Nonuniqueness of weak solutions to the Navier-Stokes equation

Tristan Buckmaster (joint work with Vlad Vicol)

Princeton University

November 29, 2017

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

November 29, 2017 1 / 22

3

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Navier–Stokes Equations

The Incompressible Navier-Stokes Equations

The pair (v, p) solves the incompressible Navier–Stokes equations if

 $\partial_t v + \operatorname{div} (v \otimes v) + \nabla p - \nu \Delta v = 0$ $\operatorname{div} v = 0$

for kinematic viscosity $\nu > 0$, velocity $\nu : \mathbb{T}^3 \times \mathbb{R} \to \mathbb{R}^3$ and pressure $p : \mathbb{T}^3 \times \mathbb{R} \to \mathbb{R}$.

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

4 D N 4 🗐 N 4 🖹 N 4

Weak solutions to the Navier-Stokes equations

We say $v \in C_t^0 L_x^2$ is a weak solution of NSE if for any $t \in \mathbb{R}$ the vector field $v(\cdot, t)$ is weakly divergence free, has zero mean, and

$$\int_{\mathbb{R}}\int_{\mathbb{T}^{3}}\mathbf{v}\cdot(\partial_{t}\varphi+(\mathbf{v}\cdot\nabla)\varphi+\nu\Delta\varphi)d\mathbf{x}dt=0\,,$$

for any divergence free test function φ . Fabes-Jones-Riviere '72, implies such a solutions satisfies the integral equation

$$v(t) = e^{\nu \Delta(t)} v(\cdot, 0) + \int_0^t e^{\nu \Delta(t-s)} \mathbb{P} \operatorname{div}(v(\cdot, s) \otimes v(\cdot, s)) ds$$

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

The Navier–Stokes Equations

Based on the natural scaling of the equations $v(x, t) \mapsto v_{\lambda}(x, t) = \lambda v(\lambda x, \lambda^2 t)$:

- A number of partial regularity results have been established: Scheffer '76, Cafarelli-Kohn-Nirenberg '82, Lin '98, Ladyzhenskaya-Seregin '99, Vasseur '07, Kukavica '08, ...
- Local existence for the Cauchy problem has been proven in scaling-invariant spaces Kato '84, Giga-Miyakawa '85, Koch-Tataru '01, Jia-Sverák '14, ...
- Conditional regularity has been established under geometric structure assumptions (Constantin-Fefferman '93), or assuming a signed pressure (Seregin-Sverák '02).
- The conditional regularity and weak-strong uniqueness results known under the umbrella of Ladyzhenskaya-Prodi-Serrin conditions: Kiselev-Ladyzhenskaya '57, Prodi '59, Serrin '62, Escauriaza-Seregin-Šverák '03, ...
- ► For the class of weak solutions defined above, if v ∈ C⁰_tL³_x then such a solution is unique: Furioli–Lemarié-Rieusset–Terraneo '00, Lions-Masmoudi '01.

Statement of main theorems

Nonuniqueness of weak solutions

Theorem 1 (B-Vicol '17)

There exists $\beta > 0$, such that for any smooth $e(t): [0, T] \to \mathbb{R}_{\geq 0}$, there exists a weak solution $v \in C_t^0([0, T]; H_x^\beta(\mathbb{T}^3))$ of the Navier-Stokes equations, such that

$$\int_{\mathbb{T}^3} |v(x,t)|^2 \, dx = e(t) \, dx$$

for all $t \in [0, T]$.

Dissipative Euler solutions arise in the inviscid limit

Theorem 2 (B-Vicol '17) Let $u \in C_{t,\times}^{\bar{\beta}}(\mathbb{T}^3 \times [-2T, 2T])$, for $\bar{\beta} > 0$, is a weak solution of the Euler equations:

 $\partial_t u + (\operatorname{div} u \otimes u) + \nabla p = 0$ and $\operatorname{div} u = 0$

Then there exists $\beta > 0$, a sequence $\nu_n \to 0$, and a uniformly bounded sequence $v^{(\nu_n)} \in C_t^0([0, T]; H_x^\beta(\mathbb{T}^3))$ of weak solutions to the Navier-Stokes equations:

 $\partial_t v^{(\nu_n)} + \operatorname{div} \left(v^{(\nu_n)} \otimes v^{(\nu_n)} \right) + \nabla p - \nu_n \Delta v^{(\nu_n)} = 0 \quad and \quad \operatorname{div} v^{(\nu_n)} = 0$

with $v^{(\nu_n)} \rightarrow u$ strongly in $C_t^0([0, T]; L_x^2(\mathbb{T}^3))$.

- -

イロト イポト イモト イモト

Onsager's Conjecture

Lars Onsager, in his famous note on statistical hydrodynamics [Onsager '49]), conjectured the following dichotomy:

- (a) Any weak solution v belonging to Hölder spaces C^{β} for $\beta > \frac{1}{3}$ conserves the kinetic energy.
- (b) For any $\beta < \frac{1}{3}$ there exist weak solutions $v \in C^{\beta}$ which do not conserve the kinetic energy.
- Part (a) of this conjecture was proven by [Constantin, E and Titi '94], (cf. [Eyink '94], [Duchon-Robert '00], [Cheskidov-Constantin-Friedlander-Shvydkoy '08])

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

Previous work

Part (b): Existence of non-conservative solutions

Part b) was recently resolved: $L_{x,t}^2$ [Scheffer '93]; $L_t^{\infty} L_x^2$ [Shnirelman '00]; $L_{x,t}^{\infty}$ [De Lellis-Székelyhidi Jr. '09-'11]; $C_{x,t}^0$ [De Lellis-Székelyhidi Jr. '12]; $C_{x,t}^{1/10-}$ [De Lellis-Székelyhidi Jr. '12]; $C_{x,t}^{1/5-}$ [Isett '13]; $C_{x,t}^{1/5-}$ [B.-De Lellis-Székelyhidi Jr. '13]; $C_x^{1/3-}$ a.e. in time; [B. '15]; $L_t^1 C_x^{1/3-}$ [B.-De Lellis-Székelyhidi Jr. '16].

Theorem 1 (lsett '16)

For every $\beta < 1/3$, there exists weak solutions $v \in C_{x,t}^{\beta}$ to the Euler equations with compact support in time.

Theorem 2 (B-De Lellis-Székelyhidi Jr.-Vicol '17)

For every smooth strictly positive energy profile $e : [0, T] \to \mathbb{R}$ and $\beta < 1/3$, there exists weak solutions $v \in C_{x,t}^{\beta}$ such that $\frac{1}{2} \int_{\mathbb{T}^3} |v(x, t)|^2 dx = e(t)$.

Structure functions

Define the structure functions for homogeneous, isotropic turbulence by

 $S_p(\ell) := \langle [\delta v(\ell)]^p \rangle,$

where $\langle \cdot \rangle$ denotes an ensemble average. Kolmogorov's famous four-fifths law can be stated as

$$S_3(\ell) \sim -rac{4}{5}arepsilon \ell \ ,$$

More generally, Kolmogorov's scaling laws can be stated as

$$S_p(\ell) = C_p \varepsilon^{\zeta_p} \ell^{\zeta_p} ,$$

for any positive integer p, for $\zeta_p = P/3$.

- 34

Intermittency

[Landau '59]: The rate of energy dissipation is intermittent, i.e., spatially inhomogeneous.

10 / 22

Intermittent Euler solutions

Intermittency Corrections

- ► lognormal model of [Kolmogorov '62]: $\zeta_2 = 0.694444$.
- ▶ β -model [Frisch-Sulem-Nelkin '78]: $\zeta_2 = 0.733333$.
- ► log-Poisson model of [She-Leveque '94]: $\zeta_2 = 0.695937$.
- mean-field theory of [Yakhot '01]: $\zeta_2 = 0.700758$.

Intermittent Euler result

Theorem 3 (B.- Masmoudi - Vicol (in preparation)) Fix any $\alpha < 5/14$. There exist infinitely many weak solutions

$u \in C_t^0 H_x^\alpha$

of the 3D Euler equations which have compact support in time.

The number 5/14 is not sharp. Arguments of [C-C-F-S '08]: for $\alpha > 5/6$ energy is conserved.

The convex integration scheme

The proof proceeds via induction, for each $q \ge 0$ we assume we are given a solution $(v_q, p_q, \mathring{R}_q)$ to the Navier-Stokes-Reynolds system.

$$\partial_t v_q + \operatorname{div}(v_q \otimes v_q) + \nabla p_q - \nu \Delta v_q = \operatorname{div} \mathring{R}_q$$
$$\operatorname{div} v_q = 0.$$

where the stress \mathring{R}_{q} is assumed to be a trace-free symmetric matrix.

4 D N 4 B N 4 B N 4 B N

The perturbation

As part of the induction step, the perturbation $w_{q+1} = v_{q+1} - v_q$ is designed such that the new velocity v_{q+1} solves the Navier-Stokes-Reynolds system

$$\begin{aligned} \partial_t v_{q+1} + \operatorname{div}(v_{q+1} \otimes v_{q+1}) + \nabla p_{q+1} - \nu \Delta v_{q+1} &= \operatorname{div} \mathring{R}_{q+1} \\ \operatorname{div} v_{q+1} &= 0 \,. \end{aligned}$$

with a smaller Reynolds stress R_{q+1} . Writing $v_{q+1} = w_{q+1} + v_q$ and using the equation for v_q we may write

$$\begin{aligned} \operatorname{div} R_{q+1} &= (-\nu \Delta w_{q+1} + \partial_t w_{q+1}) + \operatorname{div}(v_q \otimes w_{q+1} + w_{q+1} \otimes v_q) \\ &+ \operatorname{div}(w_{q+1} \otimes w_{q+1} - \mathbb{R}_q) + \nabla(p_{q+1} - p_q) \\ &=: \operatorname{div} \left(\widetilde{R}_{\text{linear}} + \widetilde{R}_{\text{quadratic}} + \widetilde{R}_{\text{oscillation}} \right) + \nabla(p_{q+1} - p_q). \end{aligned}$$

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

November 29, 2017 14 / 22

E AQA

< 日 > < 同 > < 三 > < 三 > < 三 > <

Convex Integration Scheme

The perturbation $w_{q+1} = v_{q+1} - v_q$ is constructed as a superposition of intermittent Beltrami waves at frequency λ_{q+1} :

 $\lambda_a = a^{(b^q)}$

for $a, b \gg 1$. The perturbation will be of the form

$$w_{q+1}\sim \sum_{\xi\in \Lambda} \mathsf{a}_{\overline{\xi}}(\mathring{R}_q)\mathbb{W}_{\overline{\xi}}$$

in order to cancel the low frequency ($\approx \lambda_a$) error of \dot{R}_a of size given

 $\left\| \mathring{R}_{q} \right\|_{1} \leq \lambda_{q+1}^{-2\beta}$

for $0 < \beta \ll 1$. From scaling considerations we expect

 $\|w_{q+1}\|_{L^2} \leq \lambda_{q+1}^{-\beta}$.

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つくぐ November 29, 2017

Beltrami waves

A stationary divergence free vector field v is called a *Beltrami flow* if it satisfies the *Beltrami condition*:

 $\lambda \mathbf{v} = \operatorname{curl} \mathbf{v}, \quad \lambda > \mathbf{0}$.

Given a Beltrami flow v, we have the following identity

$$\operatorname{div}(\boldsymbol{v}\otimes\boldsymbol{v})=\boldsymbol{v}\cdot\nabla\boldsymbol{v}=\nabla\frac{|\boldsymbol{v}|^2}{2}-\boldsymbol{v}\times(\operatorname{curl}\boldsymbol{v})=\nabla\frac{|\boldsymbol{v}|^2}{2}-\lambda\boldsymbol{v}\times\boldsymbol{v}=\nabla\frac{|\boldsymbol{v}|^2}{2}.$$

Setting $p := \frac{|v|^2}{2}$, then (v, p) is a stationary solution to the Euler equations.

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

= 900

Intermittent Beltrami waves

▶ Gain if can build a version of the Beltrami waves $\mathbb{W}_{\overline{\mathcal{E}}}$ such that

 $\|\mathbb{W}_{\overline{\epsilon}}(\lambda_{q+1}\cdot)\|_{L^2} \approx 1, \qquad \|\mathbb{W}_{\overline{\epsilon}}(\lambda_{q+1}\cdot)\|_{L^1} \ll_{\lambda_{q+1}} 1$

Recall, in 1D the normalized Dirichlet kernel obeys:

$$\left\|\frac{1}{\sqrt{r}}\sum_{-r\leq k\leq r}e^{ikx}\right\|_{L^2}\approx 1, \quad \left\|\frac{1}{\sqrt{r}}\sum_{-r\leq k\leq r}e^{ikx}\right\|_{L^1}\approx \frac{\log r}{\sqrt{r}}\ll 1.$$

Tristan Buckmaster (Princeton University)

Nonuniqueness of weak solutions to NSE

イロト イロト イヨト イヨト November 29, 2017 17 / 22

- 31

Heuristic estimates

Heuristic estimate on dissipation error

Each intermittent Beltrami wave $\mathbb{W}_{\overline{\epsilon}}$ will be made up of

$$\left(\frac{\lambda_{q+1}}{\lambda_q}\right)^p = \lambda_{q+1}^{p'}$$

distinct frequencies, for some 2 < p' < p < 3. By setting ν = 1 and writing

$$\Delta w_{q+1} = \operatorname{div}(\nabla w_{q+1})$$

= $\operatorname{div}\left(\nabla \sum_{\overline{\xi}} a_{\overline{\xi}} \mathbb{W}_{\overline{\xi}}\right)$

The dissipation error's contribution to \mathring{R}_{q+1} can be heuristically estimated by

$$\|\nabla w_{q+1}\|_{L^{1}} \lesssim \sum_{\overline{\xi}} \left\| a_{\overline{\xi}} \mathbb{W}_{\overline{\xi}} \right\|_{W^{1,1}} \lesssim \lambda_{q+1}^{1-p'/2}.$$

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

Estimate on the perturbation

A naïve estimate of the perturbation would give

$$\|w_{q+1}\|_{L^{2}} \lesssim \sum_{\overline{\xi}} \left\|a_{\overline{\xi}} \mathbb{W}_{\overline{\xi}}\right\|_{L^{2}} \lesssim \sum_{\overline{\xi}} \left\|a_{\overline{\xi}}\right\|_{L^{\infty}} \left\|\mathbb{W}_{\overline{\xi}}\right\|_{L^{2}} \lesssim \sum_{\overline{\xi}} \left\|a_{\overline{\xi}}\right\|_{L^{\infty}}$$

However, we have no control on $\left\|a_{\overline{\xi}}\right\|_{L^{\infty}} \approx \left\|\mathring{R}_{q}\right\|_{L^{\infty}}^{1/2}$!

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

November 29, 2017

・ロット 全部 マート・トロット

19 / 22

- 2

Lemma 4

Assume f is supported in a ball of radius λ in frequency, and that g is a $(\mathbb{T}/\sigma)^3$ -periodic function. If $\lambda \ll \sigma$, then

 $\|fg\|_{L^{p}(\mathbb{T}^{3})} \lesssim \|f\|_{L^{p}(\mathbb{T}^{3})} \|g\|_{L^{p}(\mathbb{T}^{3})}.$

Then heuristically we obtain

$$\|v_{q+1} - v_q\|_{L^2} \lesssim \sum_{\overline{\xi}} \left\|a_{\overline{\xi}} \mathbb{W}_{\overline{\xi}}\right\|_{L^2} \lesssim \sum_{\overline{\xi}} \left\|a_{\overline{\xi}}\right\|_{L^2} \left\|\mathbb{W}_{\overline{\xi}}\right\|_{L^2} \lesssim \sum_{\overline{\xi}} \left\|a_{\overline{\xi}}\right\|_{L^2}$$

which gives us the correct estimate since

$$\left\| \boldsymbol{a}_{\overline{\xi}} \right\|_{L^2} \approx \left\| \mathring{\boldsymbol{R}}_{\boldsymbol{q}} \right\|_{L^1}^{1/2} \lesssim \lambda_{\boldsymbol{q}+1}^{-\beta}.$$

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

November 29, 2017

イロト イポト イヨト イヨト

20 / 22

Future directions

Future directions

Given a weak solution $v \in C_t^0 L_x^2 \cap L_t^2 H_x^1$ to the Navier-Stokes equation, we say that v is a Leray-Hopf solution if in addition it satisfies the energy inequality

$$\frac{1}{2}\int_{\mathbb{T}^3}\left|v(x,t)^2\right| \, dx + \int_{\mathbb{T}^3\times[0,t]}\left|\nabla v(x,s)\right|^2 \, dxds \leq \frac{1}{2}\int_{\mathbb{T}^3}\left|v(x,0)\right|^2 \, dx \, .$$

In Jia-Šverák '15 proved that non-uniqueness of Leray-Hopf weak solutions in the regularity class $L_t^{\infty} L_x^{3,\infty}$ is implied if a certain spectral assumption holds for a linearized Navier-Stokes operator. Very recently Guillod-Šverák '17 have provided compelling numerical evidence that the spectral condition is satisfied.

We conjecture that non-uniqueness of Leray-Hopf solutions can be proven via convex integration. This is known in the case where the Laplacian $-\Delta$ is replaced by the fractional laplacian $(-\Delta)^s$ for $s \in (0, 1/5)$, Colombo-De Lellis-De Rosa '17.

4 D N 4 B N 4 B N 4 B N

Questions?

Questions?

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○ November 29, 2017

22 / 22