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The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and Laplace-
Beltrami operator ∆g. The eigenvalues {λj}, with eigenfunctions {ϕj}j

−∆gϕj = λjϕj on M,

satisfy
λj → +∞ as j → +∞.

Formally, the determinant of −∆g is defined as

det(−∆g) =
∏
j

λj .

•While physicists may like these formulas, mathematicians usually have
problems with infinite products of diverging numbers.

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 2 / 26



The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and Laplace-
Beltrami operator ∆g.

The eigenvalues {λj}, with eigenfunctions {ϕj}j

−∆gϕj = λjϕj on M,

satisfy
λj → +∞ as j → +∞.

Formally, the determinant of −∆g is defined as

det(−∆g) =
∏
j

λj .

•While physicists may like these formulas, mathematicians usually have
problems with infinite products of diverging numbers.

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 2 / 26



The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and Laplace-
Beltrami operator ∆g. The eigenvalues {λj}, with eigenfunctions {ϕj}j

−∆gϕj = λjϕj on M,

satisfy
λj → +∞ as j → +∞.

Formally, the determinant of −∆g is defined as

det(−∆g) =
∏
j

λj .

•While physicists may like these formulas, mathematicians usually have
problems with infinite products of diverging numbers.

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 2 / 26



The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and Laplace-
Beltrami operator ∆g. The eigenvalues {λj}, with eigenfunctions {ϕj}j

−∆gϕj = λjϕj on M,

satisfy
λj → +∞ as j → +∞.

Formally, the determinant of −∆g is defined as

det(−∆g) =
∏
j

λj .

•While physicists may like these formulas, mathematicians usually have
problems with infinite products of diverging numbers.

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 2 / 26



The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and Laplace-
Beltrami operator ∆g. The eigenvalues {λj}, with eigenfunctions {ϕj}j

−∆gϕj = λjϕj on M,

satisfy
λj → +∞ as j → +∞.

Formally, the determinant of −∆g is defined as

det(−∆g) =
∏
j

λj .

•While physicists may like these formulas, mathematicians usually have
problems with infinite products of diverging numbers.

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 2 / 26



The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and Laplace-
Beltrami operator ∆g. The eigenvalues {λj}, with eigenfunctions {ϕj}j

−∆gϕj = λjϕj on M,

satisfy
λj → +∞ as j → +∞.

Formally, the determinant of −∆g is defined as

det(−∆g) =
∏
j

λj .

•While physicists may like these formulas, mathematicians usually have
problems with infinite products of diverging numbers.

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 2 / 26



Regularized determinant

The spectral zeta function of (Mn, g) is

(1) ζ(s) =

∞∑
j=1

λ−sj .

By Weyl’s asymptotic law,

λj ∼ j2/n, j →∞.

Consequently, (1) defines an analytic function provided Re(s) > n/2.
Differentiating in s one finds

ζ ′(s) =
d

ds

∞∑
j=1

e−s log λj = −
∞∑
j=1

log λje
−s log λj .

If ζ is regular near s = 0 one can define the regularized determinant
det′(−∆g) via the following formula

det′(−∆g) = e−ζ
′(0).
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Regularity of ζ at s = 0 (in 2D)

Let (Σ, g) be a surface. One can write

ζ(s) =
∞∑
j=1

λ−sj =
1

Γ(s)

ˆ ∞
0

 ∞∑
j=1

e−λjt

 ts
dt

t

=
1

Γ(s)

ˆ ∞
0

(
Tr(e∆t − 1)

)
ts
dt

t
.

It is known that (Taylor expand the heat kernel)
∞∑
j=1

e−λjtϕ2
j (x) = Ht(x, x) =

1

4πt
+
K(x)

12π
+O(t),

where K is the Gaussian curvature. Therefore one finds

ζ(s) =
1

Γ(s)

{
A(Σ)

4π(s− 1)
+

(
χ(Σ)

6
− 1

)
+ holom. in s

}
,

which is regular near zero. ⇒ det′(−∆g) is well defined.
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Polyakov’s formula for conformal metrics

In 2D the Laplacian is conformally covariant. If g̃(x) := e2w(x)g(x) is a
metric conformal to the original one g, then

∆g̃ = e−2w(x)∆g; −∆gw +Kg = Kg̃e
2w.

These properties allowed Polyakov in ’81 to compute the variation of
the determinant for conformal metrics with the same volume

log det′(−∆g̃)− log det′(−∆g) = − 1

12π

ˆ
Σ

(|∇w|2 + 2Kw) dv.

This formula appears in a partition function in string theory, and is
related to the Moser-Trudinger-Onofri inequality. On the sphere it is
known to be maximised only on conformal factors of Möbius maps.

Existence of extremals is easy for positive genus. On spheres it can be
achieved via a balancing condition and Möbius invariance, ([Aubin, ’76],
[Osgood-Phillips-Sarnak, ’88], [Gui-Moradifam, ’18]).
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Isospectral metrics ([Osgood-Phillips-Sarnak, ’88])

Isospectral metrics on a closed surface are compact in any Ck sense.

Case of the sphere. On S2 all metrics are conformally equivalent (up to
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Isospectral metrics: positive genus

Even if, after a conformal change g 7→ ĝ, the Gaussian curvature is
identically −1, one could diverge in Teichmüller’s space forming necks

It was however shown in [Wolpert, ’87] that

det′(ĝ) ≤ 1

l
e−

c1
l ; c1 = c1(χ(Σ)),

where l is the length of the shortest geodesic, so l 6→ 0.

Finally, a theorem in [Mumford, ’71] shows that if l is bounded below
and if Kĝ = const., then there is smooth convergence of the metrics.

In higher dimensions very little is known. There are results in special
cases like within a conformal class in 3D [Chang-Yang, ’90] or under
bounded curvature assumptions [G.Zhou, ’97].
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identically −1, one could diverge in Teichmüller’s space forming necks

It was however shown in [Wolpert, ’87] that

det′(ĝ) ≤ 1
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Conformally covariant operators

Definition. A linear operator A = Ag is conformally covariant of bi-
degree (a, b) if g̃ = e2wg implies

Ag̃ψ = e−bwAg(e
awψ) for each smooth ψ.

Examples 0. The Laplacian ∆g for n = 2: (a, b) = (0, 2).

1. The conformal Laplacian for n ≥ 3

Lg = −4(n− 1)

(n− 2)
∆g +Rg (a, b) =

(
n− 2

2
,
n+ 2

2

)
.

2. The Paneitz operator Pg for n = 4

Pgϕ = (−∆g)
2ϕ+ div

[(
2

3
Rg − 2Ric

)
◦ ∇ϕ

]
, (a, b) = (0, 4) .

3. The Dirac operator D for n ≥ 2: (a, b) =
(
n−1

2 , n+1
2

)
.
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Determinants of conf. covariant operators in 4D

Theorem ([Branson-Ørsted, ’91])

Let A be conformally covariant on (M4, g).Then ∃ γ1(A), γ2(A), γ3(A)
such that for g̃ = e2wg

FA[w] := log
detAg̃
detAg

= γ1(A)I[w] + γ2(A)II[w] + γ3(A)III[w],

where
I[w] = 4

ˆ
M
w|Wg|2 dv −

(ˆ
M
|Wg|2 dv

)
log

 
M
e4w dv,

II[w] =

ˆ
M
wPgw dv −

(ˆ
M
Qg dv

)
log

 
M
e4(w−w) dv,

III[w] = 12

ˆ
M

(∆gw + |∇w|2)2 dv − 4

ˆ
M

(w∆gRg +Rg|∇w|2) dv.

HereWg is Weyl’s curvature, while Qg is the Q-curvature, a 4D conformal
counterpart of the Gaussian curvature.
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Let A be conformally covariant on (M4, g).Then ∃ γ1(A), γ2(A), γ3(A)
such that for g̃ = e2wg

FA[w] := log
detAg̃
detAg

= γ1(A)I[w] + γ2(A)II[w] + γ3(A)III[w],

where
I[w] = 4

ˆ
M
w|Wg|2 dv −

( ˆ
M
|Wg|2 dv

)
log

 
M
e4w dv,

II[w] =

ˆ
M
wPgw dv −

( ˆ
M
Qg dv

)
log

 
M
e4(w−w) dv,

III[w] = 12

ˆ
M

(∆gw + |∇w|2)2 dv − 4

ˆ
M

(w∆gRg +Rg|∇w|2) dv.

HereWg is Weyl’s curvature, while Qg is the Q-curvature, a 4D conformal
counterpart of the Gaussian curvature.
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Comments

The three functionals I, II, III are quite natural since

ĝ = e2wg is critical for I ⇐⇒ |Wĝ|2 = const.,

ĝ is critical for II ⇐⇒ Qĝ = const.,

ĝ is critical for III ⇐⇒ ∆gRĝ = const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formulaˆ
M

(
Qg +

1

8
|Wg|2

)
dv = 4π2χ(M).

Each term separately is not a topological invariant. However, both´
M Qgdv and

´
M |Wg|2dv are conformally invariant.

• Extremal metrics for linear combinations of the functionals I, II, III
were useful in studying rigidity of K-E metrics in 4D ([Gursky, ’98]).
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ĝ is critical for II ⇐⇒ Qĝ = const.,

ĝ is critical for III ⇐⇒ ∆gRĝ = const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formulaˆ
M

(
Qg +

1

8
|Wg|2

)
dv = 4π2χ(M).

Each term separately is not a topological invariant. However, both´
M Qgdv and

´
M |Wg|2dv are conformally invariant.

• Extremal metrics for linear combinations of the functionals I, II, III
were useful in studying rigidity of K-E metrics in 4D ([Gursky, ’98]).

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 10 / 26



Comments

The three functionals I, II, III are quite natural since
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ĝ is critical for III ⇐⇒ ∆gRĝ = const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formulaˆ
M

(
Qg +

1

8
|Wg|2

)
dv = 4π2χ(M).

Each term separately is not a topological invariant. However, both´
M Qgdv and

´
M |Wg|2dv are conformally invariant.

• Extremal metrics for linear combinations of the functionals I, II, III
were useful in studying rigidity of K-E metrics in 4D ([Gursky, ’98]).

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 10 / 26



Comments

The three functionals I, II, III are quite natural since
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ĝ is critical for III ⇐⇒ ∆gRĝ = const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formulaˆ
M

(
Qg +

1

8
|Wg|2

)
dv = 4π2χ(M).

Each term separately is not a topological invariant. However, both´
M Qgdv and

´
M |Wg|2dv are conformally invariant.

• Extremal metrics for linear combinations of the functionals I, II, III
were useful in studying rigidity of K-E metrics in 4D ([Gursky, ’98]).
Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 10 / 26



Explicit constants

In the above examples

- If Ag = Lg, the conformal Laplacian, then

(γ1, γ2, γ3) =

(
1,−4,−2

3

)
.

- If Ag = Pg, the Paneitz operator, then

(γ1, γ2, γ3) =

(
−1

4
,−14,

8

3

)
.

- If Ag = D, the Dirac operator, then

(γ1, γ2, γ3) =

(
−7,−88,−14

3

)
.

• Sometimes we will reverse signs to get coercivity/convexity.
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Extremals of determinants in 4D

Theorem ([Chang-Yang, ’95]) For n = 4 assume:

(i) γ2, γ3 > 0, (ii) γ1

´
M |Wg|2 dv + γ2

´
M Qg dv < 8γ2π

2.

Then infw∈W 2,2 FA[w] is attained.

Remarks - (ii) implies coercivity of FA, via sharp Moser-Trudinger ine-
qualities ([Adams, ’88]): direct methods yield a maximizer for FA.

- The assumptions are conformally invariant and are satisfied (roughly)
in positive curvature ([Gursky, ’99]). In negative curvature there are
many examples of large Gauss-Bonnet integrals.

Open: uniqueness ([Gursky-Streets, ’18] for the σ2-equation).

• We aim to discuss here the situations when either (ii) fails (e.g. in
negative curvature), or when (i) fails (as for the Paneitz operator). The
latter case is indeed much harder.
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On the functional II (special case: (γ1, γ3) = (0, 0))

(Conformal) extremals of II, having constant Q-curvature, solve

Pgu+ 2Qg = 2Qe4u; Q ∈ R.

The result in [Chang-Yang, ’95] applies when kQ :=
´
M Qg < 8π2. If

instead kQ > 8π2, then II is unbounded on both sides: kQ beats the
Moser-Trudinger constant.

Still, in [Djadli-M., ’08] existence was found provided kQ 6∈ 8π2N. The
main tool are improved M-T inequalities, in the spirit of [Aubin’, 76]:
spreading of conformal volume leads to better functional inequalities.

If for example, if kQ ∈ (8π2, 16π2) and if II is large negative, then the
conformal volume must concentrate near a single point of M . One can
then exploit the topology of M to find extremals of min-max type. This
also works for more general determinant functionals, provided γ2, γ3 > 0.
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The
main tool are improved M-T inequalities, in the spirit of [Aubin’, 76]:
spreading of conformal volume leads to better functional inequalities.

If for example, if kQ ∈ (8π2, 16π2) and if II is large negative, then the
conformal volume must concentrate near a single point of M . One can
then exploit the topology of M to find extremals of min-max type. This
also works for more general determinant functionals, provided γ2, γ3 > 0.
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Compactness and quantization for Q-curvature

The topological structure of the energy (joint with a monotonicity argu-
ment by Struwe) allows to produce solutions of perturbed equations

Pgun + 2Qn = 2Qne
4un ; Qn → Qg, Qn → Q.

We wish then to pass to the limit, but in general solutions might blow-up,
and one tries to reach a contradiction.

If blow-up occurs, use Green’s formula to show that e4un accumulates at
finitely-many points ([Brezis-Merle’, 91]), so un − ūn → us, with us s.t.

Pgus + 2Qg =
l∑

i=1

βiδpi ; βi > 0.

Since the operator on the l.h.s. is linear, the singular solution is a linear
combinations of (logarithmic) Green’s functions.

Finally bubbling analysis, shows that βi = 8π2 for all i ([Li-Shafrir, ’93],
[Druet-Robert, ’06], [M., ’06]), a contradiction to kQ 6∈ 8π2N.
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Pgus + 2Qg =

l∑
i=1

βiδpi ; βi > 0.

Since the operator on the l.h.s. is linear, the singular solution is a linear
combinations of (logarithmic) Green’s functions.

Finally bubbling analysis, shows that βi = 8π2 for all i ([Li-Shafrir, ’93],
[Druet-Robert, ’06], [M., ’06]), a contradiction to kQ 6∈ 8π2N.

Andrea Malchiodi (SNS, Pisa) IAS, March 5th, 2019 14 / 26



Compactness and quantization for Q-curvature

The topological structure of the energy (joint with a monotonicity argu-
ment by Struwe) allows to produce solutions of perturbed equations

Pgun + 2Qn = 2Qne
4un ; Qn → Qg, Qn → Q.

We wish then to pass to the limit, but in general solutions might blow-up,
and one tries to reach a contradiction.

If blow-up occurs, use Green’s formula to show that e4un accumulates at
finitely-many points ([Brezis-Merle’, 91]), so un − ūn → us, with us s.t.
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Compactness of extremal metrics for FL

We focus next on the log-determinant of the conformal Laplacian L (some
results apply to more general FA’s). Extremal metrics satisfy

N (u) + Ug = µ e4u, with N (u) in divergence form.

NL(u) ' ∆2u−∆4u; ∆4u = div(|∇u|2∇u),

Ug = γ1|Wg|2g + γ2Qg − γ3∆gRg; µ =

ˆ
M
Ug dv.

Theorem A ([Esposito-M., w.i.p.])

Suppose Un → Ug and µn → µ in C1(M4). Let un solve

NL(un) + Un = µne
4un , with

ˆ
M
e4undv ≤ C.

Then either (un)n stays bounded in C4,α(M) or µn e4un ⇀ 8π2
∑l

i=1 δpi ,
for distinct points p1, . . . , pl. In the latter case µ ∈ 8π2N.
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Uniform bounds and ε-regularity (γ2γ3 >
3
2)

Solutions blow-up when supM un → +∞ for n → +∞. However some
quantities stay uniformly bounded (thinking of log |x|, just missing W 2,2

andW 1,4). It can be shown that ([Dolzmann-Hungerbühler-Müller, ’00])

‖un − ūn‖W 2,q ≤ Cq for q < 2; [un]BMO ≤ C.

In [Uhlenbeck-Viaclovsky, ’00] an ε-regularity result was proved:
ˆ
B2r(p)

e4udv < ε0 =⇒
ˆ
Br(p)

(|∇2u|2 + |∇u|4)dv ≤ C.

The M-T inequality then implies e4u ∈ Lq(Br(p)) near p for some q > 1.

Consequence. At blow-up points concentrates at least ε0 volume, so
the set of blow-up points is finite.
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Existence of fundamental solutions (γ2, γ3 > 0)

Proposition 1

There exists a distributional solution of N (us) + Ug = Σl
i=1βiδpi such

that us = αi log d(x, pi) +w near pi, with αi = αi(βi) < 0 (explicit), and

lim
x→0
|x|k |∇(k)w| = 0 ∀ k = 1, 2, 3.

To prove existence, one can use an approximate solution uapp of the form

uapp(x) '
l∑

i=1

αi log d(x, pi) αi = αi(βi).

(M \ {p1, . . . , pl}, e4uapp) has conical points and/or conical/cylindrical
ends. Here one gains the variational structure, obtaining existence with
exponential W 2,2-decay along the ends.

For the p-Laplacian see [Serrin, ’64], [Kichenassamy-Veron, ’86]: in this
case one has homogeneity of the operator and the maximum principle.
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Uniqueness of fundamental solutions (γ2 = 6γ3)

In [Chang-Yang,’95] it was shown by Bochner’s identity and γ2 = 6γ3

that (the differential part of) FL is convex on W 2,2(M). This gives
uniqueness of solutions for N (u) = f in W 2,2(M), but us 6∈W 2,2(M).

In [Boccardo-Gallouët, ’92] solutions to (2nd-order) PDEs with measure
data were found as limits of solutions with mollified right-hand sides.

The grand Lp space ([Iwaniec-Sbordone, ’92]) are the functions u s.t.

‖u‖Lθ,p) := sup
ε∈(0,1]

ε
θ
p ‖u‖Lp(1−ε) < +∞.

It satisfies L2,∞ ↪→ L1,2) and used to study compensated compactness.

Using arguments in [Iwaniec, ’92], [Iwaniec-Greco-Sbordone, ’97] one can
show that us coincides all every solutions both in W 1,2,2) and mollifiable.

• The argument works for any (finite) measure data.
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Proof of Theorem A

Let un solve NL(un) +Un = µne
4un . We saw that at each blow-up point

must accumulate at least ε0 in conformal volume. Hence we have that

µn e
4un ⇀

l∑
i=1

βiδpi + h; βi ≥ ε0,

where h = µe4u∞ is the continuous part of the limit measure (smooth).

Step 1. Using a Pohozaev identity and the above uniqueness property
it is possible to show that βi ≥ 8π2γ2 ( =

´
S4 US4dv).

Step 2. From the uniqueness of fundamental solutions, one finds that
limn un ' αi log d(x, pi) near pi, with αi ≤ −2. If the weak limit u∞ is
non zero, the conformal volume would diverge. So h ≡ 0.

Step 3. Use Pohozaev’s identity again to show that βi = 8π2γ2 for all i.

• For general coefficients, it would be enough to know the uniqueness of
the singular profile of us, without knowing global uniqueness.
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Existence of extremal metrics for FL

Via min-max theory, we then obtain the following result.

Theorem B

Assume γ2 = 6γ3 6= 0. Suppose (M4, g) satisfies
´
M Ugdv /∈ 8π2γ2N.

Then there exists an extremal metric.

Open problem. Understand the cases
´
M Ugdv ∈ 8π2γ2N. Here the

concentration/compactness dichotomy fails, and the determinant func-
tional has asymptotes.

One could try to understand them defining and studying a suitable mass
for the blown-up manifold via the fundamental solution.
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The determinant of the Paneitz operator

It is mentioned in Connes’ book on non-commutative geometry as a
relevant tool for conformal theories in 4D. Analytically, it is also quite
interesting.

In flat tori, the determinant of Pg is

FP [w] =

ˆ
T4

[
18(∆w)2 + 64|∇w|2∆w + 32|∇w|4

]
dx.

This functional has a triple homogeneity and is again doubly critical.

On S4 instead one has

FP [w] =

ˆ
S4

[
18(∆w)2 + 64|∇w|2∆w + 32|∇w|4 − 60|∇w|2

]
dv

+ 112π2 log
( 

S4

e4(w−w) dv
)
.
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Mountain Pass structure

Proposition 2 For both T4 and S4, FP has a local minimum at w ≡ 0
(standard metrics). Moreover, FP is unbounded above and below.

The local minimality at w = 0 was noticed in [Branson, ’96], computing
the second variation. To check unboundedness from below, insert into
FP the function

w(x) ' −1

2
log(ε2 + |x|2); ε→ 0.

- Geometrically, this conformal factor generates a cigar (not a bubble).

- Loss of coercivity may happen in different ways (e.g., at many points),
differently e.g. from the Q-curvature equation.

- It goes similarly for compact hyperbolic manifolds.
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A second solution on S4

Theorem C ([Gursky-M., ’12])

Let (S4, g0) be the standard 4-sphere. Then FP admits a non-trivial
axially symmetric solution.

Remarks (a) For most geometric problems the round metric is the only
critical point. One has indeed uniqueness of the round metric for constant
mean curvature, Gaussian curvature, scalar curvature and Q-curvature.

(b) Uniqueness also holds for critical points of det Lg ([Gursky, ’97]).
From the positive second variation at w = 0, Branson speculated uni-
queness for critical points of FP as well (false).

(c) The mountain pass structure suggests to use a variational approach.
However this strategy is now out of reach: we used ODEs instead.

(d) A similar result holds in R4, much easier to prove.
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Comments and open problems

Our proof is very specific and does not exploit the structure of the
problem. Recall that in T4 the determinant is

FP [w] =

ˆ
T4

[
18(∆w)2 + 64|∇w|2∆w + 32|∇w|4

]
dx.

It is difficult to find a priori bounds on solutions or P-S sequences.

Notice that by Bochner’s identity
´
T4(∆u)2dx =

´
T4 |∇2u|2dx, so there

is a positive lower bound for the Sobolev-type quotient

inf
u6≡0

´
T4(∆u)2dx(´
T4 |∇u|4dx

) 1
2

.

It is an interesting question to characterize extremals of this quotient in
R4, vaguely related to the above problem.
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The Euler equation

On R4 critical points satisfy

9∆2w + 32|∇2w|2 − 32(∆w)2 − 32∆u |∇u|2 − 32〈∇w,∇|∇w|2〉 = 0.

The main-order term is ∆2: typically, decay of solutions is logarithmic.
However solutions with finite energy have inverse-quadratic decay: some
degeneracy is present.

Apart from the compactness issues, new sharp Moser-Trudinger inequa-
lities would be expected.
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Thanks for your attention
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