Liouville Equations and Functional Determinants

Andrea Malchiodi (SNS, Pisa)

IAS, March 5th, 2019

The determinant of the Laplacian

The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and LaplaceBeltrami operator Δ_{g}.

The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and LaplaceBeltrami operator Δ_{g}. The eigenvalues $\left\{\lambda_{j}\right\}$, with eigenfunctions $\left\{\varphi_{j}\right\}_{j}$

$$
-\Delta_{g} \varphi_{j}=\lambda_{j} \varphi_{j} \quad \text { on } M
$$

The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and LaplaceBeltrami operator Δ_{g}. The eigenvalues $\left\{\lambda_{j}\right\}$, with eigenfunctions $\left\{\varphi_{j}\right\}_{j}$

$$
-\Delta_{g} \varphi_{j}=\lambda_{j} \varphi_{j} \quad \text { on } M
$$

satisfy

$$
\lambda_{j} \rightarrow+\infty \quad \text { as } \quad j \rightarrow+\infty
$$

The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and LaplaceBeltrami operator Δ_{g}. The eigenvalues $\left\{\lambda_{j}\right\}$, with eigenfunctions $\left\{\varphi_{j}\right\}_{j}$

$$
-\Delta_{g} \varphi_{j}=\lambda_{j} \varphi_{j} \quad \text { on } M
$$

satisfy

$$
\lambda_{j} \rightarrow+\infty \quad \text { as } \quad j \rightarrow+\infty
$$

Formally, the determinant of $-\Delta_{g}$ is defined as

$$
\operatorname{det}\left(-\Delta_{g}\right)=\prod_{j} \lambda_{j}
$$

The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and LaplaceBeltrami operator Δ_{g}. The eigenvalues $\left\{\lambda_{j}\right\}$, with eigenfunctions $\left\{\varphi_{j}\right\}_{j}$

$$
-\Delta_{g} \varphi_{j}=\lambda_{j} \varphi_{j} \quad \text { on } M
$$

satisfy

$$
\lambda_{j} \rightarrow+\infty \quad \text { as } \quad j \rightarrow+\infty
$$

Formally, the determinant of $-\Delta_{g}$ is defined as

$$
\operatorname{det}\left(-\Delta_{g}\right)=\prod_{j} \lambda_{j}
$$

- While physicists may like these formulas, mathematicians usually have problems with infinite products of diverging numbers.

Regularized determinant

Regularized determinant

The spectral zeta function of $\left(M^{n}, g\right)$ is
(1)

$$
\zeta(s)=\sum_{j=1}^{\infty} \lambda_{j}^{-s}
$$

Regularized determinant

The spectral zeta function of $\left(M^{n}, g\right)$ is
(1)

$$
\zeta(s)=\sum_{j=1}^{\infty} \lambda_{j}^{-s}
$$

By Weyl's asymptotic law,

$$
\lambda_{j} \sim j^{2 / n}, \quad j \rightarrow \infty
$$

Regularized determinant

The spectral zeta function of $\left(M^{n}, g\right)$ is
(1)

$$
\zeta(s)=\sum_{j=1}^{\infty} \lambda_{j}^{-s}
$$

By Weyl's asymptotic law,

$$
\lambda_{j} \sim j^{2 / n}, \quad j \rightarrow \infty
$$

Consequently, (1) defines an analytic function provided $\operatorname{Re}(s)>n / 2$.

Regularized determinant

The spectral zeta function of $\left(M^{n}, g\right)$ is

$$
\begin{equation*}
\zeta(s)=\sum_{j=1}^{\infty} \lambda_{j}^{-s} \tag{1}
\end{equation*}
$$

By Weyl's asymptotic law,

$$
\lambda_{j} \sim j^{2 / n}, \quad j \rightarrow \infty
$$

Consequently, (1) defines an analytic function provided $\operatorname{Re}(s)>n / 2$. Differentiating in s one finds

$$
\zeta^{\prime}(s)=\frac{d}{d s} \sum_{j=1}^{\infty} e^{-s \log \lambda_{j}}=-\sum_{j=1}^{\infty} \log \lambda_{j} e^{-s \log \lambda_{j}}
$$

Regularized determinant

The spectral zeta function of $\left(M^{n}, g\right)$ is

$$
\begin{equation*}
\zeta(s)=\sum_{j=1}^{\infty} \lambda_{j}^{-s} \tag{1}
\end{equation*}
$$

By Weyl's asymptotic law,

$$
\lambda_{j} \sim j^{2 / n}, \quad j \rightarrow \infty
$$

Consequently, (1) defines an analytic function provided $\operatorname{Re}(s)>n / 2$. Differentiating in s one finds

$$
\zeta^{\prime}(s)=\frac{d}{d s} \sum_{j=1}^{\infty} e^{-s \log \lambda_{j}}=-\sum_{j=1}^{\infty} \log \lambda_{j} e^{-s \log \lambda_{j}}
$$

If ζ is regular near $s=0$ one can define the regularized determinant $\operatorname{det}^{\prime}\left(-\Delta_{g}\right)$ via the following formula

$$
\operatorname{det}^{\prime}\left(-\Delta_{g}\right)=e^{-\zeta^{\prime}(0)}
$$

Regularity of ζ at $s=0$ (in 2D)

Regularity of ζ at $s=0$ (in 2D)

Let (Σ, g) be a surface.

Regularity of ζ at $s=0$ (in 2D)

Let (Σ, g) be a surface. One can write

$$
\zeta(s)=\sum_{j=1}^{\infty} \lambda_{j}^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\sum_{j=1}^{\infty} e^{-\lambda_{j} t}\right) t^{s} \frac{d t}{t}
$$

Regularity of ζ at $s=0$ (in 2D)

Let (Σ, g) be a surface. One can write

$$
\begin{aligned}
\zeta(s) & =\sum_{j=1}^{\infty} \lambda_{j}^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\sum_{j=1}^{\infty} e^{-\lambda_{j} t}\right) t^{s} \frac{d t}{t} \\
& =\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\operatorname{Tr}\left(e^{\Delta t}-1\right)\right) t^{s} \frac{d t}{t}
\end{aligned}
$$

Regularity of ζ at $s=0$ (in 2D)

Let (Σ, g) be a surface. One can write

$$
\begin{aligned}
\zeta(s) & =\sum_{j=1}^{\infty} \lambda_{j}^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\sum_{j=1}^{\infty} e^{-\lambda_{j} t}\right) t^{s} \frac{d t}{t} \\
& =\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\operatorname{Tr}\left(e^{\Delta t}-1\right)\right) t^{s} \frac{d t}{t}
\end{aligned}
$$

It is known that (Taylor expand the heat kernel)

$$
\sum_{j=1}^{\infty} e^{-\lambda_{j} t} \varphi_{j}^{2}(x)=H_{t}(x, x)
$$

Regularity of ζ at $s=0$ (in 2D)

Let (Σ, g) be a surface. One can write

$$
\begin{aligned}
\zeta(s) & =\sum_{j=1}^{\infty} \lambda_{j}^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\sum_{j=1}^{\infty} e^{-\lambda_{j} t}\right) t^{s} \frac{d t}{t} \\
& =\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\operatorname{Tr}\left(e^{\Delta t}-1\right)\right) t^{s} \frac{d t}{t}
\end{aligned}
$$

It is known that (Taylor expand the heat kernel)

$$
\sum_{j=1}^{\infty} e^{-\lambda_{j} t} \varphi_{j}^{2}(x)=H_{t}(x, x)=\frac{1}{4 \pi t}+\frac{K(x)}{12 \pi}+O(t)
$$

where K is the Gaussian curvature.

Regularity of ζ at $s=0$ (in 2D)

Let (Σ, g) be a surface. One can write

$$
\begin{aligned}
\zeta(s) & =\sum_{j=1}^{\infty} \lambda_{j}^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\sum_{j=1}^{\infty} e^{-\lambda_{j} t}\right) t^{s} \frac{d t}{t} \\
& =\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\operatorname{Tr}\left(e^{\Delta t}-1\right)\right) t^{s} \frac{d t}{t}
\end{aligned}
$$

It is known that (Taylor expand the heat kernel)

$$
\sum_{j=1}^{\infty} e^{-\lambda_{j} t} \varphi_{j}^{2}(x)=H_{t}(x, x)=\frac{1}{4 \pi t}+\frac{K(x)}{12 \pi}+O(t)
$$

where K is the Gaussian curvature. Therefore one finds

$$
\zeta(s)=\frac{1}{\Gamma(s)}\left\{\frac{A(\Sigma)}{4 \pi(s-1)}+\left(\frac{\chi(\Sigma)}{6}-1\right)+\text { holom. in } s\right\}
$$

which is regular near zero.

Regularity of ζ at $s=0$ (in 2D)

Let (Σ, g) be a surface. One can write

$$
\begin{aligned}
\zeta(s) & =\sum_{j=1}^{\infty} \lambda_{j}^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\sum_{j=1}^{\infty} e^{-\lambda_{j} t}\right) t^{s} \frac{d t}{t} \\
& =\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\operatorname{Tr}\left(e^{\Delta t}-1\right)\right) t^{s} \frac{d t}{t}
\end{aligned}
$$

It is known that (Taylor expand the heat kernel)

$$
\sum_{j=1}^{\infty} e^{-\lambda_{j} t} \varphi_{j}^{2}(x)=H_{t}(x, x)=\frac{1}{4 \pi t}+\frac{K(x)}{12 \pi}+O(t)
$$

where K is the Gaussian curvature. Therefore one finds

$$
\zeta(s)=\frac{1}{\Gamma(s)}\left\{\frac{A(\Sigma)}{4 \pi(s-1)}+\left(\frac{\chi(\Sigma)}{6}-1\right)+\text { holom. in } s\right\}
$$

which is regular near zero. $\Rightarrow \operatorname{det}^{\prime}\left(-\Delta_{g}\right)$ is well defined.

Polyakov's formula for conformal metrics

Polyakov's formula for conformal metrics

In 2D the Laplacian is conformally covariant.

Polyakov's formula for conformal metrics

In 2D the Laplacian is conformally covariant. If $\tilde{g}(x):=e^{2 w(x)} g(x)$ is a metric conformal to the original one g, then

$$
\Delta_{\tilde{g}}=e^{-2 w(x)} \Delta_{g} ; \quad-\Delta_{g} w+K_{g}=K_{\tilde{g}} e^{2 w}
$$

Polyakov's formula for conformal metrics

In 2D the Laplacian is conformally covariant. If $\tilde{g}(x):=e^{2 w(x)} g(x)$ is a metric conformal to the original one g, then

$$
\Delta_{\tilde{g}}=e^{-2 w(x)} \Delta_{g} ; \quad-\Delta_{g} w+K_{g}=K_{\tilde{g}} e^{2 w}
$$

These properties allowed Polyakov in ' 81 to compute the variation of the determinant for conformal metrics with the same volume

Polyakov's formula for conformal metrics

In 2D the Laplacian is conformally covariant. If $\tilde{g}(x):=e^{2 w(x)} g(x)$ is a metric conformal to the original one g, then

$$
\Delta_{\tilde{g}}=e^{-2 w(x)} \Delta_{g} ; \quad-\Delta_{g} w+K_{g}=K_{\tilde{g}} e^{2 w}
$$

These properties allowed Polyakov in ' 81 to compute the variation of the determinant for conformal metrics with the same volume

$$
\log \operatorname{det}^{\prime}\left(-\Delta_{\tilde{g}}\right)-\log \operatorname{det}^{\prime}\left(-\Delta_{g}\right)=-\frac{1}{12 \pi} \int_{\Sigma}\left(|\nabla w|^{2}+2 K w\right) d v
$$

Polyakov's formula for conformal metrics

In 2D the Laplacian is conformally covariant. If $\tilde{g}(x):=e^{2 w(x)} g(x)$ is a metric conformal to the original one g, then

$$
\Delta_{\tilde{g}}=e^{-2 w(x)} \Delta_{g} ; \quad-\Delta_{g} w+K_{g}=K_{\tilde{g}} e^{2 w} .
$$

These properties allowed Polyakov in ' 81 to compute the variation of the determinant for conformal metrics with the same volume

$$
\log \operatorname{det}^{\prime}\left(-\Delta_{\tilde{g}}\right)-\log \operatorname{det}^{\prime}\left(-\Delta_{g}\right)=-\frac{1}{12 \pi} \int_{\Sigma}\left(|\nabla w|^{2}+2 K w\right) d v
$$

This formula appears in a partition function in string theory, and is related to the Moser-Trudinger-Onofri inequality.

Polyakov's formula for conformal metrics

In 2D the Laplacian is conformally covariant. If $\tilde{g}(x):=e^{2 w(x)} g(x)$ is a metric conformal to the original one g, then

$$
\Delta_{\tilde{g}}=e^{-2 w(x)} \Delta_{g} ; \quad-\Delta_{g} w+K_{g}=K_{\tilde{g}} e^{2 w}
$$

These properties allowed Polyakov in ' 81 to compute the variation of the determinant for conformal metrics with the same volume

$$
\log \operatorname{det}^{\prime}\left(-\Delta_{\tilde{g}}\right)-\log \operatorname{det}^{\prime}\left(-\Delta_{g}\right)=-\frac{1}{12 \pi} \int_{\Sigma}\left(|\nabla w|^{2}+2 K w\right) d v
$$

This formula appears in a partition function in string theory, and is related to the Moser-Trudinger-Onofri inequality. On the sphere it is known to be maximised only on conformal factors of Möbius maps.

Polyakov's formula for conformal metrics

In 2D the Laplacian is conformally covariant. If $\tilde{g}(x):=e^{2 w(x)} g(x)$ is a metric conformal to the original one g, then

$$
\Delta_{\tilde{g}}=e^{-2 w(x)} \Delta_{g} ; \quad-\Delta_{g} w+K_{g}=K_{\tilde{g}} e^{2 w} .
$$

These properties allowed Polyakov in ' 81 to compute the variation of the determinant for conformal metrics with the same volume

$$
\log \operatorname{det}^{\prime}\left(-\Delta_{\tilde{g}}\right)-\log \operatorname{det}^{\prime}\left(-\Delta_{g}\right)=-\frac{1}{12 \pi} \int_{\Sigma}\left(|\nabla w|^{2}+2 K w\right) d v .
$$

This formula appears in a partition function in string theory, and is related to the Moser-Trudinger-Onofri inequality. On the sphere it is known to be maximised only on conformal factors of Möbius maps.
Existence of extremals is easy for positive genus.

Polyakov's formula for conformal metrics

In 2D the Laplacian is conformally covariant. If $\tilde{g}(x):=e^{2 w(x)} g(x)$ is a metric conformal to the original one g, then

$$
\Delta_{\tilde{g}}=e^{-2 w(x)} \Delta_{g} ; \quad-\Delta_{g} w+K_{g}=K_{\tilde{g}} e^{2 w} .
$$

These properties allowed Polyakov in ' 81 to compute the variation of the determinant for conformal metrics with the same volume

$$
\log \operatorname{det}^{\prime}\left(-\Delta_{\tilde{g}}\right)-\log \operatorname{det}^{\prime}\left(-\Delta_{g}\right)=-\frac{1}{12 \pi} \int_{\Sigma}\left(|\nabla w|^{2}+2 K w\right) d v .
$$

This formula appears in a partition function in string theory, and is related to the Moser-Trudinger-Onofri inequality. On the sphere it is known to be maximised only on conformal factors of Möbius maps.
Existence of extremals is easy for positive genus. On spheres it can be achieved via a balancing condition and Möbius invariance, ([Aubin, '76], [Osgood-Phillips-Sarnak, '88], [Gui-Moradifam, '18]).

Isospectral metrics ([Osgood-Phillips-Sarnak, '88])

Isospectral metrics ([Osgood-Phillips-Sarnak, '88])

Isospectral metrics on a closed surface are compact in any C^{k} sense.

Isospectral metrics ([Osgood-Phillips-Sarnak, '88])

Isospectral metrics on a closed surface are compact in any C^{k} sense.
Case of the sphere. On S^{2} all metrics are conformally equivalent (up to diffeomorphisms).

Isospectral metrics ([Osgood-Phillips-Sarnak, '88])

Isospectral metrics on a closed surface are compact in any C^{k} sense.
Case of the sphere. On S^{2} all metrics are conformally equivalent (up to diffeomorphisms). Since the determinant is bounded, one gets a uniform bound on the $W^{1,2}$ norm of the conformal factor.

Isospectral metrics ([Osgood-Phillips-Sarnak, '88])

Isospectral metrics on a closed surface are compact in any C^{k} sense.
Case of the sphere. On S^{2} all metrics are conformally equivalent (up to diffeomorphisms). Since the determinant is bounded, one gets a uniform bound on the $W^{1,2}$ norm of the conformal factor.

Expanding the heat kernel (via parametrix) one can prove that

$$
\sum_{j=1}^{\infty} e^{-\lambda_{j} t}=: \operatorname{Tr}\left(e^{\Delta t}\right)=\frac{1}{t} \sum_{j=0}^{l} t^{j} \int_{\Sigma} \Omega_{j}(x) d V+o\left(t^{l}\right)
$$

where Ω_{j} is a universal polynomial in K_{g} and Δ_{g} of degree $2 j$.

Isospectral metrics ([Osgood-Phillips-Sarnak, '88])

Isospectral metrics on a closed surface are compact in any C^{k} sense.
Case of the sphere. On S^{2} all metrics are conformally equivalent (up to diffeomorphisms). Since the determinant is bounded, one gets a uniform bound on the $W^{1,2}$ norm of the conformal factor.

Expanding the heat kernel (via parametrix) one can prove that

$$
\sum_{j=1}^{\infty} e^{-\lambda_{j} t}=: \operatorname{Tr}\left(e^{\Delta t}\right)=\frac{1}{t} \sum_{j=0}^{l} t^{j} \int_{\Sigma} \Omega_{j}(x) d V+o\left(t^{l}\right)
$$

where Ω_{j} is a universal polynomial in K_{g} and Δ_{g} of degree $2 j$.
It was proved in [McKean-Singer, '67], [Gilkey, '79] that

$$
\Omega_{j} \simeq \int_{\Sigma} K_{g} \Delta^{j-2} K_{g} d v \simeq\|u\|_{W^{j, 2}(\Sigma)}
$$

Isospectral metrics ([Osgood-Phillips-Sarnak, '88])

Isospectral metrics on a closed surface are compact in any C^{k} sense.
Case of the sphere. On S^{2} all metrics are conformally equivalent (up to diffeomorphisms). Since the determinant is bounded, one gets a uniform bound on the $W^{1,2}$ norm of the conformal factor.

Expanding the heat kernel (via parametrix) one can prove that

$$
\sum_{j=1}^{\infty} e^{-\lambda_{j} t}=: \operatorname{Tr}\left(e^{\Delta t}\right)=\frac{1}{t} \sum_{j=0}^{l} t^{j} \int_{\Sigma} \Omega_{j}(x) d V+o\left(t^{l}\right)
$$

where Ω_{j} is a universal polynomial in K_{g} and Δ_{g} of degree $2 j$.
It was proved in [McKean-Singer, '67], [Gilkey, '79] that

$$
\Omega_{j} \simeq \int_{\Sigma} K_{g} \Delta^{j-2} K_{g} d v \simeq\|u\|_{W^{j, 2}(\Sigma)}
$$

therefore one gets bounds even in higher Sobolev norms.

Isospectral metrics: positive genus

Isospectral metrics: positive genus

Even if, after a conformal change $g \mapsto \hat{g}$, the Gaussian curvature is identically -1 , one could diverge in Teichmüller's space forming necks

Isospectral metrics: positive genus

Even if, after a conformal change $g \mapsto \hat{g}$, the Gaussian curvature is identically -1 , one could diverge in Teichmüller's space forming necks

It was however shown in [Wolpert, '87] that

$$
\operatorname{det}^{\prime}(\hat{g}) \leq \frac{1}{l} e^{-\frac{c_{1}}{l}} ; \quad c_{1}=c_{1}(\chi(\Sigma))
$$

where l is the length of the shortest geodesic, so $l \nrightarrow 0$.

Isospectral metrics: positive genus

Even if, after a conformal change $g \mapsto \hat{g}$, the Gaussian curvature is identically -1 , one could diverge in Teichmüller's space forming necks

It was however shown in [Wolpert, '87] that

$$
\operatorname{det}^{\prime}(\hat{g}) \leq \frac{1}{l} e^{-\frac{c_{1}}{l}} ; \quad c_{1}=c_{1}(\chi(\Sigma))
$$

where l is the length of the shortest geodesic, so $l \nrightarrow 0$.
Finally, a theorem in [Mumford, '71] shows that if l is bounded below and if $K_{\hat{g}}=$ const., then there is smooth convergence of the metrics.

Isospectral metrics: positive genus

Even if, after a conformal change $g \mapsto \hat{g}$, the Gaussian curvature is identically -1 , one could diverge in Teichmüller's space forming necks

It was however shown in [Wolpert, '87] that

$$
\operatorname{det}^{\prime}(\hat{g}) \leq \frac{1}{l} e^{-\frac{c_{1}}{l}} ; \quad c_{1}=c_{1}(\chi(\Sigma))
$$

where l is the length of the shortest geodesic, so $l \nrightarrow 0$.
Finally, a theorem in [Mumford, '71] shows that if l is bounded below and if $K_{\hat{g}}=$ const., then there is smooth convergence of the metrics.

In higher dimensions very little is known.

Isospectral metrics: positive genus

Even if, after a conformal change $g \mapsto \hat{g}$, the Gaussian curvature is identically -1 , one could diverge in Teichmüller's space forming necks

It was however shown in [Wolpert, '87] that

$$
\operatorname{det}^{\prime}(\hat{g}) \leq \frac{1}{l} e^{-\frac{c_{1}}{l}} ; \quad c_{1}=c_{1}(\chi(\Sigma))
$$

where l is the length of the shortest geodesic, so $l \nrightarrow 0$.
Finally, a theorem in [Mumford, '71] shows that if l is bounded below and if $K_{\hat{g}}=$ const., then there is smooth convergence of the metrics.

In higher dimensions very little is known. There are results in special cases like within a conformal class in 3D [Chang-Yang, '90] or under bounded curvature assumptions [G.Zhou, '97].

Conformally covariant operators

Conformally covariant operators

Definition. A linear operator $A=A_{g}$ is conformally covariant of bidegree (a, b) if $\tilde{g}=e^{2 w} g$ implies

$$
A_{\tilde{g}} \psi=e^{-b w} A_{g}\left(e^{a w} \psi\right) \quad \text { for each smooth } \psi
$$

Conformally covariant operators

Definition. A linear operator $A=A_{g}$ is conformally covariant of bidegree (a, b) if $\tilde{g}=e^{2 w} g$ implies

$$
A_{\tilde{g}} \psi=e^{-b w} A_{g}\left(e^{a w} \psi\right) \quad \text { for each smooth } \psi
$$

Examples

Conformally covariant operators

Definition. A linear operator $A=A_{g}$ is conformally covariant of bidegree (a, b) if $\tilde{g}=e^{2 w} g$ implies

$$
A_{\tilde{g}} \psi=e^{-b w} A_{g}\left(e^{a w} \psi\right) \quad \text { for each smooth } \psi
$$

Examples 0. The Laplacian Δ_{g} for $n=2:(a, b)=(0,2)$.

Conformally covariant operators

Definition. A linear operator $A=A_{g}$ is conformally covariant of bidegree (a, b) if $\tilde{g}=e^{2 w} g$ implies

$$
A_{\tilde{g}} \psi=e^{-b w} A_{g}\left(e^{a w} \psi\right) \quad \text { for each smooth } \psi
$$

Examples 0. The Laplacian Δ_{g} for $n=2:(a, b)=(0,2)$.

1. The conformal Laplacian for $n \geq 3$

$$
L_{g}=-\frac{4(n-1)}{(n-2)} \Delta_{g}+R_{g} \quad(a, b)=\left(\frac{n-2}{2}, \frac{n+2}{2}\right) .
$$

Conformally covariant operators

Definition. A linear operator $A=A_{g}$ is conformally covariant of bidegree (a, b) if $\tilde{g}=e^{2 w} g$ implies

$$
A_{\tilde{g}} \psi=e^{-b w} A_{g}\left(e^{a w} \psi\right) \quad \text { for each smooth } \psi
$$

Examples 0. The Laplacian Δ_{g} for $n=2:(a, b)=(0,2)$.

1. The conformal Laplacian for $n \geq 3$

$$
L_{g}=-\frac{4(n-1)}{(n-2)} \Delta_{g}+R_{g} \quad(a, b)=\left(\frac{n-2}{2}, \frac{n+2}{2}\right) .
$$

2. The Paneitz operator P_{g} for $n=4$

$$
P_{g} \varphi=\left(-\Delta_{g}\right)^{2} \varphi+\operatorname{div}\left[\left(\frac{2}{3} R g-2 R i c\right) \circ \nabla \varphi\right], \quad(a, b)=(0,4)
$$

Conformally covariant operators

Definition. A linear operator $A=A_{g}$ is conformally covariant of bidegree (a, b) if $\tilde{g}=e^{2 w} g$ implies

$$
A_{\tilde{g}} \psi=e^{-b w} A_{g}\left(e^{a w} \psi\right) \quad \text { for each smooth } \psi
$$

Examples 0. The Laplacian Δ_{g} for $n=2:(a, b)=(0,2)$.

1. The conformal Laplacian for $n \geq 3$

$$
L_{g}=-\frac{4(n-1)}{(n-2)} \Delta_{g}+R_{g} \quad(a, b)=\left(\frac{n-2}{2}, \frac{n+2}{2}\right) .
$$

2. The Paneitz operator P_{g} for $n=4$

$$
P_{g} \varphi=\left(-\Delta_{g}\right)^{2} \varphi+\operatorname{div}\left[\left(\frac{2}{3} R g-2 R i c\right) \circ \nabla \varphi\right], \quad(a, b)=(0,4)
$$

3. The Dirac operator \mathcal{D} for $n \geq 2:(a, b)=\left(\frac{n-1}{2}, \frac{n+1}{2}\right)$.

Determinants of conf. covariant operators in 4D

Determinants of conf. covariant operators in 4D

Theorem ([Branson- \emptyset rsted, '91])

Determinants of conf. covariant operators in 4D

Theorem ([Branson-Ørsted, '91])
Let A be conformally covariant on $\left(M^{4}, g\right)$.

Determinants of conf. covariant operators in 4D

Theorem ([Branson-Ørsted, '91])
Let A be conformally covariant on $\left(M^{4}, g\right)$.Then $\exists \gamma_{1}(A), \gamma_{2}(A), \gamma_{3}(A)$ such that for $\tilde{g}=e^{2 w} g$

Determinants of conf. covariant operators in 4D

Theorem ([Branson-Ørsted, '91])
Let A be conformally covariant on $\left(M^{4}, g\right)$.Then $\exists \gamma_{1}(A), \gamma_{2}(A), \gamma_{3}(A)$ such that for $\tilde{g}=e^{2 w} g$

$$
F_{A}[w]:=\log \frac{\operatorname{det} A_{\tilde{g}}}{\operatorname{det} A_{g}}=\gamma_{1}(A) I[w]+\gamma_{2}(A) I I[w]+\gamma_{3}(A) I I I[w]
$$

Determinants of conf. covariant operators in 4D

Theorem ([Branson-Ørsted, '91])
Let A be conformally covariant on $\left(M^{4}, g\right)$.Then $\exists \gamma_{1}(A), \gamma_{2}(A), \gamma_{3}(A)$ such that for $\tilde{g}=e^{2 w} g$

$$
F_{A}[w]:=\log \frac{\operatorname{det} A_{\tilde{g}}}{\operatorname{det} A_{g}}=\gamma_{1}(A) I[w]+\gamma_{2}(A) I I[w]+\gamma_{3}(A) I I I[w],
$$

where

$$
\begin{aligned}
& I[w]=4 \int_{M} w\left|W_{g}\right|^{2} d v-\left(\int_{M}\left|W_{g}\right|^{2} d v\right) \log f_{M} e^{4 w} d v, \\
& I I[w]=\int_{M} w P_{g} w d v-\left(\int_{M} Q_{g} d v\right) \log f_{M} e^{4(w-\bar{w})} d v,
\end{aligned}
$$

$$
I I I[w]=12 \int_{M}\left(\Delta_{g} w+|\nabla w|^{2}\right)^{2} d v-4 \int_{M}\left(w \Delta_{g} R_{g}+R_{g}|\nabla w|^{2}\right) d v .
$$

Determinants of conf. covariant operators in 4D

Theorem ([Branson-Ørsted, '91])
Let A be conformally covariant on $\left(M^{4}, g\right)$.Then $\exists \gamma_{1}(A), \gamma_{2}(A), \gamma_{3}(A)$ such that for $\tilde{g}=e^{2 w} g$

$$
F_{A}[w]:=\log \frac{\operatorname{det} A_{\tilde{g}}}{\operatorname{det} A_{g}}=\gamma_{1}(A) I[w]+\gamma_{2}(A) I I[w]+\gamma_{3}(A) I I I[w],
$$

where

$$
\begin{aligned}
& I[w]=4 \int_{M} w\left|W_{g}\right|^{2} d v-\left(\int_{M}\left|W_{g}\right|^{2} d v\right) \log f_{M} e^{4 w} d v, \\
& I\left[[w]=\int_{M} w P_{g} w d v-\left(\int_{M} Q_{g} d v\right) \log f_{M} e^{4(w-\bar{w})} d v,\right.
\end{aligned}
$$

$$
I I I[w]=12 \int_{M}\left(\Delta_{g} w+|\nabla w|^{2}\right)^{2} d v-4 \int_{M}\left(w \Delta_{g} R_{g}+R_{g}|\nabla w|^{2}\right) d v .
$$

Here W_{g} is Weyl's curvature, while Q_{g} is the Q-curvature

Determinants of conf. covariant operators in 4D

Theorem ([Branson-Ørsted, '91])
Let A be conformally covariant on $\left(M^{4}, g\right)$.Then $\exists \gamma_{1}(A), \gamma_{2}(A), \gamma_{3}(A)$ such that for $\tilde{g}=e^{2 w} g$

$$
F_{A}[w]:=\log \frac{\operatorname{det} A_{\tilde{g}}}{\operatorname{det} A_{g}}=\gamma_{1}(A) I[w]+\gamma_{2}(A) I I[w]+\gamma_{3}(A) I I I[w],
$$

where

$$
\begin{aligned}
& I[w]=4 \int_{M} w\left|W_{g}\right|^{2} d v-\left(\int_{M}\left|W_{g}\right|^{2} d v\right) \log f_{M} e^{4 w} d v, \\
& I I[w]=\int_{M} w P_{g} w d v-\left(\int_{M} Q_{g} d v\right) \log f_{M} e^{4(w-\bar{w})} d v,
\end{aligned}
$$

$$
I I I[w]=12 \int_{M}\left(\Delta_{g} w+|\nabla w|^{2}\right)^{2} d v-4 \int_{M}\left(w \Delta_{g} R_{g}+R_{g}|\nabla w|^{2}\right) d v .
$$

Here W_{g} is Weyl's curvature, while Q_{g} is the Q-curvature, a 4D conformal counterpart of the Gaussian curvature.

Comments

Comments

The three functionals $I, I I, I I I$ are quite natural since

Comments

The three functionals $I, I I, I I I$ are quite natural since

$$
\hat{g}=e^{2 w} g \text { is critical for } I \Longleftrightarrow\left|W_{\hat{g}}\right|^{2}=\text { const., }
$$

Comments

The three functionals $I, I I, I I I$ are quite natural since

$$
\begin{gathered}
\hat{g}=e^{2 w} g \text { is critical for } I \Longleftrightarrow\left|W_{\hat{g}}\right|^{2}=\text { const., } \\
\hat{g} \text { is critical for } I I \Longleftrightarrow Q_{\hat{g}}=\text { const. }
\end{gathered}
$$

Comments

The three functionals $I, I I, I I I$ are quite natural since

$$
\begin{gathered}
\hat{g}=e^{2 w} g \text { is critical for } I \Longleftrightarrow\left|W_{\hat{g}}\right|^{2}=\text { const., } \\
\hat{g} \text { is critical for } I I \Longleftrightarrow Q_{\hat{g}}=\text { const. }
\end{gathered}
$$

\hat{g} is critical for $I I I \Longleftrightarrow \Delta_{g} R_{\hat{g}}=$ const. (Yamabe problem).

Comments

The three functionals $I, I I, I I I$ are quite natural since

$$
\begin{gathered}
\hat{g}=e^{2 w} g \text { is critical for } I \Longleftrightarrow\left|W_{\hat{g}}\right|^{2}=\text { const., } \\
\hat{g} \text { is critical for } I I \Longleftrightarrow Q_{\hat{g}}=\text { const. }
\end{gathered}
$$

\hat{g} is critical for $I I I \Longleftrightarrow \Delta_{g} R_{\hat{g}}=$ const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formula

$$
\int_{M}\left(Q_{g}+\frac{1}{8}\left|W_{g}\right|^{2}\right) d v=4 \pi^{2} \chi(M)
$$

Comments

The three functionals $I, I I, I I I$ are quite natural since

$$
\begin{gathered}
\hat{g}=e^{2 w} g \text { is critical for } I \Longleftrightarrow\left|W_{\hat{g}}\right|^{2}=\text { const., } \\
\hat{g} \text { is critical for } I I \Longleftrightarrow Q_{\hat{g}}=\text { const. }
\end{gathered}
$$

\hat{g} is critical for $I I I \Longleftrightarrow \Delta_{g} R_{\hat{g}}=$ const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formula

$$
\int_{M}\left(Q_{g}+\frac{1}{8}\left|W_{g}\right|^{2}\right) d v=4 \pi^{2} \chi(M)
$$

Each term separately is not a topological invariant.

Comments

The three functionals $I, I I, I I I$ are quite natural since

$$
\begin{gathered}
\hat{g}=e^{2 w} g \text { is critical for } I \Longleftrightarrow\left|W_{\hat{g}}\right|^{2}=\text { const., } \\
\hat{g} \text { is critical for } I I \Longleftrightarrow Q_{\hat{g}}=\text { const. }
\end{gathered}
$$

\hat{g} is critical for $I I I \Longleftrightarrow \Delta_{g} R_{\hat{g}}=$ const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formula

$$
\int_{M}\left(Q_{g}+\frac{1}{8}\left|W_{g}\right|^{2}\right) d v=4 \pi^{2} \chi(M)
$$

Each term separately is not a topological invariant. However, both $\int_{M} Q_{g} d v$ and $\int_{M}\left|W_{g}\right|^{2} d v$ are conformally invariant.

Comments

The three functionals $I, I I, I I I$ are quite natural since

$$
\begin{gathered}
\hat{g}=e^{2 w} g \text { is critical for } I \Longleftrightarrow\left|W_{\hat{g}}\right|^{2}=\text { const., } \\
\hat{g} \text { is critical for } I I \Longleftrightarrow Q_{\hat{g}}=\text { const. }
\end{gathered}
$$

\hat{g} is critical for $I I I \Longleftrightarrow \Delta_{g} R_{\hat{g}}=$ const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formula

$$
\int_{M}\left(Q_{g}+\frac{1}{8}\left|W_{g}\right|^{2}\right) d v=4 \pi^{2} \chi(M)
$$

Each term separately is not a topological invariant. However, both $\int_{M} Q_{g} d v$ and $\int_{M}\left|W_{g}\right|^{2} d v$ are conformally invariant.

- Extremal metrics for linear combinations of the functionals $I, I I, I I I$ were useful in studying rigidity of K-E metrics in 4D ([Gursky , '98]).

Explicit constants

In the above examples

Explicit constants

In the above examples

- If $A_{g}=L_{g}$, the conformal Laplacian, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(1,-4,-\frac{2}{3}\right)
$$

Explicit constants

In the above examples

- If $A_{g}=L_{g}$, the conformal Laplacian, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(1,-4,-\frac{2}{3}\right)
$$

- If $A_{g}=P_{g}$, the Paneitz operator, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(-\frac{1}{4},-14, \frac{8}{3}\right)
$$

Explicit constants

In the above examples

- If $A_{g}=L_{g}$, the conformal Laplacian, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(1,-4,-\frac{2}{3}\right)
$$

- If $A_{g}=P_{g}$, the Paneitz operator, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(-\frac{1}{4},-14, \frac{8}{3}\right)
$$

- If $A_{g}=\mathcal{D}$, the Dirac operator, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(-7,-88,-\frac{14}{3}\right)
$$

Explicit constants

In the above examples

- If $A_{g}=L_{g}$, the conformal Laplacian, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(1,-4,-\frac{2}{3}\right)
$$

- If $A_{g}=P_{g}$, the Paneitz operator, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(-\frac{1}{4},-14, \frac{8}{3}\right)
$$

- If $A_{g}=\mathcal{D}$, the Dirac operator, then

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(-7,-88,-\frac{14}{3}\right)
$$

- Sometimes we will reverse signs to get coercivity/convexity.

Extremals of determinants in 4D

Extremals of determinants in 4D

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0$,

Extremals of determinants in 4D

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0, \quad$ (ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Extremals of determinants in 4D

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0$,
(ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Then $\inf _{w \in W^{2,2}} F_{A}[w]$ is attained.

Extremals of determinants in 4D

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0, \quad$ (ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Then $\inf _{w \in W^{2,2}} F_{A}[w]$ is attained.
Remarks - (ii) implies coercivity of F_{A}, via sharp Moser-Trudinger inequalities ([Adams, '88]): direct methods yield a maximizer for F_{A}.

Extremals of determinants in 4D

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0, \quad$ (ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Then $\inf _{w \in W^{2,2}} F_{A}[w]$ is attained.
Remarks - (ii) implies coercivity of F_{A}, via sharp Moser-Trudinger inequalities ([Adams, '88]): direct methods yield a maximizer for F_{A}.

- The assumptions are conformally invariant and are satisfied (roughly) in positive curvature ([Gursky, '99]).

Extremals of determinants in 4D

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0, \quad$ (ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Then $\inf _{w \in W^{2,2}} F_{A}[w]$ is attained.
Remarks - (ii) implies coercivity of F_{A}, via sharp Moser-Trudinger inequalities ([Adams, '88]): direct methods yield a maximizer for F_{A}.

- The assumptions are conformally invariant and are satisfied (roughly) in positive curvature ([Gursky, '99]). In negative curvature there are many examples of large Gauss-Bonnet integrals.

Extremals of determinants in 4D

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0, \quad$ (ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Then $\inf _{w \in W^{2,2}} F_{A}[w]$ is attained.
Remarks - (ii) implies coercivity of F_{A}, via sharp Moser-Trudinger inequalities ([Adams, '88]): direct methods yield a maximizer for F_{A}.

- The assumptions are conformally invariant and are satisfied (roughly) in positive curvature ([Gursky, '99]). In negative curvature there are many examples of large Gauss-Bonnet integrals.

Open: uniqueness

Extremals of determinants in 4D

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0, \quad$ (ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Then $\inf _{w \in W^{2,2}} F_{A}[w]$ is attained.
Remarks - (ii) implies coercivity of F_{A}, via sharp Moser-Trudinger inequalities ([Adams, '88]): direct methods yield a maximizer for F_{A}.

- The assumptions are conformally invariant and are satisfied (roughly) in positive curvature ([Gursky, '99]). In negative curvature there are many examples of large Gauss-Bonnet integrals.

Open: uniqueness ([Gursky-Streets, '18] for the σ_{2}-equation).

Extremals of determinants in $4 D$

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0, \quad$ (ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Then $\inf _{w \in W^{2,2}} F_{A}[w]$ is attained.
Remarks - (ii) implies coercivity of F_{A}, via sharp Moser-Trudinger inequalities ([Adams, '88]): direct methods yield a maximizer for F_{A}.

- The assumptions are conformally invariant and are satisfied (roughly) in positive curvature ([Gursky, '99]). In negative curvature there are many examples of large Gauss-Bonnet integrals.

Open: uniqueness ([Gursky-Streets, '18] for the σ_{2}-equation).

- We aim to discuss here the situations when either (ii) fails (e.g. in negative curvature), or when (i) fails (as for the Paneitz operator).

Extremals of determinants in $4 D$

Theorem ([Chang-Yang, '95]) For $n=4$ assume:
(i) $\gamma_{2}, \gamma_{3}>0, \quad$ (ii) $\gamma_{1} \int_{M}\left|W_{g}\right|^{2} d v+\gamma_{2} \int_{M} Q_{g} d v<8 \gamma_{2} \pi^{2}$.

Then $\inf _{w \in W^{2,2}} F_{A}[w]$ is attained.
Remarks - (ii) implies coercivity of F_{A}, via sharp Moser-Trudinger inequalities ([Adams, '88]): direct methods yield a maximizer for F_{A}.

- The assumptions are conformally invariant and are satisfied (roughly) in positive curvature ([Gursky, '99]). In negative curvature there are many examples of large Gauss-Bonnet integrals.

Open: uniqueness ([Gursky-Streets, '18] for the σ_{2}-equation).

- We aim to discuss here the situations when either (ii) fails (e.g. in negative curvature), or when (i) fails (as for the Paneitz operator). The latter case is indeed much harder.

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

(Conformal) extremals of $I I$, having constant Q-curvature, solve

$$
P_{g} u+2 Q_{g}=2 \bar{Q} e^{4 u} ; \quad \bar{Q} \in \mathbb{R} .
$$

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

(Conformal) extremals of $I I$, having constant Q-curvature, solve

$$
P_{g} u+2 Q_{g}=2 \bar{Q} e^{4 u} ; \quad \bar{Q} \in \mathbb{R} .
$$

The result in [Chang-Yang, '95] applies when $k_{Q}:=\int_{M} Q_{g}<8 \pi^{2}$.

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

(Conformal) extremals of $I I$, having constant Q-curvature, solve

$$
P_{g} u+2 Q_{g}=2 \bar{Q} e^{4 u} ; \quad \bar{Q} \in \mathbb{R} .
$$

The result in [Chang-Yang, '95] applies when $k_{Q}:=\int_{M} Q_{g}<8 \pi^{2}$. If instead $k_{Q}>8 \pi^{2}$, then $I I$ is unbounded on both sides: k_{Q} beats the Moser-Trudinger constant.

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

(Conformal) extremals of $I I$, having constant Q-curvature, solve

$$
P_{g} u+2 Q_{g}=2 \bar{Q} e^{4 u} ; \quad \bar{Q} \in \mathbb{R} .
$$

The result in [Chang-Yang, '95] applies when $k_{Q}:=\int_{M} Q_{g}<8 \pi^{2}$. If instead $k_{Q}>8 \pi^{2}$, then $I I$ is unbounded on both sides: k_{Q} beats the Moser-Trudinger constant.
Still, in [Djadli-M., '08] existence was found provided $k_{Q} \notin 8 \pi^{2} \mathbb{N}$.

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

(Conformal) extremals of $I I$, having constant Q-curvature, solve

$$
P_{g} u+2 Q_{g}=2 \bar{Q} e^{4 u} ; \quad \bar{Q} \in \mathbb{R} .
$$

The result in [Chang-Yang, '95] applies when $k_{Q}:=\int_{M} Q_{g}<8 \pi^{2}$. If instead $k_{Q}>8 \pi^{2}$, then $I I$ is unbounded on both sides: k_{Q} beats the Moser-Trudinger constant.
Still, in [Djadli-M., '08] existence was found provided $k_{Q} \notin 8 \pi^{2} \mathbb{N}$. The main tool are improved M-T inequalities, in the spirit of [Aubin', 76]: spreading of conformal volume leads to better functional inequalities.

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

(Conformal) extremals of $I I$, having constant Q-curvature, solve

$$
P_{g} u+2 Q_{g}=2 \bar{Q} e^{4 u} ; \quad \bar{Q} \in \mathbb{R} .
$$

The result in [Chang-Yang, '95] applies when $k_{Q}:=\int_{M} Q_{g}<8 \pi^{2}$. If instead $k_{Q}>8 \pi^{2}$, then $I I$ is unbounded on both sides: k_{Q} beats the Moser-Trudinger constant.
Still, in [Djadli-M., '08] existence was found provided $k_{Q} \notin 8 \pi^{2} \mathbb{N}$. The main tool are improved M-T inequalities, in the spirit of [Aubin', 76]: spreading of conformal volume leads to better functional inequalities.

If for example, if $k_{Q} \in\left(8 \pi^{2}, 16 \pi^{2}\right)$ and if $I I$ is large negative, then the conformal volume must concentrate near a single point of M.

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

(Conformal) extremals of $I I$, having constant Q-curvature, solve

$$
P_{g} u+2 Q_{g}=2 \bar{Q} e^{4 u} ; \quad \bar{Q} \in \mathbb{R} .
$$

The result in [Chang-Yang, '95] applies when $k_{Q}:=\int_{M} Q_{g}<8 \pi^{2}$. If instead $k_{Q}>8 \pi^{2}$, then $I I$ is unbounded on both sides: k_{Q} beats the Moser-Trudinger constant.

Still, in [Djadli-M., '08] existence was found provided $k_{Q} \notin 8 \pi^{2} \mathbb{N}$. The main tool are improved M-T inequalities, in the spirit of [Aubin', 76]: spreading of conformal volume leads to better functional inequalities.

If for example, if $k_{Q} \in\left(8 \pi^{2}, 16 \pi^{2}\right)$ and if $I I$ is large negative, then the conformal volume must concentrate near a single point of M. One can then exploit the topology of M to find extremals of min-max type.

On the functional $I I \quad$ (special case: $\left.\left(\gamma_{1}, \gamma_{3}\right)=(0,0)\right)$

(Conformal) extremals of $I I$, having constant Q-curvature, solve

$$
P_{g} u+2 Q_{g}=2 \bar{Q} e^{4 u} ; \quad \bar{Q} \in \mathbb{R} .
$$

The result in [Chang-Yang, '95] applies when $k_{Q}:=\int_{M} Q_{g}<8 \pi^{2}$. If instead $k_{Q}>8 \pi^{2}$, then $I I$ is unbounded on both sides: k_{Q} beats the Moser-Trudinger constant.
Still, in [Djadli-M., '08] existence was found provided $k_{Q} \notin 8 \pi^{2} \mathbb{N}$. The main tool are improved M-T inequalities, in the spirit of [Aubin', 76]: spreading of conformal volume leads to better functional inequalities.

If for example, if $k_{Q} \in\left(8 \pi^{2}, 16 \pi^{2}\right)$ and if $I I$ is large negative, then the conformal volume must concentrate near a single point of M. One can then exploit the topology of M to find extremals of min-max type. This also works for more general determinant functionals, provided $\gamma_{2}, \gamma_{3}>0$.

Compactness and quantization for Q-curvature

Compactness and quantization for Q-curvature

The topological structure of the energy (joint with a monotonicity argument by Struwe) allows to produce solutions of perturbed equations

$$
P_{g} u_{n}+2 Q_{n}=2 \bar{Q}_{n} e^{4 u_{n}} ; \quad Q_{n} \rightarrow Q_{g}, \quad \bar{Q}_{n} \rightarrow \bar{Q} .
$$

Compactness and quantization for Q-curvature

The topological structure of the energy (joint with a monotonicity argument by Struwe) allows to produce solutions of perturbed equations

$$
P_{g} u_{n}+2 Q_{n}=2 \bar{Q}_{n} e^{4 u_{n}} ; \quad Q_{n} \rightarrow Q_{g}, \quad \bar{Q}_{n} \rightarrow \bar{Q} .
$$

We wish then to pass to the limit, but in general solutions might blow-up, and one tries to reach a contradiction.

Compactness and quantization for Q-curvature

The topological structure of the energy (joint with a monotonicity argument by Struwe) allows to produce solutions of perturbed equations

$$
P_{g} u_{n}+2 Q_{n}=2 \bar{Q}_{n} e^{4 u_{n}} ; \quad Q_{n} \rightarrow Q_{g}, \quad \bar{Q}_{n} \rightarrow \bar{Q} .
$$

We wish then to pass to the limit, but in general solutions might blow-up, and one tries to reach a contradiction.

If blow-up occurs, use Green's formula to show that $e^{4 u_{n}}$ accumulates at finitely-many points ([Brezis-Merle', 91]), so $u_{n}-\bar{u}_{n} \rightarrow u_{s}$, with u_{s} s.t.

$$
P_{g} u_{s}+2 Q_{g}=\sum_{i=1}^{l} \beta_{i} \delta_{p_{i}} ; \quad \quad \beta_{i}>0
$$

Compactness and quantization for Q-curvature

The topological structure of the energy (joint with a monotonicity argument by Struwe) allows to produce solutions of perturbed equations

$$
P_{g} u_{n}+2 Q_{n}=2 \bar{Q}_{n} e^{4 u_{n}} ; \quad Q_{n} \rightarrow Q_{g}, \quad \bar{Q}_{n} \rightarrow \bar{Q} .
$$

We wish then to pass to the limit, but in general solutions might blow-up, and one tries to reach a contradiction.
If blow-up occurs, use Green's formula to show that $e^{4 u_{n}}$ accumulates at finitely-many points ([Brezis-Merle', 91]), so $u_{n}-\bar{u}_{n} \rightarrow u_{s}$, with u_{s} s.t.

$$
P_{g} u_{s}+2 Q_{g}=\sum_{i=1}^{l} \beta_{i} \delta_{p_{i}} ; \quad \quad \beta_{i}>0
$$

Since the operator on the l.h.s. is linear, the singular solution is a linear combinations of (logarithmic) Green's functions.

Compactness and quantization for Q-curvature

The topological structure of the energy (joint with a monotonicity argument by Struwe) allows to produce solutions of perturbed equations

$$
P_{g} u_{n}+2 Q_{n}=2 \bar{Q}_{n} e^{4 u_{n}} ; \quad Q_{n} \rightarrow Q_{g}, \quad \bar{Q}_{n} \rightarrow \bar{Q} .
$$

We wish then to pass to the limit, but in general solutions might blow-up, and one tries to reach a contradiction.

If blow-up occurs, use Green's formula to show that $e^{4 u_{n}}$ accumulates at finitely-many points ([Brezis-Merle', 91]), so $u_{n}-\bar{u}_{n} \rightarrow u_{s}$, with u_{s} s.t.

$$
P_{g} u_{s}+2 Q_{g}=\sum_{i=1}^{l} \beta_{i} \delta_{p_{i}} ; \quad \quad \beta_{i}>0
$$

Since the operator on the l.h.s. is linear, the singular solution is a linear combinations of (logarithmic) Green's functions.
Finally bubbling analysis, shows that $\beta_{i}=8 \pi^{2}$ for all i ([Li-Shafrir, '93], [Druet-Robert, '06], [M., '06]), a contradiction to $k_{Q_{刃}} \notin 8 \pi^{2} \mathbb{N}_{\text {: }}$

Compactness of extremal metrics for F_{L}

Compactness of extremal metrics for F_{L}

We focus next on the log-determinant of the conformal Laplacian L (some results apply to more general F_{A} 's).

Compactness of extremal metrics for F_{L}

We focus next on the log-determinant of the conformal Laplacian L (some results apply to more general F_{A} 's). Extremal metrics satisfy

$$
\mathcal{N}(u)+U_{g}=\mu e^{4 u}, \quad \text { with } \mathcal{N}(u) \text { in divergence form. }
$$

Compactness of extremal metrics for F_{L}

We focus next on the log-determinant of the conformal Laplacian L (some results apply to more general F_{A} 's). Extremal metrics satisfy

$$
\mathcal{N}(u)+U_{g}=\mu e^{4 u}, \quad \text { with } \mathcal{N}(u) \text { in divergence form. }
$$

$$
\begin{gathered}
\mathcal{N}_{L}(u) \simeq \Delta^{2} u-\Delta_{4} u ; \quad \Delta_{4} u=\operatorname{div}\left(|\nabla u|^{2} \nabla u\right), \\
U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g} ; \quad \mu=\int_{M} U_{g} d v .
\end{gathered}
$$

Compactness of extremal metrics for F_{L}

We focus next on the log-determinant of the conformal Laplacian L (some results apply to more general F_{A} 's). Extremal metrics satisfy

$$
\begin{gathered}
\mathcal{N}(u)+U_{g}=\mu e^{4 u}, \quad \text { with } \quad \mathcal{N}(u) \text { in divergence form. } \\
\mathcal{N}_{L}(u) \simeq \Delta^{2} u-\Delta_{4} u ; \quad \Delta_{4} u=\operatorname{div}\left(|\nabla u|^{2} \nabla u\right), \\
U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g} ; \quad \mu=\int_{M} U_{g} d v .
\end{gathered}
$$

Theorem A ([Esposito-M., w.i.p.])
Suppose $U_{n} \rightarrow U_{g}$ and $\mu_{n} \rightarrow \mu$ in $C^{1}\left(M^{4}\right)$.

Compactness of extremal metrics for F_{L}

We focus next on the log-determinant of the conformal Laplacian L (some results apply to more general F_{A} 's). Extremal metrics satisfy

$$
\begin{gathered}
\mathcal{N}(u)+U_{g}=\mu e^{4 u}, \quad \text { with } \quad \mathcal{N}(u) \text { in divergence form. } \\
\mathcal{N}_{L}(u) \simeq \Delta^{2} u-\Delta_{4} u ; \quad \Delta_{4} u=\operatorname{div}\left(|\nabla u|^{2} \nabla u\right) \\
U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g} ; \quad \mu=\int_{M} U_{g} d v .
\end{gathered}
$$

Theorem A ([Esposito-M., w.i.p.])
Suppose $U_{n} \rightarrow U_{g}$ and $\mu_{n} \rightarrow \mu$ in $C^{1}\left(M^{4}\right)$. Let u_{n} solve

$$
\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}, \quad \text { with } \quad \int_{M} e^{4 u_{n}} d v \leq C
$$

Compactness of extremal metrics for F_{L}

We focus next on the log-determinant of the conformal Laplacian L (some results apply to more general F_{A} 's). Extremal metrics satisfy

$$
\begin{gathered}
\mathcal{N}(u)+U_{g}=\mu e^{4 u}, \quad \text { with } \quad \mathcal{N}(u) \text { in divergence form. } \\
\mathcal{N}_{L}(u) \simeq \Delta^{2} u-\Delta_{4} u ; \quad \Delta_{4} u=\operatorname{div}\left(|\nabla u|^{2} \nabla u\right) \\
U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g} ; \quad \mu=\int_{M} U_{g} d v .
\end{gathered}
$$

Theorem A ([Esposito-M., w.i.p.])
Suppose $U_{n} \rightarrow U_{g}$ and $\mu_{n} \rightarrow \mu$ in $C^{1}\left(M^{4}\right)$. Let u_{n} solve

$$
\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}, \quad \text { with } \quad \int_{M} e^{4 u_{n}} d v \leq C
$$

Then either $\left(u_{n}\right)_{n}$ stays bounded in $C^{4, \alpha}(M)$ or $\mu_{n} e^{4 u_{n}} \rightharpoonup 8 \pi^{2} \sum_{i=1}^{l} \delta_{p_{i}}$, for distinct points p_{1}, \ldots, p_{l}.

Compactness of extremal metrics for F_{L}

We focus next on the log-determinant of the conformal Laplacian L (some results apply to more general F_{A} 's). Extremal metrics satisfy

$$
\begin{gathered}
\mathcal{N}(u)+U_{g}=\mu e^{4 u}, \quad \text { with } \quad \mathcal{N}(u) \text { in divergence form. } \\
\mathcal{N}_{L}(u) \simeq \Delta^{2} u-\Delta_{4} u ; \quad \Delta_{4} u=\operatorname{div}\left(|\nabla u|^{2} \nabla u\right) \\
U_{g}=\gamma_{1}\left|W_{g}\right|_{g}^{2}+\gamma_{2} Q_{g}-\gamma_{3} \Delta_{g} R_{g} ; \quad \mu=\int_{M} U_{g} d v .
\end{gathered}
$$

Theorem A ([Esposito-M., w.i.p.])
Suppose $U_{n} \rightarrow U_{g}$ and $\mu_{n} \rightarrow \mu$ in $C^{1}\left(M^{4}\right)$. Let u_{n} solve

$$
\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}, \quad \text { with } \quad \int_{M} e^{4 u_{n}} d v \leq C
$$

Then either $\left(u_{n}\right)_{n}$ stays bounded in $C^{4, \alpha}(M)$ or $\mu_{n} e^{4 u_{n}} \rightharpoonup 8 \pi^{2} \sum_{i=1}^{l} \delta_{p_{i}}$, for distinct points p_{1}, \ldots, p_{l}. In the latter case $\mu \in 8 \pi^{2} \mathbb{N}$.

Uniform bounds and ε-regularity $\quad\left(\frac{\gamma_{2}}{\gamma_{3}}>\frac{3}{2}\right)$

Uniform bounds and ε-regularity $\quad\left(\frac{\gamma_{2}}{\gamma_{3}}>\frac{3}{2}\right)$

Solutions blow-up when $\sup _{M} u_{n} \rightarrow+\infty$ for $n \rightarrow+\infty$.

Uniform bounds and ε-regularity $\quad\left(\frac{\gamma_{2}}{\gamma_{3}}>\frac{3}{2}\right)$

Solutions blow-up when $\sup _{M} u_{n} \rightarrow+\infty$ for $n \rightarrow+\infty$. However some quantities stay uniformly bounded (thinking of $\log |x|$, just missing $W^{2,2}$ and $W^{1,4}$.

Uniform bounds and ε-regularity $\quad\left(\frac{\gamma_{2}}{\gamma_{3}}>\frac{3}{2}\right)$

Solutions blow-up when $\sup _{M} u_{n} \rightarrow+\infty$ for $n \rightarrow+\infty$. However some quantities stay uniformly bounded (thinking of $\log |x|$, just missing $W^{2,2}$ and $\left.W^{1,4}\right)$. It can be shown that ([Dolzmann-Hungerbühler-Müller, '00])

$$
\left\|u_{n}-\bar{u}_{n}\right\|_{W^{2, q}} \leq C_{q} \quad \text { for } q<2 ; \quad\left[u_{n}\right]_{B M O} \leq C
$$

Uniform bounds and ε-regularity $\quad\left(\frac{\gamma_{2}}{\gamma_{3}}>\frac{3}{2}\right)$

Solutions blow-up when $\sup _{M} u_{n} \rightarrow+\infty$ for $n \rightarrow+\infty$. However some quantities stay uniformly bounded (thinking of $\log |x|$, just missing $W^{2,2}$ and $\left.W^{1,4}\right)$. It can be shown that ([Dolzmann-Hungerbühler-Müller, '00])

$$
\left\|u_{n}-\bar{u}_{n}\right\|_{W^{2, q}} \leq C_{q} \quad \text { for } q<2 ; \quad\left[u_{n}\right]_{B M O} \leq C
$$

In [Uhlenbeck-Viaclovsky, '00] an ε-regularity result was proved:

Uniform bounds and ε-regularity $\quad\left(\frac{\gamma_{2}}{\gamma_{3}}>\frac{3}{2}\right)$

Solutions blow-up when $\sup _{M} u_{n} \rightarrow+\infty$ for $n \rightarrow+\infty$. However some quantities stay uniformly bounded (thinking of $\log |x|$, just missing $W^{2,2}$ and $\left.W^{1,4}\right)$. It can be shown that ([Dolzmann-Hungerbühler-Müller, '00])

$$
\left\|u_{n}-\bar{u}_{n}\right\|_{W^{2, q}} \leq C_{q} \quad \text { for } q<2 ; \quad\left[u_{n}\right]_{B M O} \leq C
$$

In [Uhlenbeck-Viaclovsky, '00] an ε-regularity result was proved:

$$
\int_{B_{2 r}(p)} e^{4 u} d v<\varepsilon_{0} \quad \Longrightarrow \quad \int_{B_{r}(p)}\left(\left|\nabla^{2} u\right|^{2}+|\nabla u|^{4}\right) d v \leq C
$$

Uniform bounds and ε-regularity $\quad\left(\frac{\gamma_{2}}{\gamma_{3}}>\frac{3}{2}\right)$

Solutions blow-up when $\sup _{M} u_{n} \rightarrow+\infty$ for $n \rightarrow+\infty$. However some quantities stay uniformly bounded (thinking of $\log |x|$, just missing $W^{2,2}$ and $\left.W^{1,4}\right)$. It can be shown that ([Dolzmann-Hungerbühler-Müller, '00])

$$
\left\|u_{n}-\bar{u}_{n}\right\|_{W^{2, q}} \leq C_{q} \quad \text { for } q<2 ; \quad\left[u_{n}\right]_{B M O} \leq C
$$

In [Uhlenbeck-Viaclovsky, '00] an ε-regularity result was proved:

$$
\int_{B_{2 r}(p)} e^{4 u} d v<\varepsilon_{0} \quad \Longrightarrow \quad \int_{B_{r}(p)}\left(\left|\nabla^{2} u\right|^{2}+|\nabla u|^{4}\right) d v \leq C .
$$

The M-T inequality then implies $e^{4 u} \in L^{q}\left(B_{r}(p)\right)$ near p for some $q>1$.

Uniform bounds and ε-regularity $\quad\left(\frac{\gamma_{2}}{\gamma_{3}}>\frac{3}{2}\right)$

Solutions blow-up when $\sup _{M} u_{n} \rightarrow+\infty$ for $n \rightarrow+\infty$. However some quantities stay uniformly bounded (thinking of $\log |x|$, just missing $W^{2,2}$ and $W^{1,4}$). It can be shown that ([Dolzmann-Hungerbühler-Müller, '00])

$$
\left\|u_{n}-\bar{u}_{n}\right\|_{W^{2, q}} \leq C_{q} \quad \text { for } q<2 ; \quad\left[u_{n}\right]_{B M O} \leq C
$$

In [Uhlenbeck-Viaclovsky, '00] an ε-regularity result was proved:

$$
\int_{B_{2 r}(p)} e^{4 u} d v<\varepsilon_{0} \quad \Longrightarrow \quad \int_{B_{r}(p)}\left(\left|\nabla^{2} u\right|^{2}+|\nabla u|^{4}\right) d v \leq C .
$$

The M-T inequality then implies $e^{4 u} \in L^{q}\left(B_{r}(p)\right)$ near p for some $q>1$.
Consequence. At blow-up points concentrates at least ε_{0} volume, so the set of blow-up points is finite.

Existence of fundamental solutions $\quad\left(\gamma_{2}, \gamma_{3}>0\right)$

Existence of fundamental solutions $\quad\left(\gamma_{2}, \gamma_{3}>0\right)$

Proposition 1

There exists a distributional solution of $\mathcal{N}\left(u_{s}\right)+U_{g}=\Sigma_{i=1}^{l} \beta_{i} \delta_{p_{i}}$ such that $u_{s}=\alpha_{i} \log d\left(x, p_{i}\right)+w$ near p_{i}, with $\alpha_{i}=\alpha_{i}\left(\beta_{i}\right)<0$ (explicit), and

$$
\lim _{x \rightarrow 0}|x|^{k}\left|\nabla^{(k)} w\right|=0 \quad \forall k=1,2,3 .
$$

Existence of fundamental solutions $\quad\left(\gamma_{2}, \gamma_{3}>0\right)$

Proposition 1

There exists a distributional solution of $\mathcal{N}\left(u_{s}\right)+U_{g}=\Sigma_{i=1}^{l} \beta_{i} \delta_{p_{i}}$ such that $u_{s}=\alpha_{i} \log d\left(x, p_{i}\right)+w$ near p_{i}, with $\alpha_{i}=\alpha_{i}\left(\beta_{i}\right)<0$ (explicit), and

$$
\lim _{x \rightarrow 0}|x|^{k}\left|\nabla^{(k)} w\right|=0 \quad \forall k=1,2,3 .
$$

To prove existence, one can use an approximate solution $u_{\text {app }}$ of the form

$$
u_{\mathrm{app}}(x) \simeq \sum_{i=1}^{l} \alpha_{i} \log d\left(x, p_{i}\right) \quad \alpha_{i}=\alpha_{i}\left(\beta_{i}\right)
$$

Existence of fundamental solutions $\quad\left(\gamma_{2}, \gamma_{3}>0\right)$

Proposition 1

There exists a distributional solution of $\mathcal{N}\left(u_{s}\right)+U_{g}=\Sigma_{i=1}^{l} \beta_{i} \delta_{p_{i}}$ such that $u_{s}=\alpha_{i} \log d\left(x, p_{i}\right)+w$ near p_{i}, with $\alpha_{i}=\alpha_{i}\left(\beta_{i}\right)<0$ (explicit), and

$$
\lim _{x \rightarrow 0}|x|^{k}\left|\nabla^{(k)} w\right|=0 \quad \forall k=1,2,3 .
$$

To prove existence, one can use an approximate solution $u_{\text {app }}$ of the form

$$
u_{\mathrm{app}}(x) \simeq \sum_{i=1}^{l} \alpha_{i} \log d\left(x, p_{i}\right) \quad \alpha_{i}=\alpha_{i}\left(\beta_{i}\right)
$$

$\left(M \backslash\left\{p_{1}, \ldots, p_{l}\right\}, e^{4 u_{\text {app }}}\right)$ has conical points and/or conical/cylindrical ends.

Existence of fundamental solutions $\quad\left(\gamma_{2}, \gamma_{3}>0\right)$

Proposition 1

There exists a distributional solution of $\mathcal{N}\left(u_{s}\right)+U_{g}=\Sigma_{i=1}^{l} \beta_{i} \delta_{p_{i}}$ such that $u_{s}=\alpha_{i} \log d\left(x, p_{i}\right)+w$ near p_{i}, with $\alpha_{i}=\alpha_{i}\left(\beta_{i}\right)<0$ (explicit), and

$$
\lim _{x \rightarrow 0}|x|^{k}\left|\nabla^{(k)} w\right|=0 \quad \forall k=1,2,3 .
$$

To prove existence, one can use an approximate solution $u_{\text {app }}$ of the form

$$
u_{\mathrm{app}}(x) \simeq \sum_{i=1}^{l} \alpha_{i} \log d\left(x, p_{i}\right) \quad \alpha_{i}=\alpha_{i}\left(\beta_{i}\right)
$$

$\left(M \backslash\left\{p_{1}, \ldots, p_{l}\right\}, e^{4 u_{\text {app }}}\right)$ has conical points and/or conical/cylindrical ends. Here one gains the variational structure, obtaining existence with exponential $W^{2,2}$-decay along the ends.

Existence of fundamental solutions $\quad\left(\gamma_{2}, \gamma_{3}>0\right)$

Proposition 1

There exists a distributional solution of $\mathcal{N}\left(u_{s}\right)+U_{g}=\sum_{i=1}^{l} \beta_{i} \delta_{p_{i}}$ such that $u_{s}=\alpha_{i} \log d\left(x, p_{i}\right)+w$ near p_{i}, with $\alpha_{i}=\alpha_{i}\left(\beta_{i}\right)<0$ (explicit), and

$$
\lim _{x \rightarrow 0}|x|^{k}\left|\nabla^{(k)} w\right|=0 \quad \forall k=1,2,3 .
$$

To prove existence, one can use an approximate solution $u_{\text {app }}$ of the form

$$
u_{\mathrm{app}}(x) \simeq \sum_{i=1}^{l} \alpha_{i} \log d\left(x, p_{i}\right) \quad \alpha_{i}=\alpha_{i}\left(\beta_{i}\right)
$$

($M \backslash\left\{p_{1}, \ldots, p_{l}\right\}, e^{4 u_{\text {app }}}$) has conical points and/or conical/cylindrical ends. Here one gains the variational structure, obtaining existence with exponential $W^{2,2}$-decay along the ends.
For the p-Laplacian see [Serrin, '64], [Kichenassamy-Veron, '86]: in this case one has homogeneity of the operator and the maximum arinciple.ace

Uniqueness of fundamental solutions $\quad\left(\gamma_{2}=6 \gamma_{3}\right)$

Uniqueness of fundamental solutions $\quad\left(\gamma_{2}=6 \gamma_{3}\right)$

In [Chang-Yang,'95] it was shown by Bochner's identity and $\gamma_{2}=6 \gamma_{3}$ that (the differential part of) F_{L} is convex on $W^{2,2}(M)$.

Uniqueness of fundamental solutions $\quad\left(\gamma_{2}=6 \gamma_{3}\right)$

In [Chang-Yang,'95] it was shown by Bochner's identity and $\gamma_{2}=6 \gamma_{3}$ that (the differential part of) F_{L} is convex on $W^{2,2}(M)$. This gives uniqueness of solutions for $\mathcal{N}(u)=f$ in $W^{2,2}(M)$, but $u_{s} \notin W^{2,2}(M)$.

Uniqueness of fundamental solutions $\quad\left(\gamma_{2}=6 \gamma_{3}\right)$

In [Chang-Yang,'95] it was shown by Bochner's identity and $\gamma_{2}=6 \gamma_{3}$ that (the differential part of) F_{L} is convex on $W^{2,2}(M)$. This gives uniqueness of solutions for $\mathcal{N}(u)=f$ in $W^{2,2}(M)$, but $u_{s} \notin W^{2,2}(M)$.

In [Boccardo-Gallouët, '92] solutions to (2nd-order) PDEs with measure data were found as limits of solutions with mollified right-hand sides.

Uniqueness of fundamental solutions $\quad\left(\gamma_{2}=6 \gamma_{3}\right)$

In [Chang-Yang,'95] it was shown by Bochner's identity and $\gamma_{2}=6 \gamma_{3}$ that (the differential part of) F_{L} is convex on $W^{2,2}(M)$. This gives uniqueness of solutions for $\mathcal{N}(u)=f$ in $W^{2,2}(M)$, but $u_{s} \notin W^{2,2}(M)$.

In [Boccardo-Gallouët, '92] solutions to (2nd-order) PDEs with measure data were found as limits of solutions with mollified right-hand sides.

The grand L^{p} space ([Iwaniec-Sbordone, '92]) are the functions u s.t.

$$
\|u\|_{L^{\theta, p)}}:=\sup _{\varepsilon \in(0,1]} \varepsilon^{\frac{\theta}{p}}\|u\|_{L^{p(1-\varepsilon)}}<+\infty .
$$

Uniqueness of fundamental solutions $\quad\left(\gamma_{2}=6 \gamma_{3}\right)$

In [Chang-Yang,'95] it was shown by Bochner's identity and $\gamma_{2}=6 \gamma_{3}$ that (the differential part of) F_{L} is convex on $W^{2,2}(M)$. This gives uniqueness of solutions for $\mathcal{N}(u)=f$ in $W^{2,2}(M)$, but $u_{s} \notin W^{2,2}(M)$.

In [Boccardo-Gallouët, '92] solutions to (2nd-order) PDEs with measure data were found as limits of solutions with mollified right-hand sides.

The grand L^{p} space ([Iwaniec-Sbordone, '92]) are the functions u s.t.

$$
\|u\|_{L^{\theta, p)}}:=\sup _{\varepsilon \in(0,1]} \varepsilon^{\frac{\theta}{p}}\|u\|_{L^{p(1-\varepsilon)}}<+\infty .
$$

It satisfies $L^{2, \infty} \hookrightarrow L^{1,2)}$ and used to study compensated compactness.

Uniqueness of fundamental solutions $\quad\left(\gamma_{2}=6 \gamma_{3}\right)$

In [Chang-Yang,'95] it was shown by Bochner's identity and $\gamma_{2}=6 \gamma_{3}$ that (the differential part of) F_{L} is convex on $W^{2,2}(M)$. This gives uniqueness of solutions for $\mathcal{N}(u)=f$ in $W^{2,2}(M)$, but $u_{s} \notin W^{2,2}(M)$.

In [Boccardo-Gallouët, '92] solutions to (2nd-order) PDEs with measure data were found as limits of solutions with mollified right-hand sides.

The grand L^{p} space ([Iwaniec-Sbordone, '92]) are the functions u s.t.

$$
\|u\|_{L^{\theta, p)}}:=\sup _{\varepsilon \in(0,1]} \varepsilon^{\frac{\theta}{p}}\|u\|_{L^{p(1-\varepsilon)}}<+\infty .
$$

It satisfies $L^{2, \infty} \hookrightarrow L^{1,2)}$ and used to study compensated compactness. Using arguments in [Iwaniec, '92], [Iwaniec-Greco-Sbordone, '97] one can show that u_{s} coincides all every solutions both in $W^{1,2,2)}$ and mollifiable.

Uniqueness of fundamental solutions $\quad\left(\gamma_{2}=6 \gamma_{3}\right)$

In [Chang-Yang,'95] it was shown by Bochner's identity and $\gamma_{2}=6 \gamma_{3}$ that (the differential part of) F_{L} is convex on $W^{2,2}(M)$. This gives uniqueness of solutions for $\mathcal{N}(u)=f$ in $W^{2,2}(M)$, but $u_{s} \notin W^{2,2}(M)$.

In [Boccardo-Gallouët, '92] solutions to (2nd-order) PDEs with measure data were found as limits of solutions with mollified right-hand sides.

The grand L^{p} space ([Iwaniec-Sbordone, '92]) are the functions u s.t.

$$
\|u\|_{L^{\theta, p)}}:=\sup _{\varepsilon \in(0,1]} \varepsilon^{\frac{\theta}{p}}\|u\|_{L^{p(1-\varepsilon)}}<+\infty .
$$

It satisfies $L^{2, \infty} \hookrightarrow L^{1,2)}$ and used to study compensated compactness. Using arguments in [Iwaniec, '92], [Iwaniec-Greco-Sbordone, '97] one can show that u_{s} coincides all every solutions both in $W^{1,2,2)}$ and mollifiable.

- The argument works for any (finite) measure data.

Proof of Theorem A

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$.

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$. We saw that at each blow-up point must accumulate at least ε_{0} in conformal volume.

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$. We saw that at each blow-up point must accumulate at least ε_{0} in conformal volume. Hence we have that

$$
\mu_{n} e^{4 u_{n}} \rightharpoonup \sum_{i=1}^{l} \beta_{i} \delta_{p_{i}}+h ; \quad \beta_{i} \geq \varepsilon_{0}
$$

where $h=\mu e^{4 u_{\infty}}$ is the continuous part of the limit measure (smooth).

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$. We saw that at each blow-up point must accumulate at least ε_{0} in conformal volume. Hence we have that

$$
\mu_{n} e^{4 u_{n}} \rightharpoonup \sum_{i=1}^{l} \beta_{i} \delta_{p_{i}}+h ; \quad \beta_{i} \geq \varepsilon_{0}
$$

where $h=\mu e^{4 u_{\infty}}$ is the continuous part of the limit measure (smooth).
Step 1. Using a Pohozaev identity and the above uniqueness property it is possible to show that $\beta_{i} \geq 8 \pi^{2} \gamma_{2}\left(=\int_{S^{4}} U_{S^{4}} d v\right)$.

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$. We saw that at each blow-up point must accumulate at least ε_{0} in conformal volume. Hence we have that

$$
\mu_{n} e^{4 u_{n}} \rightharpoonup \sum_{i=1}^{l} \beta_{i} \delta_{p_{i}}+h ; \quad \beta_{i} \geq \varepsilon_{0}
$$

where $h=\mu e^{4 u_{\infty}}$ is the continuous part of the limit measure (smooth).
Step 1. Using a Pohozaev identity and the above uniqueness property it is possible to show that $\beta_{i} \geq 8 \pi^{2} \gamma_{2}\left(=\int_{S^{4}} U_{S^{4}} d v\right)$.
Step 2. From the uniqueness of fundamental solutions, one finds that $\lim _{n} u_{n} \simeq \alpha_{i} \log d\left(x, p_{i}\right)$ near p_{i}, with $\alpha_{i} \leq-2$.

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$. We saw that at each blow-up point must accumulate at least ε_{0} in conformal volume. Hence we have that

$$
\mu_{n} e^{4 u_{n}} \rightharpoonup \sum_{i=1}^{l} \beta_{i} \delta_{p_{i}}+h ; \quad \beta_{i} \geq \varepsilon_{0}
$$

where $h=\mu e^{4 u_{\infty}}$ is the continuous part of the limit measure (smooth).
Step 1. Using a Pohozaev identity and the above uniqueness property it is possible to show that $\beta_{i} \geq 8 \pi^{2} \gamma_{2}\left(=\int_{S^{4}} U_{S^{4}} d v\right)$.
Step 2. From the uniqueness of fundamental solutions, one finds that $\lim _{n} u_{n} \simeq \alpha_{i} \log d\left(x, p_{i}\right)$ near p_{i}, with $\alpha_{i} \leq-2$. If the weak limit u_{∞} is non zero, the conformal volume would diverge.

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$. We saw that at each blow-up point must accumulate at least ε_{0} in conformal volume. Hence we have that

$$
\mu_{n} e^{4 u_{n}} \rightharpoonup \sum_{i=1}^{l} \beta_{i} \delta_{p_{i}}+h ; \quad \beta_{i} \geq \varepsilon_{0}
$$

where $h=\mu e^{4 u_{\infty}}$ is the continuous part of the limit measure (smooth).
Step 1. Using a Pohozaev identity and the above uniqueness property it is possible to show that $\beta_{i} \geq 8 \pi^{2} \gamma_{2}\left(=\int_{S^{4}} U_{S^{4}} d v\right)$.
Step 2. From the uniqueness of fundamental solutions, one finds that $\lim _{n} u_{n} \simeq \alpha_{i} \log d\left(x, p_{i}\right)$ near p_{i}, with $\alpha_{i} \leq-2$. If the weak limit u_{∞} is non zero, the conformal volume would diverge. So $h \equiv 0$.

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$. We saw that at each blow-up point must accumulate at least ε_{0} in conformal volume. Hence we have that

$$
\mu_{n} e^{4 u_{n}} \rightharpoonup \sum_{i=1}^{l} \beta_{i} \delta_{p_{i}}+h ; \quad \beta_{i} \geq \varepsilon_{0}
$$

where $h=\mu e^{4 u_{\infty}}$ is the continuous part of the limit measure (smooth).
Step 1. Using a Pohozaev identity and the above uniqueness property it is possible to show that $\beta_{i} \geq 8 \pi^{2} \gamma_{2}\left(=\int_{S^{4}} U_{S^{4}} d v\right)$.
Step 2. From the uniqueness of fundamental solutions, one finds that $\lim _{n} u_{n} \simeq \alpha_{i} \log d\left(x, p_{i}\right)$ near p_{i}, with $\alpha_{i} \leq-2$. If the weak limit u_{∞} is non zero, the conformal volume would diverge. So $h \equiv 0$.
Step 3. Use Pohozaev's identity again to show that $\beta_{i}=8 \pi^{2} \gamma_{2}$ for all i.

Proof of Theorem A

Let u_{n} solve $\mathcal{N}_{L}\left(u_{n}\right)+U_{n}=\mu_{n} e^{4 u_{n}}$. We saw that at each blow-up point must accumulate at least ε_{0} in conformal volume. Hence we have that

$$
\mu_{n} e^{4 u_{n}} \rightharpoonup \sum_{i=1}^{l} \beta_{i} \delta_{p_{i}}+h ; \quad \beta_{i} \geq \varepsilon_{0}
$$

where $h=\mu e^{4 u_{\infty}}$ is the continuous part of the limit measure (smooth).
Step 1. Using a Pohozaev identity and the above uniqueness property it is possible to show that $\beta_{i} \geq 8 \pi^{2} \gamma_{2}\left(=\int_{S^{4}} U_{S^{4}} d v\right)$.
Step 2. From the uniqueness of fundamental solutions, one finds that $\lim _{n} u_{n} \simeq \alpha_{i} \log d\left(x, p_{i}\right)$ near p_{i}, with $\alpha_{i} \leq-2$. If the weak limit u_{∞} is non zero, the conformal volume would diverge. So $h \equiv 0$.
Step 3. Use Pohozaev's identity again to show that $\beta_{i}=8 \pi^{2} \gamma_{2}$ for all i.

- For general coefficients, it would be enough to know the uniqueness of the singular profile of u_{s}, without knowing global uniqueness.

Existence of extremal metrics for F_{L}

Existence of extremal metrics for F_{L}

Via min-max theory, we then obtain the following result.

Existence of extremal metrics for F_{L}

Via min-max theory, we then obtain the following result.

Theorem B

Assume $\gamma_{2}=6 \gamma_{3} \neq 0$. Suppose $\left(M^{4}, g\right)$ satisfies $\int_{M} U_{g} d v \notin 8 \pi^{2} \gamma_{2} \mathbb{N}$. Then there exists an extremal metric.

Existence of extremal metrics for F_{L}

Via min-max theory, we then obtain the following result.

Theorem B

Assume $\gamma_{2}=6 \gamma_{3} \neq 0$. Suppose $\left(M^{4}, g\right)$ satisfies $\int_{M} U_{g} d v \notin 8 \pi^{2} \gamma_{2} \mathbb{N}$. Then there exists an extremal metric.

Open problem. Understand the cases $\int_{M} U_{g} d v \in 8 \pi^{2} \gamma_{2} \mathbb{N}$.

Existence of extremal metrics for F_{L}

Via min-max theory, we then obtain the following result.

Theorem B

Assume $\gamma_{2}=6 \gamma_{3} \neq 0$. Suppose $\left(M^{4}, g\right)$ satisfies $\int_{M} U_{g} d v \notin 8 \pi^{2} \gamma_{2} \mathbb{N}$. Then there exists an extremal metric.

Open problem. Understand the cases $\int_{M} U_{g} d v \in 8 \pi^{2} \gamma_{2} \mathbb{N}$. Here the concentration/compactness dichotomy fails, and the determinant functional has asymptotes.

Existence of extremal metrics for F_{L}

Via min-max theory, we then obtain the following result.

Theorem B

Assume $\gamma_{2}=6 \gamma_{3} \neq 0$. Suppose $\left(M^{4}, g\right)$ satisfies $\int_{M} U_{g} d v \notin 8 \pi^{2} \gamma_{2} \mathbb{N}$. Then there exists an extremal metric.

Open problem. Understand the cases $\int_{M} U_{g} d v \in 8 \pi^{2} \gamma_{2} \mathbb{N}$. Here the concentration/compactness dichotomy fails, and the determinant functional has asymptotes.

One could try to understand them defining and studying a suitable mass for the blown-up manifold via the fundamental solution.

The determinant of the Paneitz operator

The determinant of the Paneitz operator

It is mentioned in Connes' book on non-commutative geometry as a relevant tool for conformal theories in 4D.

The determinant of the Paneitz operator

It is mentioned in Connes' book on non-commutative geometry as a relevant tool for conformal theories in 4D. Analytically, it is also quite interesting.

The determinant of the Paneitz operator

It is mentioned in Connes' book on non-commutative geometry as a relevant tool for conformal theories in 4D. Analytically, it is also quite interesting.

In flat tori, the determinant of P_{g} is

$$
F_{P}[w]=\int_{\mathbb{T}^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}\right] d x .
$$

The determinant of the Paneitz operator

It is mentioned in Connes' book on non-commutative geometry as a relevant tool for conformal theories in 4D. Analytically, it is also quite interesting.

In flat tori, the determinant of P_{g} is

$$
F_{P}[w]=\int_{\mathbb{T}^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}\right] d x .
$$

This functional has a triple homogeneity and is again doubly critical.

The determinant of the Paneitz operator

It is mentioned in Connes' book on non-commutative geometry as a relevant tool for conformal theories in 4D. Analytically, it is also quite interesting.

In flat tori, the determinant of P_{g} is

$$
F_{P}[w]=\int_{\mathbb{T}^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}\right] d x .
$$

This functional has a triple homogeneity and is again doubly critical.
On S^{4} instead one has

$$
\begin{aligned}
F_{P}[w] & =\int_{S^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}-60|\nabla w|^{2}\right] d v \\
& +112 \pi^{2} \log \left(f_{S^{4}} e^{4(w-\bar{w})} d v\right)
\end{aligned}
$$

Mountain Pass structure

Mountain Pass structure

Proposition 2

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics).

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics). Moreover, F_{P} is unbounded above and below.

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics). Moreover, F_{P} is unbounded above and below.

The local minimality at $w=0$ was noticed in [Branson, '96], computing the second variation.

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics). Moreover, F_{P} is unbounded above and below.

The local minimality at $w=0$ was noticed in [Branson, '96], computing the second variation. To check unboundedness from below, insert into F_{P} the function

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics). Moreover, F_{P} is unbounded above and below.

The local minimality at $w=0$ was noticed in [Branson, '96], computing the second variation. To check unboundedness from below, insert into F_{P} the function

$$
w(x) \simeq-\frac{1}{2} \log \left(\varepsilon^{2}+|x|^{2}\right) ; \quad \varepsilon \rightarrow 0
$$

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics). Moreover, F_{P} is unbounded above and below.

The local minimality at $w=0$ was noticed in [Branson, '96], computing the second variation. To check unboundedness from below, insert into F_{P} the function

$$
w(x) \simeq-\frac{1}{2} \log \left(\varepsilon^{2}+|x|^{2}\right) ; \quad \varepsilon \rightarrow 0
$$

- Geometrically, this conformal factor generates a cigar (not a bubble).

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics). Moreover, F_{P} is unbounded above and below.

The local minimality at $w=0$ was noticed in [Branson, '96], computing the second variation. To check unboundedness from below, insert into F_{P} the function

$$
w(x) \simeq-\frac{1}{2} \log \left(\varepsilon^{2}+|x|^{2}\right) ; \quad \varepsilon \rightarrow 0
$$

- Geometrically, this conformal factor generates a cigar (not a bubble).
- Loss of coercivity may happen in different ways (e.g., at many points)

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics). Moreover, F_{P} is unbounded above and below.

The local minimality at $w=0$ was noticed in [Branson, '96], computing the second variation. To check unboundedness from below, insert into F_{P} the function

$$
w(x) \simeq-\frac{1}{2} \log \left(\varepsilon^{2}+|x|^{2}\right) ; \quad \varepsilon \rightarrow 0
$$

- Geometrically, this conformal factor generates a cigar (not a bubble).
- Loss of coercivity may happen in different ways (e.g., at many points), differently e.g. from the Q-curvature equation.

Mountain Pass structure

Proposition 2 For both \mathbb{T}^{4} and S^{4}, F_{P} has a local minimum at $w \equiv 0$ (standard metrics). Moreover, F_{P} is unbounded above and below.

The local minimality at $w=0$ was noticed in [Branson, '96], computing the second variation. To check unboundedness from below, insert into F_{P} the function

$$
w(x) \simeq-\frac{1}{2} \log \left(\varepsilon^{2}+|x|^{2}\right) ; \quad \varepsilon \rightarrow 0
$$

- Geometrically, this conformal factor generates a cigar (not a bubble).
- Loss of coercivity may happen in different ways (e.g., at many points), differently e.g. from the Q-curvature equation.
- It goes similarly for compact hyperbolic manifolds.

A second solution on S^{4}

A second solution on S^{4}

Theorem C ([Gursky-M., '12])

Let $\left(S^{4}, g_{0}\right)$ be the standard 4 -sphere. Then F_{P} admits a non-trivial axially symmetric solution.

A second solution on S^{4}

Theorem C ([Gursky-M., '12])

Let $\left(S^{4}, g_{0}\right)$ be the standard 4 -sphere. Then F_{P} admits a non-trivial axially symmetric solution.

Remarks (a) For most geometric problems the round metric is the only critical point. One has indeed uniqueness of the round metric for constant mean curvature, Gaussian curvature, scalar curvature and Q-curvature.

A second solution on S^{4}

Theorem C ([Gursky-M., '12])

Let $\left(S^{4}, g_{0}\right)$ be the standard 4 -sphere. Then F_{P} admits a non-trivial axially symmetric solution.

Remarks (a) For most geometric problems the round metric is the only critical point. One has indeed uniqueness of the round metric for constant mean curvature, Gaussian curvature, scalar curvature and Q-curvature.
(b) Uniqueness also holds for critical points of det L_{g} ([Gursky, '97]).

A second solution on S^{4}

Theorem C ([Gursky-M., '12])

Let $\left(S^{4}, g_{0}\right)$ be the standard 4 -sphere. Then F_{P} admits a non-trivial axially symmetric solution.

Remarks (a) For most geometric problems the round metric is the only critical point. One has indeed uniqueness of the round metric for constant mean curvature, Gaussian curvature, scalar curvature and Q-curvature.
(b) Uniqueness also holds for critical points of det L_{g} ([Gursky, '97]). From the positive second variation at $w=0$, Branson speculated uniqueness for critical points of F_{P} as well (false).

A second solution on S^{4}

Theorem C ([Gursky-M., '12])

Let $\left(S^{4}, g_{0}\right)$ be the standard 4 -sphere. Then F_{P} admits a non-trivial axially symmetric solution.

Remarks (a) For most geometric problems the round metric is the only critical point. One has indeed uniqueness of the round metric for constant mean curvature, Gaussian curvature, scalar curvature and Q-curvature.
(b) Uniqueness also holds for critical points of det L_{g} ([Gursky, '97]). From the positive second variation at $w=0$, Branson speculated uniqueness for critical points of F_{P} as well (false).
(c) The mountain pass structure suggests to use a variational approach.

A second solution on S^{4}

Theorem C ([Gursky-M., '12])

Let $\left(S^{4}, g_{0}\right)$ be the standard 4 -sphere. Then F_{P} admits a non-trivial axially symmetric solution.

Remarks (a) For most geometric problems the round metric is the only critical point. One has indeed uniqueness of the round metric for constant mean curvature, Gaussian curvature, scalar curvature and Q-curvature.
(b) Uniqueness also holds for critical points of det L_{g} ([Gursky, '97]). From the positive second variation at $w=0$, Branson speculated uniqueness for critical points of F_{P} as well (false).
(c) The mountain pass structure suggests to use a variational approach. However this strategy is now out of reach: we used ODEs instead.

A second solution on S^{4}

Theorem C ([Gursky-M., '12])

Let $\left(S^{4}, g_{0}\right)$ be the standard 4 -sphere. Then F_{P} admits a non-trivial axially symmetric solution.

Remarks (a) For most geometric problems the round metric is the only critical point. One has indeed uniqueness of the round metric for constant mean curvature, Gaussian curvature, scalar curvature and Q-curvature.
(b) Uniqueness also holds for critical points of det L_{g} ([Gursky, '97]). From the positive second variation at $w=0$, Branson speculated uniqueness for critical points of F_{P} as well (false).
(c) The mountain pass structure suggests to use a variational approach. However this strategy is now out of reach: we used ODEs instead.
(d) A similar result holds in \mathbb{R}^{4}, much easier to prove.

Comments and open problems

Comments and open problems

Our proof is very specific and does not exploit the structure of the problem.

Comments and open problems

Our proof is very specific and does not exploit the structure of the problem. Recall that in \mathbb{T}^{4} the determinant is

$$
F_{P}[w]=\int_{\mathbb{T}^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}\right] d x
$$

Comments and open problems

Our proof is very specific and does not exploit the structure of the problem. Recall that in \mathbb{T}^{4} the determinant is

$$
F_{P}[w]=\int_{\mathbb{T}^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}\right] d x
$$

It is difficult to find a priori bounds on solutions or P-S sequences

Comments and open problems

Our proof is very specific and does not exploit the structure of the problem. Recall that in \mathbb{T}^{4} the determinant is

$$
F_{P}[w]=\int_{\mathbb{T}^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}\right] d x .
$$

It is difficult to find a priori bounds on solutions or P-S sequences.
Notice that by Bochner's identity $\int_{\mathbb{T}^{4}}(\Delta u)^{2} d x=\int_{\mathbb{T}^{4}}\left|\nabla^{2} u\right|^{2} d x$

Comments and open problems

Our proof is very specific and does not exploit the structure of the problem. Recall that in \mathbb{T}^{4} the determinant is

$$
F_{P}[w]=\int_{\mathbb{T}^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}\right] d x
$$

It is difficult to find a priori bounds on solutions or P-S sequences.
Notice that by Bochner's identity $\int_{\mathbb{T}^{4}}(\Delta u)^{2} d x=\int_{\mathbb{T}^{4}}\left|\nabla^{2} u\right|^{2} d x$, so there is a positive lower bound for the Sobolev-type quotient

$$
\inf _{u \neq 0} \frac{\int_{\mathbb{T}^{4}}(\Delta u)^{2} d x}{\left(\int_{\mathbb{T}^{4}}|\nabla u|^{4} d x\right)^{\frac{1}{2}}} .
$$

Comments and open problems

Our proof is very specific and does not exploit the structure of the problem. Recall that in \mathbb{T}^{4} the determinant is

$$
F_{P}[w]=\int_{\mathbb{T}^{4}}\left[18(\Delta w)^{2}+64|\nabla w|^{2} \Delta w+32|\nabla w|^{4}\right] d x
$$

It is difficult to find a priori bounds on solutions or P-S sequences.
Notice that by Bochner's identity $\int_{\mathbb{T}^{4}}(\Delta u)^{2} d x=\int_{\mathbb{T}^{4}}\left|\nabla^{2} u\right|^{2} d x$, so there is a positive lower bound for the Sobolev-type quotient

$$
\inf _{u \neq 0} \frac{\int_{\mathbb{T}^{4}}(\Delta u)^{2} d x}{\left(\int_{\mathbb{T}^{4}}|\nabla u|^{4} d x\right)^{\frac{1}{2}}} .
$$

It is an interesting question to characterize extremals of this quotient in \mathbb{R}^{4}, vaguely related to the above problem.

The Euler equation

The Euler equation

On \mathbb{R}^{4} critical points satisfy

$$
\left.9 \Delta^{2} w+32\left|\nabla^{2} w\right|^{2}-32(\Delta w)^{2}-32 \Delta u|\nabla u|^{2}-\left.32\langle\nabla w, \nabla| \nabla w\right|^{2}\right\rangle=0 .
$$

The Euler equation

On \mathbb{R}^{4} critical points satisfy

$$
\left.9 \Delta^{2} w+32\left|\nabla^{2} w\right|^{2}-32(\Delta w)^{2}-32 \Delta u|\nabla u|^{2}-\left.32\langle\nabla w, \nabla| \nabla w\right|^{2}\right\rangle=0 .
$$

The main-order term is Δ^{2} : typically, decay of solutions is logarithmic.

The Euler equation

On \mathbb{R}^{4} critical points satisfy

$$
\left.9 \Delta^{2} w+32\left|\nabla^{2} w\right|^{2}-32(\Delta w)^{2}-32 \Delta u|\nabla u|^{2}-\left.32\langle\nabla w, \nabla| \nabla w\right|^{2}\right\rangle=0 .
$$

The main-order term is Δ^{2} : typically, decay of solutions is logarithmic. However solutions with finite energy have inverse-quadratic decay: some degeneracy is present.

The Euler equation

On \mathbb{R}^{4} critical points satisfy

$$
\left.9 \Delta^{2} w+32\left|\nabla^{2} w\right|^{2}-32(\Delta w)^{2}-32 \Delta u|\nabla u|^{2}-\left.32\langle\nabla w, \nabla| \nabla w\right|^{2}\right\rangle=0 .
$$

The main-order term is Δ^{2} : typically, decay of solutions is logarithmic. However solutions with finite energy have inverse-quadratic decay: some degeneracy is present.

Apart from the compactness issues, new sharp Moser-Trudinger inequalities would be expected.

Thanks for your attention

