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The Navier–Stokes Equations

The Incompressible Navier–Stokes Equations

The pair (v , p) solves the incompressible Navier–Stokes equations if

∂tv + div (v ⊗ v) +∇p − ν∆v = 0
div v = 0

for kinematic viscosity ν > 0, velocity v : T3 × R→ R3 and pressure
p : T3 × R→ R.
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The Navier–Stokes Equations

Weak solutions to the Navier–Stokes equations

We say v ∈ C 0
t L

2
x is a weak solution of NSE if for any t ∈ R the vector field v(·, t)

is weakly divergence free, has zero mean, and
ˆ
R

ˆ
T3

v · (∂tϕ+ (v · ∇)ϕ+ ν∆ϕ)dxdt = 0 ,

for any divergence free test function ϕ. Fabes-Jones-Riviere ’72, implies such a
solutions satisfies the integral equation

v(t) = eν∆(t)v(·, 0) +

ˆ t

0
eν∆(t−s)P div(v(·, s)⊗ v(·, s))ds .

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE November 29, 2017 3 / 22



The Navier–Stokes Equations

Based on the natural scaling of the equations v(x , t) 7→ vλ(x , t) = λv(λx , λ2t):
I A number of partial regularity results have been established: Scheffer ’76,

Cafarelli-Kohn-Nirenberg ’82, Lin ’98, Ladyzhenskaya-Seregin ’99, Vasseur
’07, Kukavica ’08, . . .

I Local existence for the Cauchy problem has been proven in scaling-invariant
spaces Kato ’84, Giga-Miyakawa ’85, Koch-Tataru ’01, Jia-Sv̌erák ’14, . . .

I Conditional regularity has been established under geometric structure
assumptions (Constantin-Fefferman ’93), or assuming a signed pressure
(Seregin-Sv̌erák ’02).

I The conditional regularity and weak-strong uniqueness results known under
the umbrella of Ladyzhenskaya-Prodi-Serrin conditions:
Kiselev-Ladyzhenskaya ’57, Prodi ’59, Serrin ’62, Escauriaza-Seregin-Šverák
’03, . . .

I For the class of weak solutions defined above, if v ∈ C 0
t L

3
x then such a

solution is unique: Furioli–Lemarié-Rieusset–Terraneo ’00, Lions-Masmoudi
’01.
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Statement of main theorems

Nonuniqueness of weak solutions

Theorem 1 (B-Vicol ’17)
There exists β > 0, such that for any smooth e(t) : [0,T ]→ R≥0, there exists a
weak solution v ∈ C 0

t ([0,T ];Hβ
x (T3)) of the Navier-Stokes equations, such that
ˆ
T3
|v(x , t)|2 dx = e(t) ,

for all t ∈ [0,T ].
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Statement of main theorems

Dissipative Euler solutions arise in the inviscid limit

Theorem 2 (B-Vicol ’17)
Let u ∈ C β̄t,x(T3 × [−2T , 2T ]), for β̄ > 0, is a weak solution of the Euler
equations:

∂tu + (div u ⊗ u) +∇p = 0 and div u = 0

Then there exists β > 0, a sequence νn → 0, and a uniformly bounded sequence
v (νn) ∈ C 0

t ([0,T ];Hβ
x (T3)) of weak solutions to the Navier-Stokes equations:

∂tv
(νn) + div

(
v (νn) ⊗ v (νn)

)
+∇p − νn∆v (νn) = 0 and div v (νn) = 0

with v (νn) → u strongly in C 0
t ([0,T ]; L2

x(T3)).
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Previous work

Onsager’s Conjecture
Lars Onsager, in his famous note on statistical hydrodynamics [Onsager ’49]),
conjectured the following dichotomy:
(a) Any weak solution v belonging to Hölder spaces Cβ for β > 1

3 conserves the
kinetic energy.

(b) For any β < 1
3 there exist weak solutions v ∈ Cβ which do not conserve the

kinetic energy.
Part (a) of this conjecture was proven by [Constantin, E and Titi ’94], (cf. [Eyink
’94], [Duchon-Robert ’00], [Cheskidov-Constantin-Friedlander-Shvydkoy ’08])
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Previous work

Part (b): Existence of non-conservative solutions

Part b) was recently resolved: L2
x,t [Scheffer ’93]; L∞t L2

x [Shnirelman ’00]; L∞x,t [De

Lellis-Székelyhidi Jr. ’09-’11]; C 0
x,t [De Lellis-Székelyhidi Jr. ’12]; C

1/10−
x,t [De

Lellis-Székelyhidi Jr. ’12]; C
1/5−
x,t [Isett ’13]; C

1/5−
x,t [B.-De Lellis-Székelyhidi Jr. ’13];

C
1/3−
x a.e. in time; [B. ’15]; L1

tC
1/3−
x [B.-De Lellis-Székelyhidi Jr. ’16].

Theorem 1 (Isett ’16)
For every β < 1/3, there exists weak solutions v ∈ Cβx,t to the Euler equations with
compact support in time.

Theorem 2 (B-De Lellis-Székelyhidi Jr.-Vicol ’17)
For every smooth strictly positive energy profile e : [0,T ]→ R and β < 1/3, there
exists weak solutions v ∈ Cβx,t such that 1

2

´
T3 |v(x , t)|2 dx = e(t).
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Intermittent Euler solutions

Structure functions

Define the structure functions for homogeneous, isotropic turbulence by

Sp(`) := 〈[δv(`)]p〉 ,

where 〈·〉 denotes an ensemble average. Kolmogorov’s famous four-fifths law can
be stated as

S3(`) ∼ −4
5
ε` ,

More generally, Kolmogorov’s scaling laws can be stated as

Sp(`) = Cpε
ζp`ζp ,

for any positive integer p, for ζp = p/3.
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Intermittent Euler solutions

Intermittency

[Landau ’59]: The rate of energy dissipation is intermittent, i.e., spatially
inhomogeneous.
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Intermittent Euler solutions

Intermittency Corrections

I lognormal model of [Kolmogorov ’62]: ζ2 = 0.694444.
I β-model [Frisch-Sulem-Nelkin ’78]: ζ2 = 0.733333.
I log-Poisson model of [She-Leveque ’94]: ζ2 = 0.695937.
I mean-field theory of [Yakhot ’01]: ζ2 = 0.700758.
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Intermittent Euler solutions

Intermittent Euler result

Theorem 3 (B.- Masmoudi - Vicol (in preparation))
Fix any α < 5/14. There exist infinitely many weak solutions

u ∈ C 0
t H

α
x

of the 3D Euler equations which have compact support in time.

The number 5/14 is not sharp. Arguments of [C-C-F-S ’08]: for α > 5/6 energy is
conserved.
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Convex Integration Scheme

The convex integration scheme

The proof proceeds via induction, for each q ≥ 0 we assume we are given a
solution (vq, pq, R̊q) to the Navier-Stokes-Reynolds system.

∂tvq + div(vq ⊗ vq) +∇pq − ν∆vq = div R̊q

div vq = 0 .

where the stress R̊q is assumed to be a trace-free symmetric matrix.
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Convex Integration Scheme

The perturbation

As part of the induction step, the perturbation wq+1 = vq+1 − vq is designed such
that the new velocity vq+1 solves the Navier-Stokes-Reynolds system

∂tvq+1 + div(vq+1 ⊗ vq+1) +∇pq+1 − ν∆vq+1 = div R̊q+1

div vq+1 = 0 .

with a smaller Reynolds stress Rq+1. Writing vq+1 = wq+1 + vq and using the
equation for vq we may write

divRq+1 = (−ν∆wq+1 + ∂twq+1) + div(vq ⊗ wq+1 + wq+1 ⊗ vq)

+ div(wq+1 ⊗ wq+1 − Rq) +∇(pq+1 − pq)

=: div
(
R̃linear + R̃quadratic + R̃oscillation

)
+∇(pq+1 − pq).
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Convex Integration Scheme

The perturbation wq+1 = vq+1 − vq is constructed as a superposition of
intermittent Beltrami waves at frequency λq+1:

λq = a(bq)

for a, b � 1. The perturbation will be of the form

wq+1 ∼
∑
ξ∈Λ

aξ(R̊q)Wξ

in order to cancel the low frequency (≈ λq) error of R̊q of size given∥∥∥R̊q

∥∥∥
L1
≤ λ−2β

q+1

for 0 < β � 1. From scaling considerations we expect

‖wq+1‖L2 ≤ λ
−β
q+1 .
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Convex Integration Scheme

Beltrami waves

A stationary divergence free vector field v is called a Beltrami flow if it satisfies
the Beltrami condition:

λv = curl v , λ > 0 .

Given a Beltrami flow v , we have the following identity

div(v ⊗ v) = v · ∇v = ∇|v |
2

2
− v × (curl v) = ∇|v |

2

2
− λv × v = ∇|v |

2

2
.

Setting p := |v |2
2 , then (v , p) is a stationary solution to the Euler equations.
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Convex Integration Scheme

Intermittent Beltrami waves
I Gain if can build a version of the Beltrami waves Wξ such that

‖Wξ(λq+1·)‖L2 ≈ 1, ‖Wξ(λq+1·)‖L1 �λq+1 1

I Recall, in 1D the normalized Dirichlet kernel obeys:∥∥∥∥∥∥ 1√
r

∑
−r≤k≤r

e ikx

∥∥∥∥∥∥
L2

≈ 1,

∥∥∥∥∥∥ 1√
r

∑
−r≤k≤r

e ikx

∥∥∥∥∥∥
L1

≈ log r√
r
� 1.
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Heuristic estimates

Heuristic estimate on dissipation error

Each intermittent Beltrami wave Wξ will be made up of(
λq+1

λq

)p

= λp
′

q+1

distinct frequencies, for some 2 < p′ < p < 3. By setting ν = 1 and writing

∆wq+1 = div(∇wq+1)

= div

∇∑
ξ

aξWξ


The dissipation error’s contribution to R̊q+1 can be heuristically estimated by

‖∇wq+1‖L1 .
∑
ξ

∥∥∥aξWξ

∥∥∥
W 1,1

. λ
1−p′/2
q+1 .
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Heuristic estimates

Estimate on the perturbation

A naïve estimate of the perturbation would give

‖wq+1‖L2 .
∑
ξ

∥∥∥aξWξ

∥∥∥
L2

.
∑
ξ

∥∥∥aξ∥∥∥
L∞

∥∥∥Wξ

∥∥∥
L2

.
∑
ξ

∥∥∥aξ∥∥∥
L∞

However, we have no control on
∥∥∥aξ∥∥∥

L∞
≈
∥∥∥R̊q

∥∥∥1/2
L∞

!
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Heuristic estimates

Lemma 4
Assume f is supported in a ball of radius λ in frequency, and that g is a
(T/σ)3-periodic function. If λ� σ, then

‖f g‖Lp(T3) . ‖f ‖Lp(T3)‖g‖Lp(T3).

Then heuristically we obtain

‖vq+1 − vq‖L2 .
∑
ξ

∥∥∥aξWξ

∥∥∥
L2

.
∑
ξ

∥∥∥aξ∥∥∥
L2

∥∥∥Wξ

∥∥∥
L2

.
∑
ξ

∥∥∥aξ∥∥∥
L2

which gives us the correct estimate since∥∥∥aξ∥∥∥
L2
≈
∥∥∥R̊q

∥∥∥1/2
L1

. λ−βq+1 .
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Future directions

Future directions

Given a weak solution v ∈ C 0
t L

2
x ∩ L2

tH
1
x to the Navier-Stokes equation, we say

that v is a Leray-Hopf solution if in addition it satisfies the energy inequality

1
2

ˆ
T3

∣∣v(x , t)2
∣∣ dx +

ˆ
T3×[0,t]

|∇v(x , s)|2 dxds ≤ 1
2

ˆ
T3
|v(x , 0)|2 dx .

In Jia-Šverák ’15 proved that non-uniqueness of Leray-Hopf weak solutions in the
regularity class L∞t L3,∞

x is implied if a certain spectral assumption holds for a
linearized Navier-Stokes operator. Very recently Guillod-Šverák ’17 have provided
compelling numerical evidence that the spectral condition is satisfied.

We conjecture that non-uniqueness of Leray-Hopf solutions can be proven via
convex integration. This is known in the case where the Laplacian −∆ is replaced
by the fractional laplacian (−∆)s for s ∈ (0, 1/5), Colombo-De Lellis-De Rosa ’17.
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Questions?

Questions?

Tristan Buckmaster (Princeton University) Nonuniqueness of weak solutions to NSE November 29, 2017 22 / 22


	The Navier–Stokes Equations
	Statement of main theorems
	Previous work
	Intermittent Euler solutions
	Convex Integration Scheme
	Heuristic estimates
	Future directions
	Questions?

