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The Graph Regularity Lemma

One of the most powerful tools in extremal combinatorics

–with applications in CS, Number Theory, Geometry, and more.

Theorem (Graph regularity lemma (informal), Szemerédi ’78)

The vertex set of every graph can be partitioned into a bounded number of
parts such that almost all the bipartite graphs induced by pairs of parts in the
partition are ε-quasirandom.
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Graph Regularity Lemma – Applications

Early applications:

I Tight bound for Ramsey-Turán problem for K4 [Szemerédi ’72]

I Triangle Removal Lemma [Ruzsa-Szemerédi ’76]

I Tight bound for Erdős-Stone theorem [Chvátal-Szemerédi ’81]

I The number of H-free graphs [Erdős-Frankl-Rödl ’86]
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History: Erdős-Frankl-Rödl 1986

...

...
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20 Years Later... The Hypergraph Regularity Lemma

The main difficulty

Which notion of regularity/quasirandomness to use?
Should: 1. hold for all hypergraphs & 2. have a counting lemma

Theorem (Triangle Counting Lemma)

If G is an n × n × n tripartite graph whose 3 bipartite graphs are ε-regular of
densities α, β γ then the number of triangles in G is (αβγ ± 7ε)n3.
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Bad Example

The naive definition of 3-graph regularity does not have a counting lemma

—not even a K
(3)
4 -counting lemma!

Example

There is a 4-partite 3-graph which is K
(3)
4 -free even though each of the 4 triples

of vertex classes is o(1)-regular:

I Let T be a balanced 4-partite random tournament
(where the direction of each xy is chosen independently and uniformly).

I Let H be the 4-partite 3-graph where xyz is an edge if it forms a
directed cycle in T .

I Thus, each xyz forms an edge in H with probability 1/4,
and each of the 4 triples of vertex classes of H is o(1)-regular.

I It is easy to see that H is K
(3)
4 -free.
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Multiple Hypergraph Regularity Lemmas

Different versions of hypergraph regularity were proved by:

I Frankl-Rödl ’02, Rödl-Skokan ’04, Nagle-Rödl-Schacht ’06

I Gowers ’07

I Tao ’06

I Rödl-Schacht ’07

These are not known to be qualitatively (let alone quantitatively) equivalent.

Remark [Chung-Graham-Wilson ’89]

In graphs, discrepancy, codegree, eigenvalues,... are poly-equivalent.
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Upper Bounds for Hypergraph Regularity

Common to all known proofs of the k-graph regularity lemma –
their bound grows like Ackk , the level-k Ackermann function:

I Ack1(n) = 2n

I Ack2(n) = T(n) = 2·
··

2 }
n times

I Ack3(n) = W(n) = T(· · · (T(1)) · · · ) (n compositions)

I Ack4(n) = . . .
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Detour: Applications

Original motivation—a combinatorial proof of Szemerédi’s Theorem:

Theorem (Szemerédi ’74)

∀δ > 0, k ∈ N ∃N = N(δ, k) :
∀A ⊆ [N], if |A| ≥ δN then A contains a k-term AP.

I The case of 3-APs (Roth’s Theorem) follows from graph regularity.
I 1. Reduce Roth’s Theorem to graph removal lemma.
I 2. Prove graph removal lemma.

I The case of k-APs follows from (k − 1)-graph regularity.
I 1. Reduce Szemeredi’s Theorem to hypergraph removal lemma.
I 2. Prove hypergraph removal lemma.
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Applications - cont.

Perhaps most important application–Multidimensional Szemerédi’s Theorem:

Theorem (Furstenberg-Katznelson ’78)

∀δ > 0, d ∈ N, X ⊆ Zd ∃N = N(δ, d ,X ) :
∀A ⊆ [N]d , if |A| ≥ δNd then A ⊇ a + cX for some a ∈ Zd , c ∈ N.

I Original proof uses ergodic theory, relies on Axiom of Choice.

I Only proof giving bounds relies on the hypergraph regularity lemma.

Fact
Improving upper bound for hypergraph regularity from Ackk to Ackk0 ⇒
first primitive recursive bound for Multidimensional Szemerédi’s Theorem.

I Obtaining such bounds for van der Waerden’s and Szemerédi’s
Theorems (two special cases) were open problems for many decades
(until solved by Shelah [JAMS ’89] and Gowers [GAFA ’01] respectively).
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Lower Bounds for Hypergraph Regularity

Theorem (Gowers ’97)

Tower-type bounds are unavoidable for graph regularity.

[Tao ’06] predicted Ackk -type bounds are unavoidable for k-graph regularity.

Theorem (Main result (informal), M.-Shapira ’18+)

Ackk -type bounds are unavoidable for k-graph regularity, for all k ≥ 2.

In fact, we prove this lower bound for a new notion of regularity which,
compared to previous notions, is:

I Weaker. (In fact, strictly weaker.)

I Simpler: No need for an elaborate hierarchy of parameters that controls
how regular one level of the partition is compared to the previous one.
(In fact, it has almost nothing to do with hypergraphs!)
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The Strategy of [Gowers ’97]

I Szemerédi’s tower-type UB comes from constructing a regular partition
in a sequence of steps, each increasing the partition size exponentially.

I Gowers’ LB “reverse engineers” this UB, showing that constructing the
partition using a sequence of exponential refinements is unavoidable.

I More precisely, Gowers constructs a graph G , using a sequence of
exponential refinements P1,P2, . . . of V (G ), with the following property:
If Z “approximately” refines Pi but not Pi+1 then Z is not ε-regular.

Henceforth, we only consider 3-graph regularity.

I The wowzer-type UB’s come from constructing a regular partition in a
sequence of steps, each applying the graph regularity lemma and thus
increasing the partition size by a tower-type function.

I So the question is: Can we show that a sequence of applications of the
graph regularity lemma is unavoidable?
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Lower Bounds for Hypergraph Regularity
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A Barrier to Proving Hypergraph Regularity Lower Bounds

Summary:

Goal

Prove a wowzer-type (i.e., A3) lower bound.

I All known UB proofs iterate graph regularity (hence the wowzer bounds).

I LB in particular must work vs. known UB proofs.

Observation

There is an alternative UB proof that iterates “relaxed” graph regularity.

Barrier
Any wowzer-type LB must imply a tower-type LB for relaxed graph regularity.

All known graph LB proofs fail to work vs. relaxed graph regularity.
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Sparse Regular Approximation Lemma (SRAL)

SRAL

Input: G with pn2 edges.
Freedom: add/remove 1% · pn2 edges.
Goal: find a (small) p10-regular partition.

I Trivial upper bound: T(1/p50).

I Lower bound: ?
All previous constructions were not resilient to a constant fraction of
edge modification.

Intuition

They were iterative, constructing the graph in “layers”. However, if one is
allowed to modify 1% of the edges, one can essentially stop the construction
at a stage where the graph still has a regular partition of constant order.
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Bounds for SRAL

Theorem (LB for SRAL, M.-Shapira ’17)

Lower bound: T(Ω(log 1
p )).

Remark

The same paper also proves a matching upper bound for SRAL,
and deduces Fox’s celebrated T(O(log 1

ε )) bound [Ann. of Math. ’11] for the
graph removal lemma.
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An Even Weaker Notion of Graph Regularity

It turns out SRAL lower bound is not weak enough.

We define a notion which is at the “correct level of strength”:

Definition (〈δ〉-regularity for graphs)

I A bipartite graph on (A,B) is 〈δ〉-regular:
∀A′ ⊆ A,B ′ ⊆ B, if |A′| ≥ δ|A|, |B ′| ≥ δ|B| then d(A′,B ′) ≥ 1

2d(A,B).

I P is a 〈δ〉-regular partition of G :
Can modify ≤ δ · e(G ) edges so ∀A 6= B ∈ P, G ′[A,B] is 〈δ〉-regular.

Important difference from ε-regularity: Can prove LB for 〈2−30〉-regularity.
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Our Lower Bounds, Formally

Theorem (LB for graph 〈δ〉-regularity, M.-Shapira ’18+)

∀p ∈ (0, 1) ∃ graph G of density p :
every 〈2−30〉-regular partition of G is of order ≥ T(log 1

p ).

Next goal

Lift LB for graph 〈δ〉-regularity to a LB for 3-graph 〈δ〉-regularity.

Theorem (Main result (for 3-graphs), M.-Shapira ’18+)

∀p ∈ (0, 1) ∃ 3-graph H of density p :
every 〈2−73〉-regular partition of H is of order ≥W(log 1

p ).
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Reductions

Corollary

The 3-graph regularity lemmas of Frankl-Rödl and of Gowers both have a
wowzer-type lower bound.

In fact, even trivial versions of these notions are stronger than our notion.
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Detour: How Strong is Our Lower Bound?

Question

Is 〈δ〉-regularity strong enough for counting small sub-hypergraphs?

Answer

It is not even strong enough to count triangles in graphs!

Lemma

There are arbitrary large tripartite graphs of density ≈ δ5 whose every pair of
classes span a 〈δ〉-regular graph and yet are triangle free.
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How Strong is our Lower Bound - cont.

Reminder:

Definition (〈δ〉-regularity for graphs)

I A bipartite graph on (A,B) is 〈δ〉-regular:
∀A′ ⊆ A,B ′ ⊆ B, if |A′| ≥ δ|A|, |B ′| ≥ δ|B| then d(A′,B ′) ≥ 1

2d(A,B).

I P is a 〈δ〉-regular partition of G :
Can modify ≤ δ · e(G ) edges so ∀A 6= B ∈ P, G ′[A,B] is 〈δ〉-regular.

Proof sketch.
I A random k × k × k tripartite graph of density p ≈ δ5 with k ≈ δ−7 is

both 〈δ〉-regular and has ≈ δ−6 triangles (� pk2).

I Remove each triangle and take a blow-up; 〈δ〉-regularity is preserved.
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Main Result: Proof Sketch
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Graph Lower Bounds: Back to the Strategy of [Gowers ’97]

Let P1 � · · · � Ps be equipartitions with |Pi+1| = 2c|Pi |.

Theorem (Gowers ’97)

∃ graph G such that
∀ε-regular partition Z of G we have:

∀i : Z ≺x Pi ⇒ Z ≺4x Pi+1 for x ≥ √ε .

The implication was improved to give a simpler proof of the bound T(1/εc).

Theorem (M.-Shapira ’16)

∃ graph G such that
∀ε-regular partition Z of G we have:

∀i : Z ≺x Pi ⇒ Z ≺x+8ε Pi+1 .

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 23 / 40



Graph Lower Bounds: Back to the Strategy of [Gowers ’97]

Let P1 � · · · � Ps be equipartitions with |Pi+1| = 2c|Pi |.

Theorem (Gowers ’97)

∃ graph G such that
∀ε-regular partition Z of G we have:

∀i : Z ≺x Pi ⇒ Z ≺4x Pi+1 for x ≥ √ε .

The implication was improved to give a simpler proof of the bound T(1/εc).

Theorem (M.-Shapira ’16)

∃ graph G such that
∀ε-regular partition Z of G we have:

∀i : Z ≺x Pi ⇒ Z ≺x+8ε Pi+1 .

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 23 / 40



Graph Lower Bounds: Back to the Strategy of [Gowers ’97]

Let P1 � · · · � Ps be equipartitions with |Pi+1| = 2c|Pi |.

Theorem (Gowers ’97)

∃ graph G such that
∀ε-regular partition Z of G we have:

∀i : Z ≺x Pi ⇒ Z ≺4x Pi+1 for x ≥ √ε .

The implication was improved to give a simpler proof of the bound T(1/εc).

Theorem (M.-Shapira ’16)

∃ graph G such that
∀ε-regular partition Z of G we have:

∀i : Z ≺x Pi ⇒ Z ≺x+8ε Pi+1 .

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 23 / 40



Core Construction (special case)

Henceforth:

I L and R are vertex classes,

I L1 � · · · � Ls and R1 � · · · � Rs are s equipartitions of L and R,
respectively, with |Li | = 2c|Ri |.

Theorem (Core construction, special case)

∃ bipartite graph G on (L,R) with d(G ) = 2−s such that
∀〈2−28〉-regular partition (L,R) of G we have:

∀i : R ≺2−9 Ri ⇒ L ≺2−9 Li .

Main differences compared to [Gowers ’97]:

I The partitions’ orders can grow arbitrarily fast

I ...and s can be arbitrarily large, with d(G) decreasing with it.

I The graph’s property is one sided.
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Core Construction ⇒ Graph Lower Bound

To prove our graph 〈δ〉-regularity lower bound from Core Construction,
put 4 copies along a 4-cycle.

T (1), T (2), ..., T (log 1
p)T (1), T (2), ..., T (log 1

p)

d(G) = p

|Li | = |Ri+1|
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Core Construction (general case)

Theorem (Core Construction)

∃ equipartitions G1 � · · · � Gs of L× R with |Gj | = 2j such that ∀G ∈ Gj
∀〈2−28〉-regular partition (L,R) of G we have:

∀i ≤ j : R ≺2−9 Ri ⇒ L ≺2−9 Li .
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Why is Core Construction One-Sided?

I In order to prove a wowzer-type LB we will apply Core Construction with
partitions whose orders grow as a wowzer-type function.

I Had Core Construction held without the one-sided assumption then one
would have been able to prove wowzer-type LB for graph 〈δ〉-regularity
and thus also for Szemerédi’s regularity lemma.

I In other words, if one wishes to have a construction that holds with
arbitrarily fast growing orders, then one has to introduce one-sidedness.
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The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a
3-graph we also use Core Construction in a somewhat unexpected way:

I L will be a complete bipartite graph V1 × V2 (and R will be V3)
I The Li ’s will be partitions of V1 × V2 themselves given by another

application of Core Construction
I The partitions will be of wowzer-type growth.

The second application of Core Construction will “multiply” Li and Ri to
give a 3-graph which is hard for 〈δ〉-regularity.

V3

V1 V2

V3

V1 ×V2

H GH

d(H) = p

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 28 / 40



The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a
3-graph we also use Core Construction in a somewhat unexpected way:

I L will be a complete bipartite graph V1 × V2 (and R will be V3)

I The Li ’s will be partitions of V1 × V2 themselves given by another
application of Core Construction

I The partitions will be of wowzer-type growth.

The second application of Core Construction will “multiply” Li and Ri to
give a 3-graph which is hard for 〈δ〉-regularity.

V3

V1 V2

V3

V1 ×V2

H GH

d(H) = p

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 28 / 40



The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a
3-graph we also use Core Construction in a somewhat unexpected way:

I L will be a complete bipartite graph V1 × V2 (and R will be V3)
I The Li ’s will be partitions of V1 × V2 themselves given by another

application of Core Construction

I The partitions will be of wowzer-type growth.

The second application of Core Construction will “multiply” Li and Ri to
give a 3-graph which is hard for 〈δ〉-regularity.

V3

V1 V2

V3

V1 ×V2

H GH

d(H) = p

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 28 / 40



The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a
3-graph we also use Core Construction in a somewhat unexpected way:

I L will be a complete bipartite graph V1 × V2 (and R will be V3)
I The Li ’s will be partitions of V1 × V2 themselves given by another

application of Core Construction
I The partitions will be of wowzer-type growth.

The second application of Core Construction will “multiply” Li and Ri to
give a 3-graph which is hard for 〈δ〉-regularity.

V3

V1 V2

V3

V1 ×V2

H GH

d(H) = p

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 28 / 40



The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a
3-graph we also use Core Construction in a somewhat unexpected way:

I L will be a complete bipartite graph V1 × V2 (and R will be V3)
I The Li ’s will be partitions of V1 × V2 themselves given by another

application of Core Construction
I The partitions will be of wowzer-type growth.

The second application of Core Construction will “multiply” Li and Ri to
give a 3-graph which is hard for 〈δ〉-regularity.

V3

V1 V2

V3

V1 ×V2

H GH

d(H) = p

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 28 / 40



The Plan for 3-Graphs

Perhaps the most surprising aspect of our proof is that in order to construct a
3-graph we also use Core Construction in a somewhat unexpected way:

I L will be a complete bipartite graph V1 × V2 (and R will be V3)
I The Li ’s will be partitions of V1 × V2 themselves given by another

application of Core Construction
I The partitions will be of wowzer-type growth.

The second application of Core Construction will “multiply” Li and Ri to
give a 3-graph which is hard for 〈δ〉-regularity.

V3

V1 V2

V3

V1 ×V2

H GH

d(H) = p

Guy Moshkovitz (Harvard University) Tight Bounds for Regularity Lemmas 28 / 40



The Definition of 3-Graph 〈δ〉-Regularity

A 2-partition P consists of a vertex equipartition V1, . . . ,Vt ,

and an edge equipartition K [Vi ,Vj ] = G i,j
1 ∪ · · · ∪ G i,j

` (∀i 6= j).

Vj

Vi
Gi,j

1 ∪ · · · ∪Gi,j
`

For 3-regularity, P itself has to satisfy a condition.

Definition (〈δ〉-good partition)

A 2-partition is 〈δ〉-good if every bipartite graph G i,j
` is 〈δ〉-regular.
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An Auxiliary Graph

Definition (The auxiliary graph GH)

Let H be a 3-partite 3-graph H on (V1,V2,V3).
Define a bipartite graph GH = GH(V1, V2 × V3) on (V1,V2 × V3) by

E (GH) =
{

(v1, (v2, v3))
∣∣ (v1, v2, v3) ∈ E (H)

}
.

V1

V2 V3

V1

V2 ×V3

H GH

v1

v2
v3

v1

(v2, v3)
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3-graph 〈δ〉-regularity

Definition (〈δ〉-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V1,V2,V3), and
let P be a 〈δ〉-good 2-partition on {V1,V2,V3}.

P is a 〈δ〉-regular partition of H if:

1 P[V1] ∪ P[V2 × V3] is a 〈δ〉-regular partition of GH(V1,V2 × V3).

V1

V2 V3

V1

V2 ×V3

H GH
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3-graph 〈δ〉-regularity - cont.

Definition (〈δ〉-regularity for 3-graphs)

Let H be a 3-partite 3-graph on (V1,V2,V3), and
let P be a 〈δ〉-good partition on {V1,V2,V3}.
P is a 〈δ〉-regular partition of G if:

1 P[V1] ∪ P[V2 × V3] is a 〈δ〉-regular partition of GH(V1,V2 × V3),

2 P[V2] ∪ P[V1 × V3] is a 〈δ〉-regular partition of GH(V2,V1 × V3),

3 P[V3] ∪ P[V1 × V2] is a 〈δ〉-regular partition of GH(V3,V1 × V2).
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Our 3-graph Construction

V3

V1 V2

V3

V1 ×V2

H GH

T (1), T (2), ..., T (W (log 1
p
))T (1), T (2), ..., T (W (log 1

p
))

T (1), T (2), ..., T (W (log 1
p
))

1 Apply Core Construction with (L,R) = (V1,V2).

2 Apply Core Construction with (L,R) = (V1 × V2,V3).

Property: P[V3] ≺2−9 V3
i and P[V2] ≺2−9 V2

i ⇒ P[V1] ≺2−9 V1
i+1.

Finally, take several copies of H along a (tight) 6-cycle.
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Open Questions

Open Question

We now know that “k-graph SRAL” has an Ackk(Ω(log 1
p )) lower bound.

I Prove a matching upper bound.

I Deduce an Ackk(Ω(log 1
ε )) bound for the k-graph removal lemma,

thus improving the current bound Ackk(Ω(poly( 1
ε )).

Open Question

Come up with a weaker notion than hypergraph regularity that has primitive
recursive bounds and yet is useful.
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Thank you!
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The construction of our 3-graph

For 1 ≤ j ≤ 3 fix canonical partitions V j
1 � V j

2 � · · · with |V j
i | ≈ T(i).

Apply Key Lemma twice:

1 (L,R) = (V1,V2), (Li ,Ri ) = (V1
i+1,V2

i ) to get G1 � G2 � · · · .
2 (L,R) = (V1 × V2,V3), (Li ,Ri ) = (GW(i+1),V3

W(i)).

Take any graph in the last edge partition to get a 3-graph H.
Finally, take several copies of H along a small design.

Main claim

If H is 〈δ〉-regular relative to P and

if P[V3] ≺2−9 V3
i and P[V2] ≺2−9 V2

i then P[V1] ≺ 4√
δ V1

i+1.
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if P[V3] ≺2−9 V3
i and P[V2] ≺2−9 V2

i then P[V1] ≺ 4√
δ V1

i+1.

Suppose W(j) ≤ i < W(j + 1):

V1 ×V2
V3

V1 V2

V3
i � V3

W(j)GW(j+1) � Gi

V2
iV1

i

P [V3]P [V1 ×V2]

P [V2]P [V1]

Gi

GH
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Lower Bounds Proof for Graph 〈δ〉-Regularity

The construction uses the following graph operation:

Modified blow-up of a bipartite graph G :

I replace each vertex x of G by a set of 2Ω(|V (G)|) new vertices X

I replace each edge (u, v) with a bipartite graph on (U,V ) as follows:
letting U ′ ⊆ U be a random half, replace (u, v) by K (U ′,V ).

Construction

Starting from K1,1, iteratively apply modified blow-ups log 1
p times.

Each application increases #vertices exponentially and halves the density
⇒ the resulting graph has density p and T(Ω(log 1

p )) vertices.

Intuition

If G has a “unique” regular partition then so does its modified blow-up.
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Triangle Removal Lemma

Arguably most important application of the graph regularity lemma:

Theorem (Triangle Removal Lemma, Ruzsa-Szemerédi ‘76)

For every n-vertex graph,

#edge-disjoint triangles ≥ εn2 ⇒ #triangles ≥ f (ε)n3.

Application:

Theorem (Roth’s Theorem, ‘53)

For every subset A ⊆ [n] = {1, 2, . . . , n},

|A| ≥ εn and n ≥ n0(ε) ⇒ A contains a 3-AP.
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TRL ⇒ Roth’s Theorem

Theorem (Roth’s Theorem)

∀A ⊆ [n] : |A| ≥ 0.01n ⇒ A contains a 3-AP.

Proof.
I Observation: a pair of (ordered) APs cannot agree on two elements.

I Consider all (ordered) 3-APs (x , x + a, x + 2a) with x ∈ [n], a ∈ A.

I Consider the corresponding tripartite graph (on [n] ∪ [2n] ∪ [3n]).

I #edge-disjoint-triangles is n|A| ≥ 0.01n2. TRL ⇒ another triangle.

I Its elements: (y , y + α, y + 2α′) with α 6= α′ ∈ A.
I We have (y + 2α′)− (y + α) = 2α′ − α ∈ A.

I We found a (non-trivial) 3-AP in A: (α, α′, 2α′ − α).

Best known bounds:
εln(1/ε) ≤ Rem(ε) ≤ T(1/ε)

n−1/
√

log n ≤ r3(n) ≤≈ (log n)−1
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