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Transport Results Proofs

Transport

Let P, Q be two probability measures on RY and RY"
A transport map from P to @ is a measurable function
T :R?Y = RY so that for all bounded continuous function f

/ F(T(x))dP(x) = / F(x)dQ(x) .

That is T(x) has law Q under

P .\

We denote T#P = Q. P Y

Fact (von Neumann [1932]) : If P, Q@ < dx, T exists.
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Transport in the non-commutative setting

Non commutative laws are tracial states : 7: C(Xy,..., Xy) — C
T(PP*) >0, 7(PQ)=71(QP), 7(I)=1.
Here (X,'l s -X;k)* = X,' . -X,'l.

If 7,7’ are tracial states, can we build a transport map such that
Fi, - ,Fqsothat 7 = F#1' :

T(P(X1,...,Xq)) = 7 (P(F1(X1, ..., Xq), -, Fa(X1,..., Xq)))?
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Examples of non-commutative laws

o Let (Xy,---,Xy) be d N x N Hermitian matrices,

T(P) := %Tr(P(Xl,'-- , Xd)) -

Here Tr(A) = ZINZI Aii.
e Let (X1, --,Xy) be d N x N Hermitian random matrices,

(P = E[%Tr(P(Xl,--- X))

o Let (X{V,---,XN) be d N x N Hermitian random matrices
for N > 0 so that

7(P) = IJ@@E[%% (PO, X))

exists for all polynomial P.
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Transport Results Proofs

Perturbative non-commutative laws

Let V € C(Xy,...,Xy) and set

1 _ N N
BY(aX{,...,dXg) = e MR [ 10 <X

Theorem ( A-G —E. Maurel Segala (2006))
Let M > 2 be given and W = W*. Let V = £ 5" X? + eW.

There exists ¢(M, W) > 0 so that for |e| < e(M, W) for any
polynomial P

) 1
T\/(P) = I\Ilinoo / NTI‘(P(XlN, ... aXcIIV))dPI\\/I(XlNT o Xé’v)
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Transport of non-commutative laws, perturbative case

1
]P,\\/I(dX]_N, ey dXC,IV) = ZiNeiNTr(V(XlN’m’XéV))H 1||XIN||§MdXIN

_ 1
w(P) = lim /NTr(P(XlN,...,XC',V))d]PgVZXI?JFW(XIN,...,Xé")

N—oo

Theorem ( A-G —Shlyakhtenko (2012))
Let M >2 and W = W*. Let ||P|| = 3" |\q(P)|49€8(P)
There exists ¢(M, W) > 0 so that for |e| < ¢(M, W), there exists

(F.F) e (TX, . Xa) Y so that

Tew = F#719 70 = F#rew
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Generalization to non perturbative setting

1
PY(ax{Y,...,dx}) = Z—Ne—"’Tr(V(XWme))H Lyxm<mdX

1
Tw(P) = lim / TP, - Xg))dPY

N—oo 2

ZX{2+W(X1N7 cee 7Xcllv)

Theorem (WIP with Y-Dabrowski and D-Shlyakhtenko)
Assume that “V = %EX,Q + W is strictly convex”, then there
exists (Fi)1<i<d € (C(Xq,...,Xq)) so that

T™W — F#To



Transport Results Proofs

Application to transport of random matrices

Let V=3 X2/2+eW. Let XV = (X{V,..., X)) has law

1
PN(aXx), ..., dx}) = ﬁexp{—NTr(V(XlN, X axY - dx Y
14

Let FV - RN — RN be the ( optimal) transport of P onto PY.
Then, if € is small enough, there exists a function
F e C(X,... ,Xd)”'” so that

/ZZF” RO, X )PP O, X8

ij=1k=1

vanishes as N goes to infinity.
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Transport for S-models

1 .
dPY( M, ... ) = 7 [T = xPe M= VOI T d
i<j

Jim ST = [ (0

Theorem (Bekerman-Figalli-G 2013)

Assume V., W C3Y(R), with equilibrium measures i, piyy with
connected support. Assume V', W are non critical. Then there
exists To : R —> R C19 T : RN - RN (1 so that

. T log N
I(T§N + )#BK — B |7 < const.y/ =2~

Proofs
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Universality for S-models

dPY(A1, ..., ) = H\)\ — AP VRV TT d
/<j

Assume that there are Ty, T1 smooth so that

T log N
(TSN + 22K — Bl < const.ﬁ,

N,k Nk’
T

gy +sup A< Clog .
L (Ew) " VN — A

so that sup ||T
1<k<N
Corollary

There is universality at the edges and in the bulk.

C.f Bourgade, Erdds, Yau [1104.2272, 1306.5728] and M.
Shcherbina [1310.7835].
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Transport Results Proofs
Idea of the proof : Monge-Ampere equation

Consider probability measures P, @ on R? and assume they have
smooth densities

P(dx) = V™ dx Q(dx) = e WM gx.

Then T#P = @ is equivalent to

/ F(T(x))e V™dx = / f(x)e™ W) dx

- / F(T(y))e VT T (y)dy

with JT the Jacobian of T. Hence, it is equivalent to the
Monge-Ampere equation

—V(x)=-W(T(x)) + log JT(x).
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Non-commutative perturbative setting : commutative
analogue

dPY( M, ..., ) = H\)\—)\|'B NIV TT di
I<_]

Then

with py = F#o iff
5 [10e ="M ao) - v(r() -

x2.

1
2
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Non-commutative perturbative setting : commutative

analogue
dPY( M, ..., ) =z H\)\ = AjPe VRV TT d
i<j

Then
. 1
Jim 4 ST = [y
with py = F#o iff
5 107 = a0ty — i) -

x2.

N =

Compare with Monge-Ampere equation with transport FEN :

1/2x2
IP / a.s

ﬁng A _A +Z log F/(Ai) =N V(F()\,-))—%Z/\,?

i<j
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Non-commutative perturbative setting
Let V =3 X?/2+ W and put

PY (aX{Y, ..., )_ exp{ NTr (VXY . o XD ax - ax Y.
V

. "1
w(P) = lim /NTr(P(Xl’V,...,Xc’,V))dP’\y(Xl’V,...,XgV)

N—oo

with 7y = F#1g iff, with JF the Jacobian of F,

(I1®71+ 17 ®1)Trlog JF = {;ZF(X)f+ W(F(X))} B %ijz
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Non-commutative perturbative setting
Let V =3 X?/2+ W and put

PY (aX{Y, ..., )— exp{ NTr (VXY . o XD ax - ax Y.
V

_ 1
w(P) = lim /NTr(P(xl’V,...,Xc’,V))dP’\y(Xl’V,...,XgV)

N—oo

with 7y = F#1g iff, with JF the Jacobian of F,
1 1
(1® 70+ 70 ® 1)Trlog JF = {2 D> F(X);+ W(F(X))} -5 > oX?

This equation has a unique solution F; = D;G if W is small by a
fixed point argument.
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Non-perturbative setting : convex case

To(dx) = e~V dx "(x, = e WMdx
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Non-perturbative setting : convex case

To(dx) = V(¥) dx "(x, = e~ W) gx

Define a flow Ts¢ so that T #7y, =7y, Vi =(1—t)V +tW,

TO,t = TO,s o Ts,t .
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Non-perturbative setting : convex case

To(dx) = V(¥) dx "(x, = e~ W) gx

Define a flow Ts¢ so that T #7y, =7y, Vi =(1—t)V +tW,
Toe=Toso Tst.
¢r = lims e Tsp = 0: To,e 0 Ty | satisfies if ¢ = Vi
Lipe =W — V

Ly = A — V V4.V infinitesimal generator.
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Non-perturbative setting : convex case

To(dx) = V(¥) dx "(x, = e~ W) gx

Define a flow Ts; so that Ts#71y, = 71v,, Ve = (1—t)V +tW,
Toe=Toso Tst.
Or =limst Tst = 0¢ Tor 0 TO . satisfies if ¢ = V),
Lipyy =W -V
Ly = A — V V4.V infinitesimal generator. PVt = eslt,

1

_ - Vi _ = o —(1-t)V—tW
wt—/o (PY(W — V) Z/(W Ve dx]ds
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One matrix case and approximate transport

dP{ (AL, .-, An) = H\)\—)\|f3 N VA Hd)\

I<_]
Find TN : RN — RN *“nice”

sup |[TV#PY —PYllrv =0 Ve=(1-t)V +tW
te[0,1]

Proofs
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One matrix case and approximate transport

1 _ .
dPY( M, ..., ) = 7 [T = xfPe M= VOITT d
i<j

Find TN : RN — RN *“nice”

sup |[TV#PY —PYllrv =0 Ve=(1-t)V +tW
te[0,1]

Aim : Build 9N, 9, TN o (TN)™1 = V¢V so that
RY(¢) = Lepl — (V= W)

goes to zero in LY(PY). Then T} solution of 9, TN = VyN(TN)
is an approximate transport. L; the infinitesimal generator of
Dyson BM in potential V4.



Transport Results Proofs

One matrix case and approximate transport
Find

vr'(N) = Z[wm M)+ e+ g 3 e )
so that

RtN(w) = LtT/Jév —(V-w)
goes to zero in L1(P)).
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One matrix case and approximate transport
Find

Z[wm )+ wlt Zth(A”A

so that
RtN(w) = LtT/Jév - (V_ W)
goes to zero in L1(PY). We find with My = >"(8x, — pv,)

RN = N/[E%tJrWV](x)dMN(x)Jr
//wlt X_%t( )dMN( YdMn(y) +

with  ZF(x) = )—/3/ ) Gy, (),
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One matrix case and approximate transport
Find

U (N) = Z[%t + wlt NZth(A,,A

so that
RtN(w) = LtT/Jév - (V_ W)
goes to zero in L1(PY). We find with My = >"(8x, — pv,)

RV = N / Edhe + W — V](x)dMy(x) +
//wlt X_%t( )dMN( YdMn(y) +

with  =f(x) = )—5/ dNVt( ):

= is invertible, with inverse = 1f CL1if f C’. Choose
Yo,t,V1,t, Y2, SO that the first line vanishes, show the second is
neglectable.




Proofs

Open problems

e How far can we push this type of arguments to obtain
isomorphisms classes for von Neumann algebras ?

e The local fluctuations for several matrix models should be the
same as those of some P(Xi,...,X,), X;i independent GUE.
Can we prove local fluctuations for P(Xi, ..., X,), Xi
independent GUE (e.g when P is the gradient of a convex
function) ?

e The transport method is quite robust and should be “easily”
adapted to other “one-matrix models”.
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