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The classical theory I

Consider a time-dependent vector field u on Rn (or a domain of it, or
an n-dimensional manifold) and the associated ODE

γ̇(t) = u(t , γ(t))

Theorem (Cauchy-Lipschitz (Picard-Lindelöf))
If u is Lipschitz in space, i.e. ∃C s.t.

|u(t , x)− u(t , y)| ≤ C|x − y | ∀x , y ∈ Rn ,

then for every x ∈ Rn there is a unique solution γx of the ODE (†) with

γx (0) = x .
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The classical theory II

The solution γ depends continuously on both the initial data x and the
vector field u.

Furthermore, define the flow map

Φ(t , x) := γx (t) .

Theorem (Cauchy-Lipschitz, continued)
t 7→ Φ(t , ·) is a continuous one-parameter family of biLipschitz
homeomorphisms.

Namely Φ(t , ·) is Lipschitz and bijective, with Lipschitz inverse.
And Φ becomes more regular according to the regularity of u (C1, Ck ,
C∞, analytic, etc.).

Moreover t 7→ Φ(t , ·) is an isotopy with the identity map Φ(0, ·).
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Main point

Problem (Pivotal for this talk!)
Can we go drop the Lipschitz regularity?
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The classical theory III

Theorem (Peano)
Solutions exist if u is just continuous.

However... Uniqueness fails as soon as u is a tad below Lipschitz. The
typical textbook example is

γ̇(t) = |γ(t)|α with α < 1.

In such examples nonuniqueness is “fatal”: there is no selection
principle which builds a natural global flow.
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The textbook example I

To fix ideas t ≥ 0 and
γ̇(t) = 2

√
|γ(t)|

Initial datum x = 0, many solutions

γ(t) =

{
0 for t ≤ t0
(t − t0)2 for t ≥ t0

Initial datum x > 0 a unique solution for all t > 0:

γ(t) = (x + t)2

Initial datum x < 0 a unique solution for small time until it its 0:

γ(t) = −(x + t)2
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Textbook example II

t
trajectories
starting
at 0

x

For this reason we will see below that, in some relevant situations,
such textbook examples are misleading
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OK, but who cares?

Typical example with some interest: the evolution of a fluid, or a gas,
develops some singularity (shear flows, shock waves, detonations,
cavitations).

The velocity field of the particles is not regular, yet we wish to make
sense of the particles’ trajectories.

Bad news: In such situations the vector field is typically discontinuous.
Good news: We want to track most particles.
More good news: Singular fields might be approximated with smooth
fields, we are thus interested in the asymptotic behavior of the flows of
the smooth approximations.
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Classical theory IV

Φ(t , ·) flow of u smooth. JΦ(t , x) := det Dx Φ(t , x).

Theorem (Liouville)

If u is C1,
∂JΦ

∂t
= JΦ [div u](Φ) .

JΦ stays bounded (and bounded away from zero): |div u| ≤ C and
JΦ(0, ·) ≡ 1 (+ Gronwall’s lemma) imply

e−Ct ≤ JΦ(t , x) ≤ eCt .

Corollary (Liouville for divergence-free fields)
If div u = 0, then Φ(t , ·) is measure-preserving.
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Classical theory V

Measure theory allows for an elegant formulation of Liouville’s theorem
and its corollary.

Let Φ(t , ·)]µ be the push-forward measure∫
f (x)d(Φ(t , ·)]µ)(x) :=

∫
f (Φ(t , x)) dµ(x) .

Theorem (Measure-theoretic Liouville)
If u is Lipschitz, then Φ(t , ·)]Ln = ρ(t , ·)Ln and

∂tρ+ div (ρu) = 0

ρ(0, ·) = 1 .
(continuity equation)

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 10 / 40



Classical theory V

Measure theory allows for an elegant formulation of Liouville’s theorem
and its corollary.

Let Φ(t , ·)]µ be the push-forward measure∫
f (x)d(Φ(t , ·)]µ)(x) :=

∫
f (Φ(t , x)) dµ(x) .

Theorem (Measure-theoretic Liouville)
If u is Lipschitz, then Φ(t , ·)]Ln = ρ(t , ·)Ln and

∂tρ+ div (ρu) = 0

ρ(0, ·) = 1 .
(continuity equation)

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 10 / 40



Classical theory V

Measure theory allows for an elegant formulation of Liouville’s theorem
and its corollary.

Let Φ(t , ·)]µ be the push-forward measure∫
f (x)d(Φ(t , ·)]µ)(x) :=

∫
f (Φ(t , x)) dµ(x) .

Theorem (Measure-theoretic Liouville)
If u is Lipschitz, then Φ(t , ·)]Ln = ρ(t , ·)Ln and

∂tρ+ div (ρu) = 0

ρ(0, ·) = 1 .
(continuity equation)

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 10 / 40



Classical theory V

Measure theory allows for an elegant formulation of Liouville’s theorem
and its corollary.

Let Φ(t , ·)]µ be the push-forward measure∫
f (x)d(Φ(t , ·)]µ)(x) :=

∫
f (Φ(t , x)) dµ(x) .

Theorem (Measure-theoretic Liouville)
If u is Lipschitz, then Φ(t , ·)]Ln = ρ(t , ·)Ln and

∂tρ+ div (ρu) = 0

ρ(0, ·) = 1 .
(continuity equation)

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 10 / 40



Classical theory VI

If div u = 0 then div (uρ) = u · ∇ρ+ ρ div u = u · ∇ρ

∂tρ+ u · ∇ρ = 0 .

The latter is the transport equation. The scalar ρ is “transported along
the flow”:

∂

∂t
(
ρ(t ,Φ(t , x))

)
=
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Modern theory I

Note: the assumption div u bounded is equivalent to u Lipschitz in 1
space dimension and rules out all textbook examples.
div u bounded (and even div u = 0) covers several (not all!) interesting
singularities.
Typically interested in u ∈ L1([0,T ],W 1,p) or u ∈ L1([0,T ],BV ), where

BV = {u ∈ L1 : Du is a Radon measure}

To avoid technicalities about +∞, let’s assume the domain is the
periodic torus Tn.

Theorem (DiPerna-Lions 1988, Ambrosio 2002)
If u is Sobolev (BV) and div u is bounded, there exists a “reasonable”
(but just measurable) flow Φ, which is unique and stable under
approximations. In fact the space of such flows is locally compact.
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Modern theory II

Reasonable flows (Ambrosio’s axiomatization):

(a) For a.e. x , t 7→ γ(x) = Φ(t , x) is an absolutely continuous curve.
(b) γ(0) = x and γ̇(t) = u(t , γ(t)) for a.e. t .
(c) Φ(t , ·)]Ln ≤ C(t)Ln

.
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(a) For a.e. x , t 7→ γ(x) = Φ(t , x) is an absolutely continuous curve.
(b) γ(0) = x and γ̇(t) = u(t , γ(t)) for a.e. t .
(c) Φ(t , ·)]Ln ≤ C(t)Ln C locally bounded function.

Maps satisfying (a)-(b)-(c) are called regular Lagrangian flows.

Condition (c) imposes that the trajectories can be bundled together to
form a “reasonable flow”. In the classical theory it is a consequence of
the ODE, in the modern theory it is an axiom.
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Modern theory II

Reasonable flows (Ambrosio’s axiomatization):

(a) For a.e. x , t 7→ γ(x) = Φ(t , x) is an absolutely continuous curve.
(b) γ(0) = x and γ̇(t) = u(t , γ(t)) for a.e. t .
(c) Φ(t , ·)]Ln ≤ C(t)Ln C locally bounded function.

Maps satisfying (a)-(b)-(c) are called regular Lagrangian flows.

Condition (c) imposes that the trajectories can be bundled together to
form a “reasonable flow”. In the classical theory it is a consequence of
the ODE, in the modern theory it is an axiom.
Natural question: is this axiom really needed?
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Modern III

PDE-ODE relations and Liouville still hold

Theorem
ρ ∈ L∞([0,T ],Lp′) solves the transport equation

∂tρ+ u · ∇ρ = 0

iff ρ is constant along a.a. curves t 7→ Φ(t , x)
ρ (locally) solves the continuity equation

∂tρ+ div (ρu) = 0

iff ρ(t , ·)Ln = Φ(t , ·)](ρ(0, ·)Ln).

Corollary
If div u = 0, then Φ(t , ·) is measure preserving.
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Modern IV

∂tρ+ div(ρu) = 0

understood “distributionally”.

Note: it needs ρ ∈ L∞([0,T ],Lp′) and u ∈ L1([0,T ],Lp). For
u ∈ L1([0,T ],W 1,p) it needs ρ ∈ L∞([0,T ],L(p∗)′ (DiPerna-Lions
assumption suboptimal...).

Transport rewritten as

∂tρ+ div(ρu)− ρ div u = 0 .

Solutions in the distributional sense.
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Modern V

Strong convergence:

Theorem
If u Sobolev (BV), uk Sobolev (BV), ‖uk − u‖L1 → 0then

‖Φk − Φ‖L1 → 0

for the corresponding regular Lagrangian flows.

Corollary
If

sup
k
‖uk‖L1([0,T ],W 1,p) + ‖div uk‖L1([0,T ],L∞) <∞ ,

then the corresponding flows Φk are strongly precompact in L1.
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The DiPerna-Lions approach

The “DiPerna-Lions” theory proves first well-posedness for bounded
solutions of the transport and continuity equations.

Hence it concludes the existence, uniqueness and stability of regular
Lagrangian flows.

A sketch when div u = 0. Existence:
I Regularize u as uε := u ∗ ϕε and solve the corresponding

transport-continuity equation:
∂tρε + div (ρεuε) = 0

ρε(0, ·) = ρ0 ∗ ε .
.

I Use classical theory to infer supx |ρε(t , x)| ≤ supx |ρ0(x)|;
I Use weak∗ compactness to extract a sequential weak∗ limit of ρε;
I Classical functional analysis: the limit is a solution.
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The DiPerna-Lions approach II

Uniqueness:
I Prove ρ solution =⇒ β(ρ) solution (renormalization property)

through a regularization scheme; this is the “hard analytic part”
with a “commutator estimate”;

I Use linearity to reduce to the case ρ0 = 0;
I To show ρ ≡ 0, observe |ρ| is a solution and integrate in space

domains, formally
d
dt

∫
|ρ|(x , t) dx = 0 .
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Commutator estimate

∂tρ+ u · ∇ρ = 0
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Commutator estimate

∂tρ+ u · ∇ρ = 0

∂tρ ∗ ϕε + (u · ∇ρ) ∗ ϕε = 0
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Commutator estimate

∂tρ+ u · ∇ρ = 0

∂tρ ∗ ϕε = −(u · ∇ρ) ∗ ϕε
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Commutator estimate

∂tρ+ u · ∇ρ = 0

∂tρ ∗ ϕε + u ∗ ϕε · ∇ρ ∗ ϕε = u ∗ ϕε · ∇ρ ∗ ϕε − (u · ∇ρ) ∗ ϕε
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Commutator estimate

∂tρ+ u · ∇ρ = 0

∂tρ ∗ ϕε + u ∗ ϕε · ∇ρ ∗ ϕε = Tε

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 19 / 40



Commutator estimate
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β′(ρ ∗ ϕε)∂tρ ∗ ϕε + β′(ρ ∗ ϕε)u ∗ ϕε · ∇ρ ∗ ϕε = β′(ρ ∗ ϕε)Tε
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∂tβ(ρ ∗ ϕε) + u ∗ ϕε · ∇β(ρ ∗ ϕε) = β′(ρ ∗ ϕε)Tε
Show that the left hand side vanishes as ε ↓ 0.
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Commutator estimate

∂tρ+ u · ∇ρ = 0

β′(ρ ∗ ϕε)∂tρ ∗ ϕε + β′(ρ ∗ ϕε)u ∗ ϕε · ∇ρ ∗ ϕε = β′(ρ ∗ ϕε)Tε

∂tβ(ρ ∗ ϕε) + u ∗ ϕε · ∇β(ρ ∗ ϕε) = β′(ρ ∗ ϕε)Tε
Show that the left hand side vanishes as ε ↓ 0. Rather simple for
Sobolev, quite hard for BV.
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The DiPerna-Lions approach III

Stability:
(i) Weak∗ compactness as in existence proof;
(ii) Uniqueness implies weak∗ continuity, i.e. if

∂tρk + uk · ∇ρk = 0

and uk → u, then ρk ⇀
∗ ρ with

∂tρ+ u · ∇ρ = 0 .

(iii) Renormalization property + (ii) =⇒ β(ρk ) ⇀∗ β(ρ) for any test
β ∈ C1;

(iv) (iii) =⇒ strong converge of solutions to PDE;
(v) Compactness of solutions to PDEs;
(vi) Compactness of flows (=⇒ existence and uniqueness of flows).
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Postmodern?

Bressan, 2002: can we quantify the compactness of flows?
Conjecture, explicit rate.

Back to classical, uniqueness of flow:

γ̇(t) = u(t , γ(t))

˙̄γ(t) = u(t , γ̄(t))

γ(0) = γ̄(0) .

d
dt
|γ(t)− γ̄(t)|
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d
dt
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≤ C|γ(t)− γ̄(t)|

When u is Lipschitz. Gronwall =⇒ |γ − γ̄| ≡ 0
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Bressan, 2002: can we quantify the compactness of flows?
Conjecture, explicit rate.

Back to classical, uniqueness of flow:

γ̇(t) = u(t , γ(t))

˙̄γ(t) = u(t , γ̄(t))

γ(0) = γ̄(0) .

d
dt
|γ(t)− γ̄(t)| = |u(t , γ(t))− u(t , γ̄(t))|

≤ (M|Du|(γ(t)) + M|Du|(γ̄(t)))|γ(t)− γ̄(t)|.

When u is Sobolev we can use the maximal function MDu.
[Crippa-De Lellis 2007] This heuristic can be made rigorous.
Interesting: this approach is neither a subset nor a superset of the
DiPerna-Lions theory.
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Postmodern II

[Crippa-De Lellis 2007] Bressan’s conjectured rate correct for W 1,p,
p > 1.
Conjecture still open for BV !

Theorem
p > 1, ∃C(p,n) s.t.
If u ∈ C∞ and Φ is the corresponding flow, ∀ε > 0 ∃K with |K | < Cε
such that

Lip(Φ|K ) ≤ Cexp
(

C ‖Du‖Lp

ε1/p

)
.

[Bresch-Jabin 2015], [Léger 2018] |Φ̂(ξ)|2 log(1 + |ξ|) ∈ L1,
[Brué-Nguyen 2019] All equiv. to a “Gagliardo seminorm with a log”.
[Alberti-Crippa-Mazzuccato], [Yao-Zlatos]: these rates are optimal!
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Well-posedness “almost everywhere”

A nonrigorous interpretation of the DiPerna-Lions theory: there is a
unique solution of the ODE for almost every initial point x .

[Ambrosio 2002, Alberti, Crippa] Can this interpretation be made
rigorous?

Let u be a Sobolev vector field on Rn. Is it true that for almost every
x ∈ Rn there is a unique absolutely continuous curve γ : [0,T ]→ Rn

such that {
γ̇(t) = u(t , γ(t)) for a.e. t
γ(0) = x .

?
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Well-posedness “almost everywhere”

A nonrigorous interpretation of the DiPerna-Lions theory: there is a
unique solution of the ODE for almost every initial point x .

[Ambrosio 2002, Alberti, Crippa] Can this interpretation be made
rigorous?

Let u be a Sobolev vector field on Rn. Is it true that for almost every
x ∈ Rn there is a unique absolutely continuous curve γ : [0,T ]→ Rn

such that{
γ̇(t) = u(t , γ(t)) for a.e. t
γ(0) = x .

(†)

?

Let us call an absolutely continuous curve as in (†) a trajectory for u
with initial point x .
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Well-posedness “almost everywhere”, answers
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Well-posedness “almost everywhere”, answers

Theorem (Jabin, Caravenna-Crippa (2018))

Trajectories of u are unique for a.e. initial point x when u ∈W 1,p and
p > n.
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The example can be made continuous [Giri, work in progress], falling
into Peano’s existence theory.
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Trajectories of u are unique for a.e. initial point x when u ∈W 1,p and
p > n.

Theorem (Brué-Colombo-De Lellis (2020))

For every p < n there is a divergence-free vector field u ∈W 1,p and a
closed set of positive measure A such that for every initial point x ∈ A
there are at least two trajectories of u.

The example can be made continuous [Giri, work in progress], falling
into Peano’s existence theory.
What happens in the critical case p = n?

Theorem (Brué-Colombo-De Lellis (2020))

A.e. uniqueness holds when Du ∈ Ln,1 (Lorentz space).
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Well-posedness “almost everywhere”, comments

Theorem (Brué-Colombo-De Lellis (2020))

For every p < n there is a divergence-free vector field u ∈W 1,p and a
closed set of positive measure A such that for every initial point x ∈ A
there are at least two trajectories of u.
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Well-posedness “almost everywhere”, comments

Theorem (Brué-Colombo-De Lellis (2020))

For every p < n there is a divergence-free vector field u ∈W 1,p and a
closed set of positive measure A such that for every initial point x ∈ A
there are at least two trajectories of u.

One (the “good”) trajectory with initial point x ∈ A is picked up by the
regular Lagrangian flow Φ.
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Well-posedness “almost everywhere”, comments

Theorem (Brué-Colombo-De Lellis (2020))

For every p < n there is a divergence-free vector field u ∈W 1,p and a
closed set of positive measure A such that for every initial point x ∈ A
there are at least two trajectories of u.

One (the “good”) trajectory with initial point x ∈ A is picked up by the
regular Lagrangian flow Φ.
What goes wrong if we consistently choose a bad trajectory?
The corresponding flow Ψ does not satisfy Ψ(t , ·)]Ln ≤ CLn: Axiom (c)
is needed.
Bad trajectories are shy: trajectories of regular approximations will
converge to good ones by the stability of regular Lagrangian flows.
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Theorem (Brué-Colombo-De Lellis (2020))

For every p < n there is a divergence-free vector field u ∈W 1,p and a
closed set of positive measure A such that for every initial point x ∈ A
there are at least two trajectories of u.

One (the “good”) trajectory with initial point x ∈ A is picked up by the
regular Lagrangian flow Φ.
What goes wrong if we consistently choose a bad trajectory?
The corresponding flow Ψ does not satisfy Ψ(t , ·)]Ln ≤ CLn: Axiom (c)
is needed.
Bad trajectories are shy: trajectories of regular approximations will
converge to good ones by the stability of regular Lagrangian flows.

How did we discover the bad trajectories??

BY ACCIDENT ,
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Back to the DiPerna-Lions theory I

Recall, all that counts to define solutions ρ of the continuity equation is
the (local) summability of ρu. ρu ∈ L1

loc guaranteed by ρ ∈ Lq and

u ∈ Lp with
1
q

+
1
p
≤ 1 (†).

Theorem (DiPerna-Lions 88)

Continuity and transport equations are well posed for u ∈W 1,p and
ρ ∈ Lq satisfying (†).
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Back to the DiPerna-Lions theory II

1
q

+
1
p
≤ 1 (†).

Note, by Sobolev embedding u ∈W 1,p guarantees u ∈ Lp∗ for an
exponent p∗ > p. Indeed 1

p∗ = 1
p −

1
n when p < n, while for p > n, u is

bounded!

Q1: Is (†) a technical condition, i.e. does the Sobolev improved
summability of u allows less summability of ρ?

Q2: If we know, independently of the Sobolev property, some extra
summability (for instance u bounded), can we just require the bare
minimum for ρ?
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Sharp summability, p > n

Corollary (Caravenna-Crippa 2018)

u ∈W 1,p, p > n. Positive solutions of the continuity equations are
well-posed under the minimal summability requirement ρ ∈ L1.

Positive solutions are nicer because of Ambrosio’s superposition
principle
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Linearity and superposition

Assume for the moment you had “two flows” Φ1 and Φ2 for the same
vector field u = 0. ρ1 = (Φ1)](ρ0Ln) and ρ2 = (Φ2)](ρ0Ln) solve

{
∂tρ+ div (ρu) = 0
ρ(0, ·) = ρ0)

But λρ1 + (1− λ)ρ2 is a solution too.

Ambrosio’s interpretation: you choose Φ1 with probability λ and Φ2
with probability 1− λ.

In an appropriate sense, all positive solutions can be build by
“choosing trajectories” at random.
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Ambrosio’s superposition principle

Theorem (Ambrosio 2002)

Let u ∈ Lq and ρ ∈ Lp, with 1
q + 1

p ≤ 1 and ρ positive such that
∂tρ+ div (ρu) = 0

ρ(0, ·) = ρ0 .
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Theorem (Ambrosio 2002)

Let u ∈ Lq and ρ ∈ Lp, with 1
q + 1

p ≤ 1 and ρ positive such that
∂tρ+ div (ρu) = 0

ρ(0, ·) = ρ0 .

Then there is a family ηx of probability measures on the space of
absolutely continuous curves SUCH THAT:

Each ηx is concentrated on the set of trajectories of u with initial point
x;
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Ambrosio’s superposition principle

Theorem (Ambrosio 2002)

Let u ∈ Lq and ρ ∈ Lp, with 1
q + 1

p ≤ 1 and ρ positive such that
∂tρ+ div (ρu) = 0

ρ(0, ·) = ρ0 .

Then there is a family ηx of probability measures on the space of
absolutely continuous curves SUCH THAT:

Each ηx is concentrated on the set of trajectories of u with initial point
x;

∫
f (x)ρ(t , x) dx =

∫ ∫
f (γ(t)) dηx (γ)ρ0(x) dx

for every continuous f .
Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 30 / 40



Ambrosio’s superposition principle II

∫
f (x)ρ(t , x) dx =

∫ ∫
f (γ(t)) dηx (γ) ρ0(x) dx
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Ambrosio’s superposition principle II

∫
f (x)ρ(t , x) dx =

∫ ∫
f (γ(t)) dηx (γ) ρ0(x) dx

If the trajectory of u with initial point x is a unique γ, ηx = δγ .
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Ambrosio’s superposition principle II

∫
f (x)ρ(t , x) dx =

∫ ∫
f (γ(t)) dηx (γ) ρ0(x) dx

If the trajectory of u with initial point x is a unique γ, ηx = δγ .
For p > n (Jabin, Caravenna-Crippa!) we know that for a.e. x the
trajectory is unique and picked by the regular Lagrangian flow Φ(·, x)

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 31 / 40



Ambrosio’s superposition principle II

∫
f (x)ρ(t , x) dx =

∫ ∫
f (γ(t)) dηx (γ) ρ0(x) dx

If the trajectory of u with initial point x is a unique γ, ηx = δγ .
For p > n (Jabin, Caravenna-Crippa!) we know that for a.e. x the
trajectory is unique and picked by the regular Lagrangian flow Φ(·, x)

I.e. ηx = δΦ(·,x) for a.e. x

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 31 / 40



Ambrosio’s superposition principle II

∫
f (x)ρ(t , x) dx =

∫ ∫
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Ambrosio’s superposition principle II

∫
f (x)ρ(t , x) dx =

∫
f (Φ(t , x)) ρ0(x) dx

If the trajectory of u with initial point x is a unique γ, ηx = δγ .
For p > n (Jabin, Caravenna-Crippa!) we know that for a.e. x the
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Ambrosio’s superposition principle II

∫
f (x)ρ(t , x) dx =

∫
f d(Φ(t , ·)](ρ0Ln))

If the trajectory of u with initial point x is a unique γ, ηx = δγ .
For p > n (Jabin, Caravenna-Crippa!) we know that for a.e. x the
trajectory is unique and picked by the regular Lagrangian flow Φ(·, x)

I.e. ηx = δΦ(·,x) for a.e. x
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Ambrosio’s superposition principle II

∫
f (x)ρ(t , x) dx =

∫
f d(Φ(t , ·)](ρ0Ln))

If the trajectory of u with initial point x is a unique γ, ηx = δγ .
For p > n (Jabin, Caravenna-Crippa!) we know that for a.e. x the
trajectory is unique and picked by the regular Lagrangian flow Φ(·, x)

I.e. ηx = δΦ(·,x) for a.e. x

The formula
ρ(t , ·)Ln = Φ(t , ·)](ρ0Ln)

holds and determines the solution.
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Jabin, Caravenna-Crippa a.e. uniqueness

Recall, if u ∈W 1,p then ∃f ∈ Lp such that

|u(x)− u(y)| ≤ (f (x) + f (y))|x − y | ∀x , y
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Jabin, Caravenna-Crippa a.e. uniqueness

Recall, if u ∈W 1,p then ∃f ∈ Lp such that

|u(x)− u(y)| ≤ (f (x) + f (y))|x − y | ∀x , y

Theorem (Stein? Morrey??)
If p > n
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Jabin, Caravenna-Crippa a.e. uniqueness

Recall, if u ∈W 1,p then ∃f ∈ Lp such that

|u(x)− u(y)| ≤ f (x)|x − y | ∀x , y (†)

Theorem (Stein? Morrey??)
If p > n then (†).
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Recall, if u ∈W 1,p then ∃f ∈ Lp such that

|u(x)− u(y)| ≤ f (x)|x − y | ∀x , y (†)

Theorem (Stein? Morrey??)
If p > n then (†).

u field, γ and γ̄ trajectories

d
dt
|γ(t)− γ̄(t)| ≤ ?? |γ(t)− γ̄(t)|
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Theorem (Stein? Morrey??)
If p > n then (†).

u field, γ and γ̄ trajectories

d
dt
|γ(t)− γ̄(t)| ≤ C |γ(t)− γ̄(t)|

Classical theory, u Lipschitz.
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Recall, if u ∈W 1,p then ∃f ∈ Lp such that

|u(x)− u(y)| ≤ f (x)|x − y | ∀x , y (†)

Theorem (Stein? Morrey??)
If p > n then (†).

u field, γ and γ̄ trajectories

d
dt
|γ(t)− γ̄(t)| ≤ (f (γ(t)) + f (γ̄(t))) |γ(t)− γ̄(t)|

Classical theory, u Lipschitz. Gronwall: Everywhere uniqueness.
DiPerna-Lions theory, u ∈W 1,p.
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Lagrangian flow.
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Jabin, Caravenna-Crippa a.e. uniqueness

Recall, if u ∈W 1,p then ∃f ∈ Lp such that

|u(x)− u(y)| ≤ f (x)|x − y | ∀x , y (†)

Theorem (Stein? Morrey??)
If p > n then (†).

u field, γ and γ̄ trajectories

d
dt
|γ(t)− γ̄(t)| ≤ f (γ(t)) |γ(t)− γ̄(t)|

Classical theory, u Lipschitz. Gronwall: Everywhere uniqueness.
DiPerna-Lions theory, u ∈W 1,p. Crippa-De Lellis: Unique regular
Lagrangian flow.
DiPerna-Lions theory, u ∈W 1,p, p > n.
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Jabin, Caravenna-Crippa a.e. uniqueness

Recall, if u ∈W 1,p then ∃f ∈ Lp such that

|u(x)− u(y)| ≤ f (x)|x − y | ∀x , y (†)

Theorem (Stein? Morrey??)
If p > n then (†).

u field, γ and γ̄ trajectories

d
dt
|γ(t)− γ̄(t)| ≤ f (γ(t)) |γ(t)− γ̄(t)|

Classical theory, u Lipschitz. Gronwall: Everywhere uniqueness.
DiPerna-Lions theory, u ∈W 1,p. Crippa-De Lellis: Unique regular
Lagrangian flow.
DiPerna-Lions theory, u ∈W 1,p, p > n. Jabin, Caravenna-Crippa: A.e.
uniqueness.
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Interpolating I

Is there a family of inequalities (depending on p) which interpolates
between the two extreme situations

|u(x)− u(y)| ≤ (f (x) + f (y))|x − y | p < n

|u(x)− u(y)| ≤ f (x)|x − y | p > n

?

Theorem (Brué-Colombo-De Lellis (2020))

If u ∈W 1,p, 1 < p < n, then ∃f ∈ Lp such that

|u(x)− u(y)| ≤ (f (x) + f (x)αf (y)1−α)|x − y | ∀x , y ∀α ∈ [0, p
n ) .

Remark
The range of α is optimal.
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Interpolating II

Corollary

u ∈W 1,p, p < n.
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Interpolating II

Corollary

u ∈W 1,p, p < n. Positive solutions of the transport and continuity
equations are well posed in a range of exponent
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Interpolating II

Corollary

u ∈W 1,p, p < n. Positive solutions of the transport and continuity
equations are well posed in a range of exponent

which strictly contains the DiPerna-Lions range
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Interpolating II

Corollary

u ∈W 1,p, p < n. Positive solutions of the transport and continuity
equations are well posed in a range of exponent

which strictly contains the DiPerna-Lions range

but it is strictly contained in the range for which the equations make
sense.
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Interpolating II

Corollary

u ∈W 1,p, p < n. Positive solutions of the transport and continuity
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u ∈W 1,p, p < n. Positive solutions of the transport and continuity
equations are well posed in a range of exponent

which strictly contains the DiPerna-Lions range

but it is strictly contained in the range for which the equations make
sense.

This could be just a technical limitation... but what happens otherwise?
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Ambrosio’s superposition principle III

Ambrosio’s superposition principle holds in the full range of
summability where the equations make sense.

From it we infer:

A.e. uniqueness of trajectories
=⇒ Uniqueness for positive solutions of the continuity equation.

If we produce an example of nonuniqueness of positive solutions of the
continuity equations in some range of exponents we have disproved
the a.e. uniqueness of trajectories.
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Convex integration generates monsters I

Theorem (Brué-Colombo-De Lellis 2020)
For any p < n there are:

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 36 / 40



Convex integration generates monsters I

Theorem (Brué-Colombo-De Lellis 2020)
For any p < n there are:
q,q′ ∈ (1,∞) with 1

q + 1
q′ = 1;

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 36 / 40



Convex integration generates monsters I

Theorem (Brué-Colombo-De Lellis 2020)
For any p < n there are:
q,q′ ∈ (1,∞) with 1

q + 1
q′ = 1;

u ∈W 1,p ∩ Lq′ divergence free

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 36 / 40



Convex integration generates monsters I

Theorem (Brué-Colombo-De Lellis 2020)
For any p < n there are:
q,q′ ∈ (1,∞) with 1

q + 1
q′ = 1;

u ∈W 1,p ∩ Lq′ divergence free
ρ ∈ Lq positive

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 36 / 40



Convex integration generates monsters I

Theorem (Brué-Colombo-De Lellis 2020)
For any p < n there are:
q,q′ ∈ (1,∞) with 1

q + 1
q′ = 1;

u ∈W 1,p ∩ Lq′ divergence free
ρ ∈ Lq positive SUCH THAT

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 36 / 40



Convex integration generates monsters I

Theorem (Brué-Colombo-De Lellis 2020)
For any p < n there are:
q,q′ ∈ (1,∞) with 1

q + 1
q′ = 1;

u ∈W 1,p ∩ Lq′ divergence free
ρ ∈ Lq positive SUCH THAT{

∂tρ+ div (uρ) = 0
ρ(0, ·) = 1

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 36 / 40



Convex integration generates monsters I

Theorem (Brué-Colombo-De Lellis 2020)
For any p < n there are:
q,q′ ∈ (1,∞) with 1

q + 1
q′ = 1;

u ∈W 1,p ∩ Lq′ divergence free
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q + 1
q′ = 1;

u ∈W 1,p ∩ Lq′ divergence free
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Theorem (Brué-Colombo-De Lellis 2020)
For any p < n there are:
q,q′ ∈ (1,∞) with 1

q + 1
q′ = 1;

u ∈W 1,p ∩ Lq′ divergence free
ρ ∈ Lq positive SUCH THAT{

∂tρ+ div (uρ) = 0
ρ(0, ·) = 1

(†)

{ρ 6= 1} has positive measure. (?)

Remark
Since div u = 0, the function ρ̄ ≡ 1 solves (†)
By (?) ρ is a second distinct solution!

Camillo De Lellis (IAS) Flows of vector fields IAS, April 13th 2020 36 / 40



Convex integration generates monsters II

The presentation in the last two slides is a tad dishonest.

because we did not discover that uniqueness cannot hold in the full
range of possible exponents:

[Modena-Székelyhidi 2018] proved the previous theorem for p < n − 1
and sign-changing solutions
[Modena-Sattig 2019] proved the previous theorem for p < n and
sign-changing solutions

Getting to positive solutions is highly nontrivial for n − 1 ≤ p < n.
Feature: our argument is considerably simpler than [Modena-Sattig]
(especially when n ≥ 3; some tricky combinatorics is needed when
n = 2.)
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A brief history of some monsters I

[De Lellis - Székelyhidi 2007] + [De Lellis - Székelyhidi 2012] invented
“convex integration type methods” to generate irregular solutions of the
incompressible Euler equations.

Inspired by the literature on differential inclusions (Bressan, Cellina,
Dacorogna-Marcellini, Kirchheim, Müller-Šverak), by Nash’s C1

isometric embedding theory and by Gromov’s h-principle.

These ideas were greatly improved in several aspects in the last 13
years (De Lellis -Székelyhidi, Cordoba-Faraco-Gancedo, Shvidkoy,
Isett, Buckmaster, Vicol, Shkoller, Daneri, Colombo, De Rosa, . . . )
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A brief history of some monsters II

The two most striking achievements:

[Isett 2016] Proof of the Onsager conjecture in fully developed
turbulence.

[Buckmaster-Vicol 2017] Ill-posedness of Oseen solutions of the
Navier-Stokes equations.

The papers [Modena-Székelyhidi], [Modena-Sattig] and
[Brué-Colombo-De Lellis] build especially upon [Buckmaster-Vicol
2017].
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Thank you

for your attention!
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