Act globally, Compute locally
 Group actions, fixed points and localization

Tara S. Holm

Cornell University
\& IAS
IAS Members's Seminar 20 October 2014

Outline

- Symplectic geometry (with lots of examples)
- Group actions \& fixed points (with lots of examples)
\bullet Localization (with lots of examples)
- Symplectic reduction (how to take a quotient) (with lots of examples)

Symplectic manifolds

A symplectic manifold is a manifold with a two-form $\omega \in \Omega^{2}(M)$ that is:
${ }^{\circ}$ Closed: $\mathrm{d} \omega=0$
\bullet Non-degenerate: $\omega^{n}=\mathrm{dVol} \rightsquigarrow M$ is $2 n$-dimensional \& orientable

Symplectic manifolds

Complex: Latin com-plexus "braided together" Symplectic: Greek $\sigma v \mu-\pi \lambda \varepsilon \kappa \tau \iota \kappa o ́ s$

$$
\left(\mathbb{R}^{2}, \omega=\mathrm{d} x \wedge \mathrm{~d} y\right) \leadsto\left(\mathbb{R}^{2 n}, \omega=\sum \mathrm{d} x_{i} \wedge d y_{i}\right)
$$

Darboux's Theorem:

We may always choose coordinates $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ on M so that locally

$$
\omega=\sum d x_{i} \wedge d y_{i} .
$$

Compact examples

$$
(n \geq 2)
$$

$\bigcirc<S^{2 n}=\left\{\vec{x} \subset \mathbb{R}^{2 n+1} \mid \Sigma x_{i}^{2}=1\right\}$
.

- Grassmannian $\mathcal{G r}\left(\mathrm{k}, \mathbb{C}^{n}\right)=\left\{\mathrm{V} \subseteq \mathbb{C}^{n} \mid \operatorname{dim}_{\mathbb{C}}(\mathrm{V})=\mathrm{k}\right\}$
- Flag varieties

$$
\mathcal{F l a g s}\left(\mathbb{C}^{n}\right)=\left\{\mathrm{V}_{0} \subseteq \mathrm{~V}_{1} \subseteq \cdots \subseteq \mathrm{~V}_{\mathrm{n}}=\mathbb{C}^{n} \mid \operatorname{dim}_{\mathbb{C}}\left(\mathrm{V}_{\mathrm{i}}\right)=\mathrm{i}\right\}
$$

- Smooth complex projective varieties
- Toric varieties
- Based loops $\Omega G=\left\{\gamma: S^{1} \rightarrow \mathrm{G} \mid \gamma(\mathrm{Id})=\mathrm{Id}\right\}$

Example: $\mathcal{P o l}_{d}\left(a_{1}, \ldots, a_{n}\right)$

$\mathcal{P o l}_{\mathrm{d}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right)=\frac{\left\{\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right)\left|\overrightarrow{v_{i}} \in \mathbb{R}^{\mathrm{d}},\left|v_{i}\right|=\mathrm{a}_{\mathrm{i}}, \sum \overrightarrow{v_{i}}=\overrightarrow{0}\right\}\right.}{\operatorname{SO}(\mathrm{d})}$
$\mathcal{P o l}_{3}\left(a_{1}, \ldots, a_{n}\right)$ is symplectic! N.B. $d=3!!$

Symplectic actions

Symplectic manifolds often exhibit symmetries, encoded by a group action. (It's a hard topological question, "How many manifolds do or do not have symmetries?" ...)

DEF: A group action $G \subset M$ is symplectic if it preserves ω; that is,

$$
\tau_{\mathrm{g}}^{*} \omega=\omega \quad \forall \mathrm{g} \in \mathrm{G}
$$

$S^{1} \bigodot S^{2}$ by rotation

$S^{1} \bigodot T^{2}$ by rotation

Symplectic actions

Symplectic manifolds often exhibit symmetries, encoded by a group action. (It's a hard topological question, "How many manifolds do or do not have symmetries?" ...)

DEF: A group action $G \subset M$ is symplectic if it preserves ω; that is,

$$
\tau_{\mathrm{g}}^{*} \omega=\omega \quad \forall \mathrm{g} \in \mathrm{G}
$$

$\mathrm{SO}(3) \bigodot \mathrm{S}^{2}$ by multiplication
$-\mathrm{O}(3) \bigodot_{S^{2}}$ by multiplication-
$S^{1} \bigodot S^{2}$ by rotation

Symplectic actions

DEF: A group action $G C M$ is symplectic if it preserves ω; that is,

$$
\tau_{\mathrm{g}}^{*} \omega=\omega \quad \forall \mathrm{g} \in \mathrm{G}
$$

DEF: Let G be a Lie group with Lie algebra \mathfrak{g}. Suppose $G \subset M$. For any $\xi \in \mathfrak{g}$, we may define a vector field on M by,

$$
\mathcal{X}_{\xi}(p)=\left.\frac{\mathrm{d}}{\mathrm{dt}}[\exp (\mathrm{t} \xi) \cdot \mathrm{p}]\right|_{\mathrm{t}=0}
$$

Infinitesimally

$$
\begin{array}{r}
\mathscr{L}_{\mathcal{X}_{\xi}} \omega=0 \\
\mathscr{L}_{\mathcal{X}_{\xi}} \omega=\mathrm{d} \iota_{\mathcal{X}_{\xi}} \omega+\iota_{\mathcal{X}_{\xi}} \mathrm{d} \omega \\
\Longrightarrow \mathrm{~d}\left(\omega\left(\mathcal{X}_{\xi}, \cdot\right)\right)=0
\end{array}
$$

$S^{1} \bigodot S^{2}$ by rotation \leadsto Vector field parallel to latitude lines

Hamiltonian actions

$\mathrm{d}(\omega(\mathcal{X}, \cdot))=0$
DEF: Suppose $G(M, \omega)$. We say the action is Hamiltonian if

$$
\omega\left(\mathcal{X}_{\xi}, \cdot\right)=d \phi^{\xi} \quad \forall \xi \in \mathfrak{g}
$$

A non-Hamiltonian action

DEF: Suppose $G C_{(M, \omega)}$. We say the action is Hamiltonian if

$$
\omega\left(\mathcal{X}_{\xi}, \cdot\right)=\mathrm{d} \phi^{\xi} \quad \forall \xi \in \mathfrak{g}
$$

Non-Example: $S^{1} C T^{2}=S^{1} \times S^{1}$ rotating the first factor.

But $\quad d y \in H^{1}\left(T^{2} ; \mathbb{Z}\right)$ is certainly not exact!

Hamiltonian actions

DEF: Suppose $G \mathbf{C}_{(M, \omega)}$. We say the action is Hamiltonian if

$$
\omega\left(\mathcal{X}_{\xi}, \cdot\right)=\mathrm{d} \phi^{\xi} \quad \forall \xi, \in \mathfrak{g}
$$

Frankel's Theorem:

A symplectic circle action $S^{1} \mathrm{C}(M, \omega)$ which preserves the compatible complex structure on a compact Kähler manifold M is

Hamiltonian $\Longleftrightarrow M^{s^{1}} \neq \emptyset$.

Hamiltonian actions

Frankel's Theorem:

A symplectic circle action $S^{1} \mathbb{C}(M, \omega)$ which preserves the compatible complex structure on a compact Kähler manifold M is

Hamiltonian $\Longleftrightarrow M^{s^{1}} \neq \emptyset$.

Example: $S^{1} \mathbb{M}=S^{2}=\mathbb{C} P^{1}$
Non-Example: $S^{1} C T^{2}=S^{1} \times S^{1}$ rotating the first factor.

Hamiltonian actions

Frankel's Theorem:

A symplectic circle action $S^{1} C_{(M, \omega)} \quad$ which preserves the compatible complex structure on a compact Kähler manifold M is

Hamiltonian $\Longleftrightarrow M^{s^{1}} \neq \emptyset$.

$\mathrm{T}^{2} \mathrm{C} \operatorname{Pol}_{3}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{5}\right)$ is Hamiltonian.

Hamiltonian actions

Frankel's Theorem:

A symplectic circle action $S^{1} C(M, \omega)$ which preserves the compatible complex structure on a compact Kähler manifold M is

$$
\text { Hamiltonian } \Longleftrightarrow M^{s^{1}} \neq \emptyset
$$

McDuff's Theorem: M is compact.
(a) $S^{1} C\left(M^{4}, w\right) \Longrightarrow$

Hamiltonian $\Longleftrightarrow M^{S^{1}} \neq \emptyset$.
(b) $\exists S^{1} C\left(M^{6}, w\right)$ that has fixed points but is not Hamiltonian.

Questions:

- Are there examples of (b) where the fixed points are isolated?
\bullet Can circle-valued ϕ^{ξ} play an analogous role?

The momentum map

DEF: Suppose $G \mathbf{C}_{(M, \omega)}$. We say the action is Hamiltonian if

$$
\omega\left(\mathcal{X}_{\xi}, \cdot\right)=d \phi^{\xi} \quad \forall \xi \in \mathfrak{g}
$$

DEF: Combining these for all $\xi \in \mathfrak{g}$, we define the momentum map

$$
\begin{aligned}
\Phi: M & \rightarrow \\
p & \mapsto\left(\begin{array}{lll}
\mathfrak{g} & \longrightarrow & \mathfrak{g}^{*} \\
\xi & \mapsto & \phi^{\xi}(p)
\end{array}\right) .
\end{aligned}
$$

Convexity Theorem [Atiyah, Guillemin-Sternberg]:
If $\mathrm{T}=\left(S^{1}\right)^{\mathrm{d}} \mathbf{C}(M, \omega)$ is Hamiltonian, $\Phi(M)$ is a convex polytope.

$$
\Phi(M)=\operatorname{Conv}\left(\Phi\left(M^{\top}\right)\right)
$$

Examples

$$
\stackrel{\square}{\text { Poll }_{3}\left(a_{1}, \ldots, a_{5}\right)}
$$

$$
\mathbb{C P}^{1} \times \mathbb{C} P^{1} \times \mathbb{C} P^{1}
$$

Localization

A localization phenomenon is a global feature of T_{M} that can be described by the evidence of that feature at the T-fixed points.

Convexity Theorem [Atiyah,Guillemin-Sternberg]: If $T=\left(S^{1}\right)^{\mathrm{d}} \mathbf{C}(M, \omega)$ is Hamiltonian, $\Phi(M)$ is a convex polytope.

$$
\Phi(M)=\operatorname{Conv}\left(\Phi\left(M^{\top}\right)\right)
$$

In terms of topology, we use localization to make global equivariant computations in terms of local computations at fixed points.

Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Q Functor $\operatorname{Spaces} \longrightarrow \mathcal{R i n g s}$

Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Q Functor $\operatorname{Spaces} \longrightarrow \mathcal{R i n g s}$
$G C M \leadsto H_{G}^{*}(M ; \mathbb{Z})$ or $H_{G}^{*}(M ; R)$
$f: M \rightarrow N \Longrightarrow f^{*}: H_{G}^{*}(N) \rightarrow H_{G}^{*}(M)$

Mayer-Vietoris
Et cetera

Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Q Functor $\operatorname{Spaces} \longrightarrow \mathcal{R i n g s}$
Q Equivariant cohomology of a point is not \mathbb{Z}

Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Q Functor \quad Spaces $\longrightarrow \mathcal{R i n g s}$
Q Equivariant cohomology of a point is not \mathbb{Z}

$$
\begin{aligned}
T=T^{d}=S^{1} \times & \cdots \times S^{1} \leadsto \\
& H_{T}^{*}(p t ; \mathbb{Z})=\mathbb{Z}\left[x_{1}, \ldots, x_{d}\right] \\
& \operatorname{deg}\left(x_{i}\right)=2
\end{aligned}
$$

Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Q Functor \quad Spaces $\longrightarrow \mathcal{R i n g s}$
Q Equivariant cohomology of a point is not \mathbb{Z}
Q Spaces, maps should be equivariant

Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Q Functor $\operatorname{Spaces} \longrightarrow \mathcal{R i n g s}$
Q Equivariant cohomology of a point is not \mathbb{Z}
Q Spaces, maps should be equivariant

$$
\begin{aligned}
& \mathrm{G} C M \leadsto \mathrm{H}_{\mathrm{G}}^{*}(M ; \mathbb{Z}) \text { or } \mathrm{H}_{\mathrm{G}}^{*}(M ; R) \\
& \mathrm{f}: M \rightarrow \mathrm{~N} \Longrightarrow \mathrm{f}^{*}: \mathrm{H}_{\mathrm{G}}^{*}(\mathrm{~N}) \rightarrow \mathrm{H}_{\mathrm{G}}^{*}(\mathrm{M})
\end{aligned}
$$

Mayer-Vietoris
Et cetera

Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Q Functor $\operatorname{Spaces} \longrightarrow \mathcal{R i n g s}$
Q Equivariant cohomology of a point is not \mathbb{Z}
Q Spaces, maps should be equivariant
9 If $G \subset M$ is a free action, then $H_{G}^{*}(M)=H^{*}(M / G)$
Q Abelianization trick: $H_{G}^{*}(M ; \mathbb{Q}) \cong H_{T}^{*}(M ; \mathbb{Q})^{W}$
(False over \mathbb{Z}-- joint work with Sjamaar)

Cohomological Localization

$$
M^{\top} \longleftrightarrow M \leadsto H_{\mathrm{T}}^{*}(M ; R) \longrightarrow \mathrm{H}_{\mathrm{T}}^{*}\left(M^{\top} ; R\right)
$$

Theorem [Frankel; Atiyah; Kirwan]:
If TC_{M} is a compact Hamiltonian T-manifold, then

$$
\mathrm{H}_{\mathrm{T}}^{*}(\mathrm{M} ; \mathbb{Q}) \longrightarrow \mathrm{H}_{\mathrm{T}}^{*}\left(\mathrm{M}^{\mathrm{T}} ; \mathbb{Q}\right)
$$

is an injection. (The statement sometimes holds over \mathbb{Z}.)

Example

Equivariant cohomology
 $$
M^{\top} \longleftrightarrow M \leadsto H_{T}^{*}(M ; R) \longrightarrow H_{T}^{*}\left(M^{\top} ; R\right)
$$

1. M. Goresky, R. Kottwitz, and R. MacPherson, "Equivariant cohomology, Koszul duality, and the localization theorem." Invent. Math. 131 (1998), no. 1, 25-83.

$$
\alpha \in \mathrm{H}_{\mathrm{T}}^{*}(M ; \mathrm{R}) \Longrightarrow\left(\left.\alpha\right|_{\mathrm{N}},\left.\alpha\right|_{S}\right) \in \mathbb{R}[\chi] \oplus \mathbb{R}[\chi]
$$

$\underline{\underline{\text { Fact: }}}\left(\left.\alpha\right|_{N},\left.\alpha\right|_{S}\right) \in \operatorname{Im} \Longleftrightarrow x \mid\left(\left.\alpha\right|_{N}-\left.\alpha\right|_{S}\right)$
GKM Theorem: Suppose that
(a) M^{\top} consists of isolated points; and
(b) M^{S} consists of isolated points and $S^{2} s$, for each $\mathrm{S} \subset \mathrm{T}$ of codimension 1 .

Then $H_{\top}^{*}(M ; \mathbb{Q}) \cong\left\{\left(f_{v}\right) \in \bigoplus_{v \in M^{\top}} \mathbb{Q}\left[x_{1}, \ldots, x_{d}\right]\left|\alpha_{e}\right| f_{v}-f_{w}\right.$ for each $\left.S_{e}^{2}\right\}$.

Equivariant cohomology
 $$
M^{\top} \longleftrightarrow M \leadsto H_{T}^{*}(M ; R) \longrightarrow \mathrm{H}_{\mathrm{T}}^{*}\left(M^{\top} ; R\right)
$$

1. M. Goresky, R. Kottwitz, and R. MacPherson, "Equivariant cohomology, Koszul duality, and the localization theorem." Invent. Math. 131 (1998), no. 1, 25-83.

\cdots

Equivariant cohomology $M^{\top} \longleftrightarrow M \xrightarrow{\longrightarrow} \mathrm{H}_{\mathrm{T}}^{*}(M ; R) \longrightarrow \mathrm{H}_{\mathrm{T}}^{*}\left(M^{\top} ; R\right)$

1. M. Goresky, R. Kottwitz, and R. MacPherson, "Equivariant cohomology, Koszul duality, and the localization theorem." Invent. Math. 131 (1998), no. 1, 25-83.

Equivariant invariants of $\Omega \mathrm{G}$

[66] Megumi Harada, André Henriques, and Tara S. Holm. Computation of generalized equivariant cohomologies of Kac-Moody flag varieties. Adv. Math., 197(1): 198-221, 2005.

Theorem [Harada-Henriques-H.]: The GKM description works, even in infinite dimensional cases, for

- Equivariant cohomology $\mathrm{H}_{\mathrm{T}}^{*}(\mathrm{M} ; \mathbb{Q})$ (Sometimes integrally!) $\mathrm{H}_{\mathrm{T}}^{*}(\mathrm{M} ; \mathbb{Z})$
- Equivariant K-theory $\mathrm{K}_{\mathrm{T}}^{*}(\mathrm{M})$
- Equivariant cobordism $\mathrm{MU}_{\mathrm{T}}^{*}(\mathrm{M})$

Further applications \& generalizations

- Schubert calculus

Questions:

- Does this lead to better/easier combinatorics?
- How do you program "subrings" rather than "quotients"?
- Quantum invariants and Gromov-Witten theory Question:
- How do you see quantum corrections in M^{\top} ?
- Torus manifolds (Masuda, Panov, Park)
- Toric origami manifolds (H-Pires)

Questions:

- What happens in the non-simply connected case?
\bullet Can you determine manifolds up to cobordism?

Symplectic reduction

We have the moment map

$$
\begin{aligned}
\Phi: M & \rightarrow \\
p & \mapsto\left(\begin{array}{rll}
\mathfrak{t} & \longrightarrow & \mathfrak{t}^{*} \\
\xi & \mapsto & \phi^{\xi}(p)
\end{array}\right) .
\end{aligned}
$$

It can be used to prove localization results because ϕ^{ξ} behaves like a Morse function, with critical set M^{\top} (for most ξ).

The moment map is also an equivariant map: $\mathrm{T} \mathrm{C}^{-1}(\mu)$ for every $\mu \in \mathfrak{t}$. If μ is a regular value, $\Phi^{-1}(\mu)$ is a manifold.

$$
\begin{aligned}
\operatorname{dim}\left(\Phi^{-1}(\mu)\right) & =\operatorname{dim}(M)-\operatorname{dim}(T) \\
& =2 n-d \\
\operatorname{dim}\left(\Phi^{-1}(\mu) / T\right) & =\operatorname{dim}(M)-2 \cdot \operatorname{dim}(T) \\
& =2 n-2 d
\end{aligned}
$$

Symplectic reduction

We have the moment map

$$
\begin{aligned}
\Phi: M & \rightarrow \\
p & \mapsto\left(\begin{array}{rll}
\mathfrak{t} & \longrightarrow & \mathfrak{t}^{*} \\
\xi & \mapsto & \phi^{\xi}(p)
\end{array}\right) .
\end{aligned}
$$

It can be used to prove localization results because ϕ^{ξ} behaves like a Morse function, with critical set M^{\top} (for most ξ).

The moment map is also an equivariant map: $\mathrm{T} \mathrm{C}^{-1}(\mu)$ for every $\mu \in \mathfrak{t}$. If μ is a regular value, $\Phi^{-1}(\mu)$ is a manifold.

Theorem [Marsden-Weinstein]:

If $T C_{M}$ is a compact Hamiltonian T-manifold, and μ is a regular value of Φ, then

$$
M / / T(\mu)=\Phi^{-1}(\mu) / T
$$

is symplectic, with at worst orbifold singularities.

Example of symplectic reduction

$S^{1} \mathbf{C} \mathbb{C}^{n}$

$$
t \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(t \cdot z_{1}, \ldots, t \cdot z_{n}\right)
$$

$$
\begin{aligned}
\Phi: \mathbb{C}^{n} & \rightarrow \mathbb{R} \\
\left(z_{1}, \ldots, z_{n}\right) & \mapsto \sum\left|z_{\mathfrak{i}}\right|^{2}
\end{aligned}
$$

$$
\Phi^{-1}(\mu)=\left\{\left.\left(z_{1}, \ldots, z_{n}\right)\left|\sum\right| z_{i}\right|^{2}=\mu\right\}=S^{2 n-1}
$$

$$
\Phi^{-1}(\mu) / S^{1}=S^{2 n-1} / S^{1}=\mathbb{C} P^{n-1}
$$

$\xrightarrow{\Phi_{S^{1}}}$

More examples

Delzant's Theorem:

$\left\{\begin{array}{c}\text { compact toric } \\ \text { symplectic manifolds }\end{array}\right\} \leadsto \leadsto\left\{\begin{array}{c}\text { simple rational } \\ \text { smooth convex polytopes }\end{array}\right\}$

$\mathbb{C}^{n} / / T^{\mathrm{d}}$

$$
\left.\begin{array}{l}
\mathrm{T}^{\mathrm{n}} \mathbf{C}_{\mathcal{F l a g s}\left(\mathbb{C}^{\mathrm{n}}\right)} \\
\mathrm{T}^{\mathrm{n}} \mathrm{C}_{\mathcal{G r}\left(\mathrm{k}, \mathbb{C}^{\mathrm{n}}\right)} \\
\mathrm{T} \mathbb{C}_{\lambda}
\end{array}\right\} \mathcal{O}_{\lambda} / / \mathrm{T} \text { is a weight variety. }
$$

Yet another example

$$
\begin{aligned}
\mathcal{P o l}_{3}\left(a_{1}, \ldots, a_{n}\right) & =\frac{\left\{\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right)\left|\overrightarrow{v_{i}} \in \mathbb{R}^{3},\left|v_{i}\right|=a_{i}, \sum \overrightarrow{v_{i}}=\overrightarrow{0}\right\}\right.}{\operatorname{SO}(3)} \\
& =S_{a_{1}}^{2} \times \cdots \times \mathrm{S}_{\mathrm{a}_{n}}^{2} / / \mathrm{SO}(3)
\end{aligned}
$$

Cohomology of symplectic reductions

$$
\Phi^{-1}(\mu) \longleftrightarrow M \leadsto \mathrm{H}_{\mathrm{T}}^{*}(M ; \mathbb{Q}) \longrightarrow \mathrm{H}_{\mathrm{T}}^{*}\left(\Phi^{-1}(\mu) ; \mathbb{Q}\right)
$$

Kirwan's Theorem:

If CC_{M} is a compact Hamiltonian T-manifold, then

$$
\mathrm{K}_{\mu}: \mathrm{H}_{\mathrm{T}}^{*}(\mathrm{M} ; \mathbb{Q}) \longrightarrow \mathrm{H}_{\mathrm{T}}^{*}\left(\Phi^{-1}(\mu) ; \mathbb{Q}\right) \cong \mathrm{H}^{*}\left(\Phi^{-1}(\mu) / \mathrm{T} ; \mathbb{Q}\right)
$$

is a surjection (with isomorphism when μ is a regular value).
Theorem [H-Tolman]:
If T_{M} is a compact Hamiltonian T-manifold with connected stabilizer subgroups and if M^{\top} is torsion free, then κ_{μ} is surjective over \mathbb{Z}.

Technique: The map $\|\Phi\|^{2}$ is minimally degenerate.
Theorem [H-Karshon]:
Minimal degeneracy is a local condition.

Cohomology of symplectic reductions

$$
\Phi^{-1}(\mu) \longleftrightarrow M \leadsto \mathrm{H}_{\mathrm{T}}^{*}(M ; \mathbb{Q}) \longrightarrow \mathrm{H}_{\mathrm{T}}^{*}\left(\Phi^{-1}(\mu) ; \mathbb{Q}\right)
$$

Kirwan's Theorem:

If $T C_{M}$ is a compact Hamiltonian T-manifold, then

$$
\kappa_{\mu}: \mathrm{H}_{\mathrm{T}}^{*}(M ; \mathbb{Q}) \longrightarrow \mathrm{H}_{\mathrm{T}}^{*}\left(\Phi^{-1}(\mu) ; \mathbb{Q}\right) \cong \mathrm{H}^{*}\left(\Phi^{-1}(\mu) / \mathrm{T} ; \mathbb{Q}\right)
$$

is a surjection (with isomorphism when μ is a regular value).

Theorem [Tolman-Weitsman, Goldin]:
The ideal $\operatorname{ker}\left(\kappa_{\mu}\right)$ is computable in terms of localization.

Computing $\operatorname{ker}\left(\kappa_{\mu}\right)$

Computing $\operatorname{ker}\left(\kappa_{\mu}\right)$

Invariants of symplectic reductions that are orbifolds

Theorem [Goldin-H-Knutson]:
When $M / / T$ is an orbifold,

$$
\bigoplus_{t \in T} H_{T}^{*}\left(M^{t}\right) \longrightarrow H_{C R}^{*}(M / / T)
$$

is surjective, with computable kernel.
degree 0 Gromov-Witten invariants

Invariants of symplectic reductions that are orbifolds

Theorem [Goldin-H-Knutson]:
When $M / / T$ is an orbifold,

$$
\bigoplus_{t \in T} H_{T}^{*}\left(M^{t}\right) \longrightarrow H_{C R}^{*}(M / / T)
$$

is surjective, with computable kernel.

Examples

- Symplectic toric orbifolds
- Weight varieties

Invariants of symplectic reductions that are orbifolds

Theorem [Goldin-H-Knutson]:
When $M / / T$ is an orbifold,

$$
\bigoplus_{t \in \mathrm{~T}} \mathrm{H}_{\mathrm{T}}^{*}\left(\mathrm{M}^{\mathrm{t}}\right) \longrightarrow \mathrm{H}_{\mathrm{CR}}^{*}(M / / \mathrm{T})
$$

is surjective, with computable kernel.

Generalizations

- Equivariant K-theory (with Goldin, Harada, Kimura)
- Explicit computations in K-theory (with Goldin, Harada)
\bullet Preliminary computations of $\mathrm{QH}^{*}\left(\mathcal{P o l}_{3}(\overrightarrow{\mathrm{a}})\right)$ (with Chen, Taipale; building on Gonzalez, Woodward, Ziltener, et al)

The End

Thank you!!

