_q \oplus \mathbb{R}^n_p, \omega)$ be the classical phase space.

A symplectic capacity is a map $c:\mathcal{P}(\mathbb{R}^{2n})\to [0,\infty]$, such that

- $U \subseteq V \Rightarrow c(U) \leq c(V)$ (Monotonicity)
- ► $c(\psi(U)) = |\alpha|c(U)$, for $\psi^*\omega = \alpha\omega$ (Conformality)

•
$$c(B^{2n}) = c(Z^{2n}) = \pi$$
 (Non-triviality & Normalization)

Symplectic Measurements

Let $(\mathbb{R}^{2n} = \mathbb{R}^n_q \oplus \mathbb{R}^n_p, \omega)$ be the classical phase space.

A symplectic capacity is a map $c:\mathcal{P}(\mathbb{R}^{2n})
ightarrow [0,\infty]$, such that

- $U \subseteq V \Rightarrow c(U) \leq c(V)$ (Monotonicity)
- $c(\psi(U)) = |\alpha|c(U)$, for $\psi^*\omega = \alpha\omega$ (Conformality)

•
$$c(B^{2n}) = c(Z^{2n}) = \pi$$
 (Non-triviality & Normalization)

Note:

- 1. Scales like a 2-dimensional invariant.
- 2. Last property disqualifies any volume-related invariant.
- 3. Existence of a single capacity implies Gromov's NST.

Two Examples (Symplectic Embeddings)

Two Examples (Symplectic Embeddings)

Note: for every (normalized) symplectic capacity c one has

$$c_G \leq c \leq c^Z$$

Some Other Examples (partial list)

Capacity	"Technology"
Gromov's width	J-holomorphic curves (1985)
Hofer-Zehnder	∞ -dim functional analysis (1990)
Hofer's displacement energy	∞ -dim functional analysis (1991)
Viterbo's capacity	generating functions (1992)
Floer-Hofer capacity	Floer homology (1994)
homological capacity	symplectic homology (1994)
Hutching's ECH capacities	embedded contact homology (2011)
Cieliebak-Mohnke capacity	punctured holomorphic curves (2014)
Tamarkin's "sheaf capacity"	microlocal theory of sheaves (2015)

Computing Symplectic Capacities

Computing Symplectic Capacities

Problem: Symplectic capacities are notoriously difficult to compute!
Problem: Symplectic capacities are notoriously difficult to compute!

Question: What is the symplectic size of a cube?

Problem: Symplectic capacities are notoriously difficult to compute!

Question: What is the symplectic size of a cube?

Short answer: no one really knows....

Problem: Symplectic capacities are notoriously difficult to compute!

Question: What is the symplectic size of a cube?

Short answer: no one really knows....

The symplectic size of the cube $Q = [-1, 1]^{2n}$

is 4, i.e., c(Q) = 4 for every symplectic capacity.

Problem: Symplectic capacities are notoriously difficult to compute!

Question: What is the symplectic size of a cube?

Short answer: no one really knows....

The symplectic size of the cube $Q = [-1, 1]^{2n}$

is 4, i.e., c(Q) = 4 for every symplectic capacity.

NOTE: volume obstructions only give $c(Q) \leq n$

Problem: Symplectic capacities are notoriously difficult to compute!

Question: What is the symplectic size of a cube?

Short answer: no one really knows....

The symplectic size of the cube $Q = [-1, 1]^{2n}$

is 4, i.e., c(Q) = 4 for every symplectic capacity.

NOTE: volume obstructions only give $c(Q) \leq n$

Theorem [Gluskin, O, 2017]: Assume *n* >> 1,

Problem: Symplectic capacities are notoriously difficult to compute!

Question: What is the symplectic size of a cube?

Short answer: no one really knows....

The symplectic size of the cube $Q = [-1, 1]^{2n}$

is 4, i.e., c(Q) = 4 for every symplectic capacity.

NOTE: volume obstructions only give $c(Q) \preceq n$

Theorem [Gluskin, O, 2017]: Assume n >> 1, **I)** $\exists A \in O(2n)$ such that $c(AQ) \simeq \sqrt{n}$ (for any capacity).

Problem: Symplectic capacities are notoriously difficult to compute!

Question: What is the symplectic size of a cube?

Short answer: no one really knows....

The symplectic size of the cube $Q = [-1, 1]^{2n}$

is 4, i.e., c(Q) = 4 for every symplectic capacity.

NOTE: volume obstructions only give $c(Q) \preceq n$

Theorem [Gluskin, O, 2017]: Assume n >> 1, **I)** $\exists A \in O(2n)$ such that $c(AQ) \simeq \sqrt{n}$ (for any capacity). **II)** $\mathbb{E}_{\mu}(c_{HZ}(AQ)) \simeq \sqrt{\frac{n}{\log(n)}}$ (μ Haar measure on O(2n))

Problem: Symplectic capacities are notoriously difficult to compute!

Question: What is the symplectic size of a cube?

Short answer: no one really knows....

The symplectic size of the cube $Q = [-1, 1]^{2n}$

is 4, i.e., c(Q) = 4 for every symplectic capacity.

NOTE: volume obstructions only give $c(Q) \preceq n$

Theorem [Gluskin, O, 2017]: Assume n >> 1, **I)** $\exists A \in O(2n)$ such that $c(AQ) \simeq \sqrt{n}$ (for any capacity). **II)** $\mathbb{E}_{\mu}(c_{HZ}(AQ)) \simeq \sqrt{\frac{n}{\log(n)}}$ (μ Haar measure on O(2n)) **III** $\mu\{A \in O(2n) \mid c_{HZ}(AQ) - \mathbb{E}_{\mu}(c_{HZ}(AQ)) \mid > t\} \preceq e^{-nt}$

Viterbo's Systolic Conjecture

$$\frac{c(K)}{c(B)} \le \left(\frac{\operatorname{Vol}(K)}{\operatorname{Vol}(B)}\right)^{1/n}$$

$$\frac{c(K)}{c(B)} \le \left(\frac{\operatorname{Vol}(K)}{\operatorname{Vol}(B)}\right)^{1/n}$$

Among all convex domains with a given volume the Euclidean ball has the maximal "symplectic size".

$$\frac{c(K)}{c(B)} \le \left(\frac{\operatorname{Vol}(K)}{\operatorname{Vol}(B)}\right)^{1/r}$$

- Among all convex domains with a given volume the Euclidean ball has the maximal "symplectic size".
- ▶ Holds for the Gromov width *c*_{*G*} by monotonicity.

$$\frac{c(K)}{c(B)} \le \left(\frac{\operatorname{Vol}(K)}{\operatorname{Vol}(B)}\right)^{1/r}$$

- Among all convex domains with a given volume the Euclidean ball has the maximal "symplectic size".
- Holds for the Gromov width c_G by monotonicity.
- Equivalent formulation: $c(K) \leq (n! \operatorname{Vol}(K))^{\frac{1}{n}}$.

Viterbo's Systolic Conjecture

Conjecture (Viterbo, 2001) For every convex body $K \subset \mathbb{R}^{2n}$, and every symplectic capacity c, one has

$$c(K) \leq (n! \operatorname{Vol}(K))^{\frac{1}{n}}$$

Thm (Artstein–Avidan, O, Milman, 2008) There exists a universal constant A > 0 such that

 $c(K) \le A\left(n!\operatorname{Vol}(K)\right)^{\frac{1}{n}}$

Viterbo's Systolic Conjecture

Conjecture (Viterbo, 2001) For every convex body $K \subset \mathbb{R}^{2n}$, and every symplectic capacity c, one has

$$c(K) \leq (n! \operatorname{Vol}(K))^{\frac{1}{n}}$$

Thm (Artstein–Avidan, O, Milman, 2008) There exists a universal constant A > 0 such that

 $c(K) \le A\left(n!\operatorname{Vol}(K)\right)^{\frac{1}{n}}$

Thm (Abbondandolo, Bramham, Hryniewicz, Salomão, 2017) There exists a C^3 -neighborhood \mathcal{E} of the Euclidean ball within the set of all convex smooth domains in \mathbb{R}^4 such that Viterbo's conjecture holds for every $K \in \mathcal{E}$

Conjecture (Viterbo): Let $K \subset \mathbb{R}^{2n}$ be a convex body. Then for any symplectic capacity c one has

$$c(K) \leq (n! \operatorname{Vol}(K))^{\frac{1}{n}}$$

Conjecture (Mahler): Let X be an *n*-dim normed space. Then,

$$\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*}) \ge 4^n / n!$$

Conjecture (Viterbo): Let $K \subset \mathbb{R}^{2n}$ be a convex body. Then for any symplectic capacity c one has

$$c(K) \leq (n! \operatorname{Vol}(K))^{\frac{1}{n}}$$

Conjecture (Mahler): Let X be an *n*-dim normed space. Then,

$$\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*}) \ge 4^n / n!$$

Thm (Artstein-Avidan, Karasev, O, 2014): Mahler's conjecture is equivalent to a special case of Viterbo's conjecture.

Conjecture (Viterbo): Let $K \subset \mathbb{R}^{2n}$ be a convex body. Then for any symplectic capacity c one has

$$c(K) \leq (n! \operatorname{Vol}(K))^{\frac{1}{n}}$$

Conjecture (Mahler): Let X be an *n*-dim normed space. Then,

$$\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*}) \ge 4^n / n!$$

Thm (Artstein-Avidan, Karasev, O, 2014): Mahler's conjecture is equivalent to a special case of Viterbo's conjecture.

MAIN IDEA OF THE PROOF: there is a symplectic capacity for which $c(B_X \times B_{X^*}) = 4$ for any convex body $B_X \subset \mathbb{R}^n$.

Conjecture (Viterbo): Let $K \subset \mathbb{R}^{2n}$ be a convex body. Then for any symplectic capacity c one has

$$c(K) \leq (n! \operatorname{Vol}(K))^{\frac{1}{n}}$$

Conjecture (Mahler): Let X be an *n*-dim normed space. Then,

$$\nu(X) = \operatorname{Vol}(B_X) \cdot \operatorname{Vol}(B_{X^*}) \ge 4^n / n!$$

Thm (Artstein-Avidan, Karasev, O, 2014): Mahler's conjecture is equivalent to a special case of Viterbo's conjecture.

MAIN IDEA OF THE PROOF: there is a symplectic capacity for which $c(B_X \times B_{X^*}) = 4$ for any convex body $B_X \subset \mathbb{R}^n$.

This is closely related with Finsler billiard dynamics!

Hanner-Lima polytopes are the conjectured minimizers in Mahler's conjecture, while the Euclidean ball is the conjectured minimizer in Viterbo's systolic conjecture.

Hanner-Lima polytopes are the conjectured minimizers in Mahler's conjecture, while the Euclidean ball is the conjectured minimizer in Viterbo's systolic conjecture.

KEY POINT: symplectically, they are the same.

Hanner-Lima polytopes are the conjectured minimizers in Mahler's conjecture, while the Euclidean ball is the conjectured minimizer in Viterbo's systolic conjecture.

KEY POINT: symplectically, they are the same.

FACT [related to action-angle coordinates from Hamiltonian dynamics]:

Hanner-Lima polytopes are the conjectured minimizers in Mahler's conjecture, while the Euclidean ball is the conjectured minimizer in Viterbo's systolic conjecture.

KEY POINT: symplectically, they are the same.

FACT [related to action-angle coordinates from Hamiltonian dynamics]:

Thm [Karasev, Schlenk (in progress)]: every Hanner-Lima polytope is symplectomorphic to a Euclidean ball with the same volume

 $\mathbb{R}^{2n} = \mathbb{R}^n_q imes \mathbb{R}^n_p, \quad \omega = dp \wedge dq \ \ (ext{Phase space}).$

 $\mathbb{R}^{2n} = \mathbb{R}^n_q \times \mathbb{R}^n_p$, $\omega = dp \wedge dq$ (Phase space).

 $\Gamma \subset \mathbb{R}^{2n}$ smooth compact hypersurface.

 $\mathbb{R}^{2n} = \mathbb{R}^n_q imes \mathbb{R}^n_p$, $\omega = dp \wedge dq$ (Phase space).

 $\Gamma \subset \mathbb{R}^{2n}$ smooth compact hypersurface.

 $\Gamma = H^{-1}(0), \ H : \mathbb{R}^{2n} \to \mathbb{R}$ (Energy surface).

$$\begin{split} \mathbb{R}^{2n} &= \mathbb{R}^n_q \times \mathbb{R}^n_p, \quad \omega = dp \wedge dq \quad (\text{Phase space}).\\ \Gamma &\subset \mathbb{R}^{2n} \text{ smooth compact hypersurface.}\\ \Gamma &= H^{-1}(0), \ H : \mathbb{R}^{2n} \to \mathbb{R} \text{ (Energy surface).}\\ ker(\omega|_{\Gamma}) \\ &\downarrow \end{split}$$

Γ

 $\mathbb{R}^{2n} = \mathbb{R}^n_q imes \mathbb{R}^n_p, \quad \omega = dp \wedge dq$ (Phase space).

 $\Gamma \subset \mathbb{R}^{2n}$ smooth compact hypersurface.

$$\Gamma = H^{-1}(0), \ H : \mathbb{R}^{2n} \to \mathbb{R}$$
 (Energy surface).

 $\ker(\omega|_{\Gamma})$ integral curves \Rightarrow characteristic foliation

Remark: closed characteristics =

 Γ periodic solutions of Hamiltonian Eq.

$$\begin{cases} \dot{p} = -\frac{\partial H}{\partial q} \\ \dot{q} = \frac{\partial H}{\partial p} \end{cases}$$

Action spectrum: $\mathcal{A}(\Gamma) = \{ | \int_{\gamma} \lambda | ; \gamma \text{ closed characteristic} \}, \omega = d\lambda.$

Action spectrum: $\mathcal{A}(\Gamma) = \{ | \int_{\gamma} \lambda | ; \gamma \text{ closed characteristic} \}, \omega = d\lambda.$ **Theorem** [Hofer-Zehnder]: For $\Sigma \subset \mathbb{R}^{2n}$ smooth and convex min $\mathcal{A}(\partial \Sigma)$ is a symplectic capacity.

Action spectrum: $\mathcal{A}(\Gamma) = \{ | \int_{\gamma} \lambda | ; \gamma \text{ closed characteristic} \}, \omega = d\lambda.$

Theorem [Hofer-Zehnder]: For $\Sigma \subset \mathbb{R}^{2n}$ smooth and convex min $\mathcal{A}(\partial \Sigma)$ is a symplectic capacity.

Theorem [Artstein-Avidan, Karasev, O]: One has $c_{HZ}(B_X \times B_{X^*}) = 4$ for **any** centrally symmetric convex body $B_X \subset \mathbb{R}^n$.

Consider $H(q, p) = \max\{\|q\|_{B_X}, \|p\|_{B_{X^*}}\}$ (singular function)

Consider $H(q, p) = \max\{||q||_{B_X}, ||p||_{B_{X^*}}\}$ (singular function) The 1-level set is $\partial(B_X \times B_{X^*})$.

Consider $H(q, p) = \max\{||q||_{B_X}, ||p||_{B_{X^*}}\}$ (singular function) The 1-level set is $\partial(B_X \times B_{X^*})$.

$$\mathfrak{X}_{H}(q,p) = \begin{cases} (\nabla \|p\|_{B_{X^*}}, 0), & (q,p) \in int(B_X) \times \partial B_{X^*}, \\ (0, -\nabla \|q\|_{B_X}), & (q,p) \in \partial B_X \times int(B_{X^*}), \\ (?, ?) & (q,p) \in \partial(B_X) \times \partial(B_{X^*}) \end{cases}$$
$$\mathfrak{X}_{H}(q,p) = \begin{cases} (\nabla \|p\|_{B_{X^*}}, 0), & (q,p) \in int(B_X) \times \partial B_{X^*}, \\ (0, -\nabla \|q\|_{B_X}), & (q,p) \in \partial B_X \times int(B_{X^*}), \\ (?, ?) & (q,p) \in \partial(B_X) \times \partial(B_{X^*}) \end{cases}$$

$$\mathfrak{X}_{H}(q,p) = \begin{cases} (\nabla \|p\|_{B_{X^*}}, 0), & (q,p) \in int(B_X) \times \partial B_{X^*}, \\ (0, -\nabla \|q\|_{B_X}), & (q,p) \in \partial B_X \times int(B_{X^*}), \\ (?, ?) & (q,p) \in \partial(B_X) \times \partial(B_{X^*}) \end{cases}$$

$$\mathfrak{X}_{H}(q,p) = \begin{cases} (\nabla \|p\|_{B_{X^{*}}}, 0), & (q,p) \in int(B_{X}) \times \partial B_{X^{*}}, \\ (0, -\nabla \|q\|_{B_{X}}), & (q,p) \in \partial B_{X} \times int(B_{X^{*}}), \\ (?, ?) & (q,p) \in \partial(B_{X}) \times \partial(B_{X^{*}}) \end{cases}$$

$$\mathfrak{X}_{H}(q,p) = \begin{cases} (\nabla \|p\|_{B_{X^{*}}}, 0), & (q,p) \in int(B_{X}) \times \partial B_{X^{*}}, \\ (0, -\nabla \|q\|_{B_{X}}), & (q,p) \in \partial B_{X} \times int(B_{X^{*}}), \\ (?,?) & (q,p) \in \partial(B_{X}) \times \partial(B_{X^{*}}) \end{cases}$$

Theorem (Artstein-Avidan, O)

If $B_X \subset \mathbb{R}^n_q$ and $B_{X^*} \subset \mathbb{R}^n_p$ are convex then $c_{HZ}(B_X \times B_{X^*})$ is the B_{X^*} -length of the shortest periodic B_{X^*} -billiard trajectory in B_X .

Theorem (Artstein-Avidan, O)

If $B_X \subset \mathbb{R}^n_q$ and $B_{X^*} \subset \mathbb{R}^n_p$ are convex then $c_{HZ}(B_X \times B_{X^*})$ is the B_{X^*} -length of the shortest periodic B_{X^*} -billiard trajectory in B_X .

Theorem (Artstein-Avidan, Karasev, O)

For every symmetric convex $B_X \subset \mathbb{R}^n_q$ one has $c_{\mathrm{HZ}}(B_X \times B_{X^*}) = 4$.

Let $K \subset \mathbb{R}^{2n}$ be a convex **polytope**.

Let $K \subset \mathbb{R}^{2n}$ be a convex **polytope**.

Let $K \subset \mathbb{R}^{2n}$ be a convex **polytope**.

Question: What can be said about the minimal closed characteristic on ∂K ?

Let $K \subset \mathbb{R}^{2n}$ be a convex **polytope**.

Question: What can be said about the minimal closed characteristic on ∂K ? (e.g., could it be in the singular strata?)

Let $K \subset \mathbb{R}^{2n}$ be a convex **polytope**.

Question: What can be said about the minimal closed characteristic on ∂K ? (e.g., could it be in the singular strata?)

Theorem [P. Kislev, 2018]: Let $K \subset \mathbb{R}^{2n}$ be a convex polytope. Then there is a minimizer orbit which visits each facet of K at most once. Moreover,

$$c_{HZ}(K) = \frac{1}{2} \Big[\max_{\sigma \in S_{k_F}, (\beta_i) \in \mathcal{M}(K)} \sum_{1 \le j < i \le k_F} \beta_{\sigma(i)} \beta_{\sigma(i)} \omega(n_{\sigma(i)}, n_{\sigma(j)}) \Big]^{-1},$$
$$\mathcal{M}(K) = \Big\{ (\beta_i)_{i=1}^{k_F} \mid \beta_i \ge 0, \ \Sigma_{i=1}^{k_F} \beta_i h_i = 1, \ \sum_{i=1}^{k_F} \beta_i n_i = 0 \Big\}.$$

Let $K \subset \mathbb{R}^{2n}$ be a convex **polytope**.

Question: What can be said about the minimal closed characteristic on ∂K ? (e.g., could it be in the singular strata?)

Theorem [P. Kislev, 2018]: Let $K \subset \mathbb{R}^{2n}$ be a convex polytope. Then there is a minimizer orbit which visits each facet of K at most once. Moreover,

$$c_{HZ}(K) = \frac{1}{2} \Big[\max_{\sigma \in S_{k_F}, (\beta_i) \in \mathcal{M}(K)} \sum_{1 \le j < i \le k_F} \beta_{\sigma(i)} \beta_{\sigma(i)} \omega(n_{\sigma(i)}, n_{\sigma(j)}) \Big]^{-1},$$
$$\mathcal{M}(K) = \Big\{ (\beta_i)_{i=1}^{k_F} \mid \beta_i \ge 0, \ \Sigma_{i=1}^{k_F} \beta_i h_i = 1, \ \sum_{i=1}^{k_F} \beta_i n_i = 0 \Big\}.$$

CAN THIS BE COMPARED WITH THE VOLUME OF K?

Conjecture (Akopyan, Karasev, Pertov, 2014): If a convex body $\Sigma \subset \mathbb{R}^{2n}$ is covered by a finite set of convex bodies $\{\Sigma_i\}$ then, for some symplectic capacity, one has

 $c(\Sigma) \leq \sum c(\Sigma_i)$

Conjecture (Akopyan, Karasev, Pertov, 2014): If a convex body $\Sigma \subset \mathbb{R}^{2n}$ is covered by a finite set of convex bodies $\{\Sigma_i\}$ then, for some symplectic capacity, one has

$$c(\Sigma) \leq \sum c(\Sigma_i)$$

Theorem (P. Kislev, 2018): Subadditivity holds for hyperplane cuts of convex domains.

THANK YOU VERY MUCH!