Transport in RMT

Alice Guionnet

MIT

IAS workshop, nov. 6 2013

Joint work with F. Bekerman, Y. Dabrowski, A. Figalli, D. Shlyakhtenko

Outline

Transport

Results

Proofs

Transport in RMT

Transport

Results

Proofs

Transport

Let P,Q be two probability measures on \mathbb{R}^d and $\mathbb{R}^{d'}$. A transport map from P to Q is a measurable function $T:\mathbb{R}^d\to\mathbb{R}^{d'}$ so that for all bounded continuous function f

$$\int f(T(x))dP(x) = \int f(x)dQ(x).$$

That is T(x) has law Q under P.

We denote T#P = Q.

Fact (von Neumann [1932]) : If $P, Q \ll dx$, T exists.

Transport in the non-commutative setting

Non commutative laws are tracial states : τ : $\mathbb{C}\langle X_1,\ldots,X_d\rangle \to \mathbb{C}$

$$\tau(PP^*) \ge 0, \quad \tau(PQ) = \tau(QP), \quad \tau(I) = 1.$$

Here
$$(X_{i_1}\cdots X_{i_k})^*=X_{i_k}\cdots X_{i_1}$$
.

If τ, τ' are tracial states, can we build a transport map such that F_1, \cdots, F_d so that $\tau = F \# \tau'$:

$$\tau(P(X_1,...,X_d)) = \tau'(P(F_1(X_1,...,X_d),...,F_d(X_1,...,X_d)))$$
?

Examples of non-commutative laws

• Let (X_1, \dots, X_d) be $d N \times N$ Hermitian matrices,

$$\tau(P) := \frac{1}{N} \mathrm{Tr} \left(P(X_1, \cdots, X_d) \right).$$

Here $\operatorname{Tr}(A) = \sum_{i=1}^{N} A_{ii}$.

• Let (X_1, \dots, X_d) be $d N \times N$ Hermitian random matrices,

$$\tau(P) := \mathbb{E}\left[\frac{1}{N}\mathrm{Tr}\left(P(X_1,\cdots,X_d)\right)\right]$$

• Let (X_1^N, \dots, X_d^N) be $d N \times N$ Hermitian random matrices for $N \ge 0$ so that

$$au(P) := \lim_{N \to \infty} \mathbb{E}[\frac{1}{N} \operatorname{Tr}\left(P(X_1^N, \cdots, X_d^N)\right)]$$

exists for all polynomial P.

Transport in RMT

Transport

Results

Proofs

Perturbative non-commutative laws

Let $V \in \mathbb{C}\langle X_1, \dots, X_d
angle$ and set

$$\mathbb{P}_{V}^{N}(dX_{1}^{N},\ldots,dX_{d}^{N})=\frac{1}{Z_{N}}e^{-N\operatorname{Tr}(V(X_{1}^{N},\ldots,X_{d}^{N}))}\prod 1_{\|X_{i}^{N}\|\leq M}dX_{i}^{N}$$

Theorem (A-G –E. Maurel Segala (2006)) Let M > 2 be given and $W = W^*$. Let $V = \frac{1}{2} \sum X_i^2 + \epsilon W$. There exists $\epsilon(M, W) > 0$ so that for $|\epsilon| \le \epsilon(M, W)$ for any polynomial P

$$\tau_V(P) = \lim_{N \to \infty} \int \frac{1}{N} \operatorname{Tr}(P(X_1^N, \dots, X_d^N)) d\mathbb{P}_V^N(X_1^N, \dots, X_d^N)$$

Transport of non-commutative laws, perturbative case

$$\mathbb{P}_{V}^{N}(dX_{1}^{N},\ldots,dX_{d}^{N}) = \frac{1}{Z_{N}}e^{-N\operatorname{Tr}(V(X_{1}^{N},\ldots,X_{d}^{N}))}\prod 1_{\|X_{i}^{N}\|\leq M}dX_{i}^{N}$$

$$\tau_{W}(P) = \lim_{N\to\infty}\int \frac{1}{N}\operatorname{Tr}(P(X_{1}^{N},\ldots,X_{d}^{N}))d\mathbb{P}_{\frac{1}{2}\sum X_{i}^{2}+W}^{N}(X_{1}^{N},\ldots,X_{d}^{N})$$

Theorem (A-G –Shlyakhtenko (2012)) Let M>2 and $W=W^*$. Let $\|P\|=\sum |\lambda_q(P)|4^{deg(P)}$. There exists $\epsilon(M,W)>0$ so that for $|\epsilon|\leq \epsilon(M,W)$, there exists $(F,\tilde{F})\in (\overline{\mathbb{C}\langle X_1,\ldots,X_d\rangle}^{\|.\|})^d$ so that

$$\tau_{\epsilon W} = F \# \tau_0 \qquad \tau_0 = \tilde{F} \# \tau_{\epsilon W}$$

Generalization to non perturbative setting

$$\mathbb{P}_{V}^{N}(dX_{1}^{N},...,dX_{d}^{N}) = \frac{1}{Z_{N}}e^{-N\operatorname{Tr}(V(X_{1}^{N},...,X_{d}^{N}))}\prod 1_{\|X_{i}^{N}\| \leq M}dX_{i}^{N}$$

$$\tau_{W}(P) = \lim_{N \to \infty} \int \frac{1}{N}\operatorname{Tr}(P(X_{1}^{N},...,X_{d}^{N}))d\mathbb{P}_{\frac{1}{2}\sum X_{i}^{2}+W}^{N}(X_{1}^{N},...,X_{d}^{N})$$

Theorem (WIP with Y-Dabrowski and D-Shlyakhtenko)

Assume that " $V = \frac{1}{2} \sum X_i^2 + W$ is strictly convex", then there exists $(F_i)_{1 \le i \le d} \in (\mathbb{C}\langle X_1, \dots, X_d \rangle)^d$ so that

$$\tau_W = F \# \tau_0$$

Application to transport of random matrices

Let
$$V = \sum X_i^2/2 + \epsilon W$$
. Let $X^N = (X_1^N, \dots, X_d^N)$ has law

$$\mathbb{P}^N_\epsilon(dX_1^N,\ldots,dX_d^N) = \frac{1}{Z_V^N} \exp\{-N \mathrm{Tr}(V(X_1^N,\ldots,X_d^N))\} dX_1^N \cdots dX_d^N$$

Let $F^N: \mathbb{R}^{N^d} \to \mathbb{R}^{N^2d}$ be the (optimal) transport of \mathbb{P}^N_V onto \mathbb{P}^N_0 . Then, if ϵ is small enough, there exists a function $F \in \overline{\mathbb{C}\langle X_1, \dots, X_d \rangle}^{\|\cdot\|}$ so that

$$\int \sum_{i,j=1}^{N} \sum_{k=1}^{d} |F^{N}(X)_{k}(i,j) - F(X_{1}^{N}, \dots, X_{d}^{N})_{k}(i,j)|^{2} dP_{0}^{N}(X_{1}^{N}, \dots, X_{d}^{N})$$

vanishes as N goes to infinity.

Transport for β -models

$$d\mathbb{P}_{N}^{V}(\lambda_{1},\ldots,\lambda_{N}) = \frac{1}{Z_{N}} \prod_{i < j} |\lambda_{i} - \lambda_{j}|^{\beta} e^{-N \sum V(\lambda_{i})} \prod d\lambda_{i}$$
$$\lim_{N \to \infty} \frac{1}{N} \sum f(\lambda_{i}) = \int f(x) d\mu_{V}(x)$$

Theorem (Bekerman–Figalli–G 2013)

Assume $V, W C^{31}(\mathbb{R})$, with equilibrium measures μ_V, μ_W with connected support. Assume V, W are non critical. Then there exists $T_0 : \mathbb{R} \to \mathbb{R}$ C^{19} , $T_1 : \mathbb{R}^N \to \mathbb{R}^N$ C^1 so that

$$\|(T_0^{\otimes N} + \frac{T_1}{N})\#\mathbb{P}_N^V - \mathbb{P}_N^W\|_{TV} \leq const.\sqrt{\frac{\log N}{N}}$$
.

Universality for β -models

$$d\mathbb{P}_{N}^{V}(\lambda_{1},\ldots,\lambda_{N}) = \frac{1}{Z_{N}} \prod_{i < j} |\lambda_{i} - \lambda_{j}|^{\beta} e^{-N \sum V(\lambda_{i})} \prod d\lambda_{i}$$

Assume that there are T_0 , T_1 smooth so that

$$\|(T_0^{\otimes N} + \frac{T_1}{N})\#\mathbb{P}_N^V - \mathbb{P}_N^W\|_{\mathcal{T}V} \leq \mathsf{const.}\sqrt{\frac{\log N}{N}}\,,$$

so that
$$\sup_{1 \le k \le N} \|T_1^{N,k}\|_{L^1(\mathbb{P}_N^V)} + \sup_{k,k'} \frac{|T_1^{N,k} - T_1^{N,k'}|}{\sqrt{N}|\lambda_k - \lambda_{k'}|} \le C \log N.$$

Corollary

There is universality at the edges and in the bulk.

C.f Bourgade, Erdös, Yau [1104.2272, 1306.5728] and M. Shcherbina [1310.7835].

Transport in RMT

Transport

Results

Proofs

Idea of the proof : Monge-Ampère equation

Consider probability measures P,Q on \mathbb{R}^d and assume they have smooth densities

$$P(dx) = e^{-V(x)}dx$$
 $Q(dx) = e^{-W(x)}dx$.

Then T#P=Q is equivalent to

$$\int f(T(x))e^{-V(x)}dx = \int f(x)e^{-W(x)}dx$$
$$= \int f(T(y))e^{-W(T(y))}JT(y)dy$$

with JT the Jacobian of T. Hence, it is equivalent to the Monge-Ampère equation

$$-V(x) = -W(T(x)) + \log JT(x).$$

Non-commutative perturbative setting : commutative analogue

$$d\mathbb{P}_{N}^{V}(\lambda_{1},\ldots,\lambda_{N}) = \frac{1}{Z_{N}} \prod_{i < j} |\lambda_{i} - \lambda_{j}|^{\beta} e^{-N \sum V(\lambda_{i})} \prod d\lambda_{i}$$

Then

$$\lim_{N\to\infty}\frac{1}{N}\sum f(\lambda_i)=\int fd\mu_V$$

with $\mu_V = F \# \sigma$ iff

$$\frac{\beta}{2}\int \log \frac{F(x)-F(y)}{x-y}d\sigma(y)=V(F(x))-\frac{1}{2}x^2.$$

Non-commutative perturbative setting : commutative analogue

$$d\mathbb{P}_{N}^{V}(\lambda_{1},\ldots,\lambda_{N}) = \frac{1}{Z_{N}} \prod_{i < j} |\lambda_{i} - \lambda_{j}|^{\beta} e^{-N \sum V(\lambda_{i})} \prod d\lambda_{i}$$

Then

$$\lim_{N\to\infty}\frac{1}{N}\sum f(\lambda_i)=\int f d\mu_V$$

with $\mu_V = F \# \sigma$ iff

$$\frac{\beta}{2} \int \log \frac{F(x) - F(y)}{x - y} d\sigma(y) = V(F(x)) - \frac{1}{2}x^2.$$

Compare with Monge-Ampère equation with transport $F^{\otimes N}$: $\mathbb{P}^{1/2x^2}_V$ a.s

$$\beta \sum_{i < i} \log \frac{F(\lambda_i) - F(\lambda_j)}{\lambda_i - \lambda_j} + \sum \log F'(\lambda_i) = N \sum V(F(\lambda_i)) - \frac{1}{2} \sum \lambda_i^2$$

Non-commutative perturbative setting

Let
$$V = \sum X_i^2/2 + W$$
 and put

$$\mathbb{P}_{W}^{N}(dX_{1}^{N},\ldots,dX_{d}^{N})=\frac{1}{Z_{V}^{N}}\exp\{-N\mathrm{Tr}(V(X_{1}^{N},\ldots,X_{d}^{N}))\}dX_{1}^{N}\cdots dX_{d}^{N}.$$

$$\tau_W(P) = \lim_{N \to \infty} \int \frac{1}{N} \operatorname{Tr}(P(X_1^N, \dots, X_d^N)) d\mathbb{P}_V^N(X_1^N, \dots, X_d^N)$$

with $\tau_W = F \# \tau_0$ iff, with *JF* the Jacobian of *F*,

$$(1\otimes au_0+ au_0\otimes 1)\mathrm{Tr}\log JF=\left\{rac{1}{2}\sum F(X)_j^2+W(F(X))
ight\}-rac{1}{2}\sum X_j^2$$

Non-commutative perturbative setting

Let
$$V = \sum X_i^2/2 + W$$
 and put

$$\mathbb{P}_W^N(dX_1^N,\ldots,dX_d^N)=\frac{1}{Z_V^N}\exp\{-N\mathrm{Tr}(V(X_1^N,\ldots,X_d^N))\}dX_1^N\cdots dX_d^N.$$

$$\tau_W(P) = \lim_{N \to \infty} \int \frac{1}{N} \operatorname{Tr}(P(X_1^N, \dots, X_d^N)) d\mathbb{P}_V^N(X_1^N, \dots, X_d^N)$$

with $\tau_W = F \# \tau_0$ iff, with JF the Jacobian of F,

$$(1 \otimes \tau_0 + \tau_0 \otimes 1) \operatorname{Tr} \log JF = \left\{ \frac{1}{2} \sum F(X)_j^2 + W(F(X)) \right\} - \frac{1}{2} \sum X_j^2$$

This equation has a unique solution $F_j = D_j G$ if W is small by a fixed point argument.

Non-perturbative setting : convex case

$$\tau_1(dx) = e^{-W(x)}dx$$

Non-perturbative setting: convex case

$$\tau_1(dx)=e^{-W(x)}dx$$

Define a flow
$$T_{s,t}$$
 so that $T_{s,t}\# au_{V_s}= au_{V_t}$, $V_t=(1-t)V+tW$,

$$T_{0,t}=T_{0,s}\circ T_{s,t}.$$

Non-perturbative setting: convex case

$$\tau_1(dx) = e^{-W(x)}dx$$

Define a flow $T_{s,t}$ so that $T_{s,t}\# au_{V_s}= au_{V_t},\ V_t=(1-t)V+tW$,

$$T_{0,t}=T_{0,s}\circ T_{s,t}.$$

 $\phi_t = \lim_{s \to t} T_{s,t} = \partial_t T_{0,t} \circ T_{0,t}^{-1}$ satisfies if $\phi_t = \nabla \psi_t$

$$L_t \psi_t = W - V$$

 $L_t = \Delta - \nabla V_t . \nabla$ infinitesimal generator.

Non-perturbative setting: convex case

$$\tau_1(dx) = e^{-W(x)}dx$$

Define a flow $T_{s,t}$ so that $T_{s,t}\# au_{V_s}= au_{V_t},\ V_t=(1-t)V+tW$,

$$T_{0,t}=T_{0,s}\circ T_{s,t}.$$

$$\phi_t = \lim_{s \to t} T_{s,t} = \partial_t T_{0,t} \circ T_{0,t}^{-1}$$
 satisfies if $\phi_t = \nabla \psi_t$

$$L_t \psi_t = W - V$$

 $L_t = \Delta - \nabla V_t \cdot \nabla$ infinitesimal generator. $P_s^{V_t} = e^{sL_t}$,

$$\psi_t = \int_0^\infty [P_s^{V_t}(W - V) - \frac{1}{Z} \int (W - V)e^{-(1-t)V - tW} dx] ds.$$

$$d\mathbb{P}_{N}^{V}(\lambda_{1},\ldots,\lambda_{N}) = \frac{1}{Z_{N}} \prod_{i < j} |\lambda_{i} - \lambda_{j}|^{\beta} e^{-N \sum V(\lambda_{i})} \prod d\lambda_{i}$$

Find $T_t^N : \mathbb{R}^N \to \mathbb{R}^N$ "nice"

$$\sup_{t \in [0,1]} \|T_t^N \# \mathbb{P}_N^V - \mathbb{P}_N^{V_t}\|_{TV} \to 0 \qquad V_t = (1-t)V + tW$$

$$d\mathbb{P}_{N}^{V}(\lambda_{1},\ldots,\lambda_{N}) = \frac{1}{Z_{N}} \prod_{i < j} |\lambda_{i} - \lambda_{j}|^{\beta} e^{-N \sum V(\lambda_{i})} \prod d\lambda_{i}$$

Find $T_t^N : \mathbb{R}^N \to \mathbb{R}^N$ "nice"

$$\sup_{t \in [0,1]} \|T_t^N \# \mathbb{P}_N^V - \mathbb{P}_N^{V_t}\|_{TV} \to 0 \qquad V_t = (1-t)V + tW$$

Aim : Build ψ_t^N , $\partial_t T_t^N \circ (T_t^N)^{-1} = \nabla \psi_t^N$ so that

$$R_t^N(\psi) = L_t \psi_t^N - (V - W)$$

goes to zero in $L^1(\mathbb{P}_N^V)$. Then T_t^N solution of $\partial_t T_t^N = \nabla \psi_t^N(T_t^N)$ is an approximate transport. L_t the infinitesimal generator of Dyson BM in potential V_t .

Find

$$\psi_t^N(\lambda) = \sum_i [\psi_{0,t}(\lambda_i) + \frac{1}{N}\psi_{1,t}(\lambda_i)] + \frac{1}{N}\sum_i \psi_{2,t}(\lambda_i,\lambda_j)$$

so that

$$R_t^N(\psi) = L_t \psi_t^N - (V - W)$$

goes to zero in $L^1(\mathbb{P}_N^V)$.

Find

$$\psi_t^N(\lambda) = \sum_i [\psi_{0,t}(\lambda_i) + \frac{1}{N}\psi_{1,t}(\lambda_i)] + \frac{1}{N}\sum_i \psi_{2,t}(\lambda_i, \lambda_j)$$

so that

$$R_t^N(\psi) = L_t \psi_t^N - (V - W)$$

goes to zero in $L^1(\mathbb{P}^V_N)$. We find with $M_N = \sum (\delta_{\lambda_i} - \mu_{V_t})$

$$R_{t}^{N} = N \int [\Xi \psi'_{0,t} + W - V](x) dM_{N}(x) + \cdots - \frac{\beta}{2N} \iint \frac{\psi'_{1,t}(x) - \psi'_{1,t}(y)}{x - y} dM_{N}(x) dM_{N}(y) + \dots$$

with
$$\Xi f(x) = V'_t(x)f(x) - \beta \int \frac{f(x) - f(y)}{x - y} d\mu_{V_t}(y),$$

Find

$$\psi_t^N(\lambda) = \sum_i [\psi_{0,t}(\lambda_i) + \frac{1}{N}\psi_{1,t}(\lambda_i)] + \frac{1}{N}\sum_i \psi_{2,t}(\lambda_i,\lambda_j)$$

so that

$$R_t^N(\psi) = L_t \psi_t^N - (V - W)$$

goes to zero in $L^1(\mathbb{P}^V_N)$. We find with $M_N = \sum (\delta_{\lambda_i} - \mu_{V_t})$

$$R_{t}^{N} = N \int [\Xi \psi'_{0,t} + W - V](x) dM_{N}(x) + \cdots - \frac{\beta}{2N} \iint \frac{\psi'_{1,t}(x) - \psi'_{1,t}(y)}{x - y} dM_{N}(x) dM_{N}(y) + \dots$$

with
$$\Xi f(x) = V'_t(x)f(x) - \beta \int \frac{f(x) - f(y)}{x - y} d\mu_{V_t}(y),$$

 \equiv is invertible, with inverse $\equiv^{-1}f$ C^{r-1} if f C^r . Choose $\psi_{0,t},\psi_{1,t},\psi_{2,t}$ so that the first line vanishes, show the second is neglectable.

Open problems

- How far can we push this type of arguments to obtain isomorphisms classes for von Neumann algebras?
- The local fluctuations for several matrix models should be the same as those of some $P(X_1, ..., X_n)$, X_i independent GUE. Can we prove local fluctuations for $P(X_1, ..., X_n)$, X_i independent GUE (e.g when P is the gradient of a convex function)?
- The transport method is quite robust and should be "easily" adapted to other "one-matrix models".