Transport in RMT

Alice Guionnet

MIT
IAS workshop, nov. 62013

Joint work with F. Bekerman, Y. Dabrowski, A. Figalli, D. Shlyakhtenko

Outline

Transport

Results

Proofs

Transport in RMT

Transport

Results

Proofs

Transport

Let P, Q be two probability measures on \mathbb{R}^{d} and $\mathbb{R}^{d^{\prime}}$. A transport map from P to Q is a measurable function $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ so that for all bounded continuous function f
$\int f(T(x)) d P(x)=\int f(x) d Q(x)$.
That is $T(x)$ has law Q under P.

We denote $T \# P=Q$.

P

Q

Fact (von Neumann [1932]) : If $P, Q \ll d x, T$ exists.

Transport in the non-commutative setting

Non commutative laws are tracial states: $\tau: \mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle \rightarrow \mathbb{C}$

$$
\tau\left(P P^{*}\right) \geq 0, \quad \tau(P Q)=\tau(Q P), \quad \tau(I)=1 .
$$

Here $\left(X_{i_{1}} \cdots X_{i_{k}}\right)^{*}=X_{i_{k}} \cdots X_{i_{1}}$.
If τ, τ^{\prime} are tracial states, can we build a transport map such that F_{1}, \cdots, F_{d} so that $\tau=F \# \tau^{\prime}$:

$$
\tau\left(P\left(X_{1}, \ldots, X_{d}\right)\right)=\tau^{\prime}\left(P\left(F_{1}\left(X_{1}, \ldots, X_{d}\right), \ldots, F_{d}\left(X_{1}, \ldots, X_{d}\right)\right)\right) ?
$$

Examples of non-commutative laws

- Let $\left(X_{1}, \cdots, X_{d}\right)$ be $d N \times N$ Hermitian matrices,

$$
\tau(P):=\frac{1}{N} \operatorname{Tr}\left(P\left(X_{1}, \cdots, X_{d}\right)\right)
$$

Here $\operatorname{Tr}(A)=\sum_{i=1}^{N} A_{i j}$.

- Let $\left(X_{1}, \cdots, X_{d}\right)$ be $d N \times N$ Hermitian random matrices,

$$
\tau(P):=\mathbb{E}\left[\frac{1}{N} \operatorname{Tr}\left(P\left(X_{1}, \cdots, X_{d}\right)\right)\right]
$$

- Let $\left(X_{1}^{N}, \cdots, X_{d}^{N}\right)$ be $d N \times N$ Hermitian random matrices for $N \geq 0$ so that

$$
\tau(P):=\lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{1}{N} \operatorname{Tr}\left(P\left(X_{1}^{N}, \cdots, X_{d}^{N}\right)\right)\right]
$$

exists for all polynomial P.

Transport in RMT

Transport

Results

Proofs

Perturbative non-commutative laws

Let $V \in \mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle$ and set

$$
\mathbb{P}_{V}^{N}\left(d X_{1}^{N}, \ldots, d X_{d}^{N}\right)=\frac{1}{Z_{N}} e^{-N \operatorname{Tr}\left(V\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right)} \prod 1_{\left\|X_{i}^{N}\right\| \leq M} d X_{i}^{N}
$$

Theorem (A-G -E. Maurel Segala (2006))
Let $M>2$ be given and $W=W^{*}$. Let $V=\frac{1}{2} \sum X_{i}^{2}+\epsilon W$. There exists $\epsilon(M, W)>0$ so that for $|\epsilon| \leq \epsilon(M, W)$ for any polynomial P

$$
\tau_{V}(P)=\lim _{N \rightarrow \infty} \int \frac{1}{N} \operatorname{Tr}\left(P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right) d \mathbb{P}_{V}^{N}\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)
$$

Transport of non-commutative laws, perturbative case

$$
\begin{gathered}
\mathbb{P}_{V}^{N}\left(d X_{1}^{N}, \ldots, d X_{d}^{N}\right)=\frac{1}{Z_{N}} e^{-N \operatorname{Tr}\left(V\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right)} \prod 1_{\left\|X_{i}^{N}\right\| \leq M} d X_{i}^{N} \\
\tau_{W}(P)=\lim _{N \rightarrow \infty} \int \frac{1}{N} \operatorname{Tr}\left(P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right) d \mathbb{P}_{\frac{1}{2} \sum X_{i}^{2}+W}\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)
\end{gathered}
$$

Theorem (A-G -Shlyakhtenko (2012))
Let $M>2$ and $W=W^{*}$. Let $\|P\|=\sum\left|\lambda_{q}(P)\right| 4^{\operatorname{deg}(P)}$. There exists $\epsilon(M, W)>0$ so that for $|\epsilon| \leq \epsilon(M, W)$, there exists $(F, \tilde{F}) \in\left(\overline{\mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle}{ }^{\|\cdot\|}\right)^{d}$ so that

$$
\tau_{\epsilon} W=F \# \tau_{0} \quad \tau_{0}=\tilde{F} \# \tau_{\epsilon} W
$$

Generalization to non perturbative setting

$$
\begin{gathered}
\mathbb{P}_{V}^{N}\left(d X_{1}^{N}, \ldots, d X_{d}^{N}\right)=\frac{1}{Z_{N}} e^{-N \operatorname{Tr}\left(V\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right)} \prod 1_{\left\|X_{i}^{N}\right\| \leq M} d X_{i}^{N} \\
\tau_{W}(P)=\lim _{N \rightarrow \infty} \int \frac{1}{N} \operatorname{Tr}\left(P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right) d \mathbb{P}_{\frac{1}{2} \sum X_{i}^{2}+W}\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)
\end{gathered}
$$

Theorem (WIP with Y-Dabrowski and D-Shlyakhtenko) Assume that " $V=\frac{1}{2} \sum X_{i}^{2}+W$ is strictly convex", then there exists $\left(F_{i}\right)_{1 \leq i \leq d} \in\left(\overline{\mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle}\right)^{d}$ so that

$$
\tau_{W}=F \# \tau_{0}
$$

Application to transport of random matrices

Let $V=\sum X_{i}^{2} / 2+\epsilon W$. Let $X^{N}=\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$ has law
$\mathbb{P}_{\epsilon}^{N}\left(d X_{1}^{N}, \ldots, d X_{d}^{N}\right)=\frac{1}{Z_{V}^{N}} \exp \left\{-N \operatorname{Tr}\left(V\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right\} d X_{1}^{N} \cdots d X_{d}^{N}\right.$
Let $F^{N}: \mathbb{R}^{N^{d}} \rightarrow \mathbb{R}^{N^{2} d}$ be the (optimal) transport of \mathbb{P}_{V}^{N} onto \mathbb{P}_{0}^{N}. Then, if ϵ is small enough, there exists a function $F \in \overline{\mathbb{C}\left\langle X_{1}, \ldots, X_{d}\right\rangle}{ }^{\|\cdot\|}$ so that
$\int \sum_{i, j=1}^{N} \sum_{k=1}^{d}\left|F^{N}(X)_{k}(i, j)-F\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)_{k}(i, j)\right|^{2} d P_{0}^{N}\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$
vanishes as N goes to infinity.

Transport for β-models

$$
\begin{gathered}
d \mathbb{P}_{N}^{V}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{Z_{N}} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum V\left(\lambda_{i}\right)} \prod d \lambda_{i} \\
\lim _{N \rightarrow \infty} \frac{1}{N} \sum f\left(\lambda_{i}\right)=\int f(x) d \mu V(x)
\end{gathered}
$$

Theorem (Bekerman-Figalli-G 2013)
Assume $V, W C^{31}(\mathbb{R})$, with equilibrium measures μ_{V}, μ_{W} with connected support. Assume V, W are non critical. Then there exists $T_{0}: \mathbb{R} \rightarrow \mathbb{R} C^{19}, T_{1}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} C^{1}$ so that

$$
\left\|\left(T_{0}^{\otimes N}+\frac{T_{1}}{N}\right) \# \mathbb{P}_{N}^{V}-\mathbb{P}_{N}^{W}\right\|_{T V} \leq \text { const. } \sqrt{\frac{\log N}{N}}
$$

Universality for β-models

$$
d \mathbb{P}_{N}^{V}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{Z_{N}} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum V\left(\lambda_{i}\right)} \prod d \lambda_{i}
$$

Assume that there are T_{0}, T_{1} smooth so that

$$
\left\|\left(T_{0}^{\otimes N}+\frac{T_{1}}{N}\right) \# \mathbb{P}_{N}^{V}-\mathbb{P}_{N}^{W}\right\|_{T V} \leq \text { const. } \sqrt{\frac{\log N}{N}}
$$

so that $\sup _{1 \leq k \leq N}\left\|T_{1}^{N, k}\right\|_{L^{1}\left(\mathbb{P}_{N}^{V}\right)}+\sup _{k, k^{\prime}} \frac{\left|T_{1}^{N, k}-T_{1}^{N, k^{\prime}}\right|}{\sqrt{N}\left|\lambda_{k}-\lambda_{k^{\prime}}\right|} \leq C \log N$.
Corollary
There is universality at the edges and in the bulk.
C.f Bourgade, Erdös, Yau [1104.2272, 1306.5728] and M. Shcherbina [1310.7835].

Transport in RMT

Transport

Results

Proofs

Idea of the proof: Monge-Ampère equation

Consider probability measures P, Q on \mathbb{R}^{d} and assume they have smooth densities

$$
P(d x)=e^{-V(x)} d x \quad Q(d x)=e^{-W(x)} d x
$$

Then $T \# P=Q$ is equivalent to

$$
\begin{aligned}
\int f(T(x)) e^{-V(x)} d x & =\int f(x) e^{-W(x)} d x \\
& =\int f(T(y)) e^{-W(T(y))} J T(y) d y
\end{aligned}
$$

with $J T$ the Jacobian of T. Hence, it is equivalent to the Monge-Ampère equation

$$
-V(x)=-W(T(x))+\log J T(x)
$$

Non-commutative perturbative setting : commutative analogue

$$
d \mathbb{P}_{N}^{V}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{Z_{N}} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum V\left(\lambda_{i}\right)} \prod d \lambda_{i}
$$

Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum f\left(\lambda_{i}\right)=\int f d \mu_{V}
$$

with $\mu_{V}=F \# \sigma$ iff

$$
\frac{\beta}{2} \int \log \frac{F(x)-F(y)}{x-y} d \sigma(y)=V(F(x))-\frac{1}{2} x^{2} .
$$

Non-commutative perturbative setting : commutative analogue

$$
d \mathbb{P}_{N}^{V}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{Z_{N}} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum V\left(\lambda_{i}\right)} \prod d \lambda_{i}
$$

Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum f\left(\lambda_{i}\right)=\int f d \mu_{V}
$$

with $\mu_{V}=F \# \sigma$ iff

$$
\frac{\beta}{2} \int \log \frac{F(x)-F(y)}{x-y} d \sigma(y)=V(F(x))-\frac{1}{2} x^{2} .
$$

Compare with Monge-Ampère equation with transport $F^{\otimes N}$: $\mathbb{P}_{V}^{1 / 2 x^{2}}$ a.s
$\beta \sum_{i<j} \log \frac{F\left(\lambda_{i}\right)-F\left(\lambda_{j}\right)}{\lambda_{i}-\lambda_{j}}+\sum \log F^{\prime}\left(\lambda_{i}\right)=N \sum V\left(F\left(\lambda_{i}\right)\right)-\frac{1}{2} \sum \lambda_{i}^{2}$

Non-commutative perturbative setting

Let $V=\sum X_{i}^{2} / 2+W$ and put
$\mathbb{P}_{W}^{N}\left(d X_{1}^{N}, \ldots, d X_{d}^{N}\right)=\frac{1}{Z_{V}^{N}} \exp \left\{-N \operatorname{Tr}\left(V\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right)\right\} d X_{1}^{N} \ldots d X_{d}^{N}$.

$$
\tau_{W}(P)=\lim _{N \rightarrow \infty} \int \frac{1}{N} \operatorname{Tr}\left(P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right) d \mathbb{P}_{V}^{N}\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)
$$

with $\tau_{W}=F \# \tau_{0}$ iff, with $J F$ the Jacobian of F,
$\left(1 \otimes \tau_{0}+\tau_{0} \otimes 1\right) \operatorname{Tr} \log J F=\left\{\frac{1}{2} \sum F(X)_{j}^{2}+W(F(X))\right\}-\frac{1}{2} \sum X_{j}^{2}$

Non-commutative perturbative setting

Let $V=\sum X_{i}^{2} / 2+W$ and put
$\mathbb{P}_{W}^{N}\left(d X_{1}^{N}, \ldots, d X_{d}^{N}\right)=\frac{1}{Z_{V}^{N}} \exp \left\{-N \operatorname{Tr}\left(V\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right)\right\} d X_{1}^{N} \ldots d X_{d}^{N}$.

$$
\tau_{W}(P)=\lim _{N \rightarrow \infty} \int \frac{1}{N} \operatorname{Tr}\left(P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right) d \mathbb{P}_{V}^{N}\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)
$$

with $\tau_{W}=F \# \tau_{0}$ iff, with $J F$ the Jacobian of F,
$\left(1 \otimes \tau_{0}+\tau_{0} \otimes 1\right) \operatorname{Tr} \log J F=\left\{\frac{1}{2} \sum F(X)_{j}^{2}+W(F(X))\right\}-\frac{1}{2} \sum X_{j}^{2}$

This equation has a unique solution $F_{j}=D_{j} G$ if W is small by a fixed point argument.

Non-perturbative setting : convex case

$$
\tau_{0}(d x)=e^{-V(x)} d x
$$

$$
\tau_{1}(d x)=e^{-W(x)} d x
$$

Non-perturbative setting : convex case

$$
\tau_{0}(d x)=e^{-V(x)} d x
$$

$$
\tau_{1}(d x)=e^{-W(x)} d x
$$

Define a flow $T_{s, t}$ so that $T_{s, t} \# \tau V_{s}=\tau V_{t}, V_{t}=(1-t) V+t W$,

$$
T_{0, t}=T_{0, s} \circ T_{s, t}
$$

Non-perturbative setting : convex case

$$
\tau_{0}(d x)=e^{-V(x)} d x
$$

$$
\tau_{1}(d x)=e^{-W(x)} d x
$$

Define a flow $T_{s, t}$ so that $T_{s, t} \# \tau_{V_{s}}=\tau V_{t}, V_{t}=(1-t) V+t W$,

$$
T_{0, t}=T_{0, s} \circ T_{s, t}
$$

$\phi_{t}=\lim _{s \rightarrow t} T_{s, t}=\partial_{t} T_{0, t} \circ T_{0, t}^{-1}$ satisfies if $\phi_{t}=\nabla \psi_{t}$

$$
L_{t} \psi_{t}=W-V
$$

$L_{t}=\Delta-\nabla V_{t} . \nabla$ infinitesimal generator.

Non-perturbative setting : convex case

$$
\tau_{0}(d x)=e^{-V(x)} d x
$$

$$
\tau_{1}(d x)=e^{-W(x)} d x
$$

Define a flow $T_{s, t}$ so that $T_{s, t} \# \tau_{V_{s}}=\tau V_{t}, V_{t}=(1-t) V+t W$,

$$
T_{0, t}=T_{0, s} \circ T_{s, t}
$$

$\phi_{t}=\lim _{s \rightarrow t} T_{s, t}=\partial_{t} T_{0, t} \circ T_{0, t}^{-1}$ satisfies if $\phi_{t}=\nabla \psi_{t}$

$$
L_{t} \psi_{t}=W-V
$$

$L_{t}=\Delta-\nabla V_{t} . \nabla$ infinitesimal generator. $P_{s}^{V_{t}}=e^{s L_{t}}$,

$$
\psi_{t}=\int_{0}^{\infty}\left[P_{s}^{V_{t}}(W-V)-\frac{1}{Z} \int(W-V) e^{-(1-t) V-t W} d x\right] d s
$$

One matrix case and approximate transport

$$
d \mathbb{P}_{N}^{V}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{Z_{N}} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum V\left(\lambda_{i}\right)} \prod d \lambda_{i}
$$

Find $T_{t}^{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ "nice"

$$
\sup _{t \in[0,1]}\left\|T_{t}^{N} \# \mathbb{P}_{N}^{V}-\mathbb{P}_{N}^{V_{t}}\right\|_{T V} \rightarrow 0 \quad V_{t}=(1-t) V+t W
$$

One matrix case and approximate transport

$$
d \mathbb{P}_{N}^{V}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{Z_{N}} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-N \sum V\left(\lambda_{i}\right)} \prod d \lambda_{i}
$$

Find $T_{t}^{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ "nice"

$$
\sup _{t \in[0,1]}\left\|T_{t}^{N} \# \mathbb{P}_{N}^{V}-\mathbb{P}_{N}^{V_{t}}\right\|_{T V} \rightarrow 0 \quad V_{t}=(1-t) V+t W
$$

Aim : Build $\psi_{t}^{N}, \partial_{t} T_{t}^{N} \circ\left(T_{t}^{N}\right)^{-1}=\nabla \psi_{t}^{N}$ so that

$$
R_{t}^{N}(\psi)=L_{t} \psi_{t}^{N}-(V-W)
$$

goes to zero in $L^{1}\left(\mathbb{P}_{N}^{V}\right)$. Then T_{t}^{N} solution of $\partial_{t} T_{t}^{N}=\nabla \psi_{t}^{N}\left(T_{t}^{N}\right)$ is an approximate transport. L_{t} the infinitesimal generator of Dyson BM in potential V_{t}.

One matrix case and approximate transport

Find

$$
\psi_{t}^{N}(\lambda)=\sum_{i}\left[\psi_{0, t}\left(\lambda_{i}\right)+\frac{1}{N} \psi_{1, t}\left(\lambda_{i}\right)\right]+\frac{1}{N} \sum \psi_{2, t}\left(\lambda_{i}, \lambda_{j}\right)
$$

so that

$$
R_{t}^{N}(\psi)=L_{t} \psi_{t}^{N}-(V-W)
$$

goes to zero in $L^{1}\left(\mathbb{P}_{N}^{V}\right)$.

One matrix case and approximate transport

Find

$$
\psi_{t}^{N}(\lambda)=\sum_{i}\left[\psi_{0, t}\left(\lambda_{i}\right)+\frac{1}{N} \psi_{1, t}\left(\lambda_{i}\right)\right]+\frac{1}{N} \sum \psi_{2, t}\left(\lambda_{i}, \lambda_{j}\right)
$$

so that

$$
R_{t}^{N}(\psi)=L_{t} \psi_{t}^{N}-(V-W)
$$

goes to zero in $L^{1}\left(\mathbb{P}_{N}^{V}\right)$. We find with $M_{N}=\sum\left(\delta_{\lambda_{i}}-\mu V_{t}\right)$

$$
\begin{aligned}
R_{t}^{N}= & N \int\left[\equiv \psi_{0, t}^{\prime}+W-V\right](x) d M_{N}(x)+\cdots \\
& -\frac{\beta}{2 N} \iint \frac{\psi_{1, t}^{\prime}(x)-\psi_{1, t}^{\prime}(y)}{x-y} d M_{N}(x) d M_{N}(y)+\ldots \\
\text { with } \equiv & f(x)=V_{t}^{\prime}(x) f(x)-\beta \int \frac{f(x)-f(y)}{x-y} d \mu_{V_{t}}(y)
\end{aligned}
$$

One matrix case and approximate transport

Find

$$
\psi_{t}^{N}(\lambda)=\sum_{i}\left[\psi_{0, t}\left(\lambda_{i}\right)+\frac{1}{N} \psi_{1, t}\left(\lambda_{i}\right)\right]+\frac{1}{N} \sum \psi_{2, t}\left(\lambda_{i}, \lambda_{j}\right)
$$

so that

$$
R_{t}^{N}(\psi)=L_{t} \psi_{t}^{N}-(V-W)
$$

goes to zero in $L^{1}\left(\mathbb{P}_{N}^{V}\right)$. We find with $M_{N}=\sum\left(\delta_{\lambda_{i}}-\mu V_{t}\right)$

$$
\begin{aligned}
R_{t}^{N}= & N \int\left[\equiv \psi_{0, t}^{\prime}+W-V\right](x) d M_{N}(x)+\cdots \\
& -\frac{\beta}{2 N} \iint \frac{\psi_{1, t}^{\prime}(x)-\psi_{1, t}^{\prime}(y)}{x-y} d M_{N}(x) d M_{N}(y)+\ldots \\
\text { with } \equiv & \equiv f(x)=V_{t}^{\prime}(x) f(x)-\beta \int \frac{f(x)-f(y)}{x-y} d \mu_{V_{t}}(y)
\end{aligned}
$$

三 is invertible, with inverse $\Xi^{-1} f C^{r-1}$ if $f C^{r}$. Choose $\psi_{0, t}, \psi_{1, t}, \psi_{2, t}$ so that the first line vanishes, show the second is neglectable.

Open problems

- How far can we push this type of arguments to obtain isomorphisms classes for von Neumann algebras?
- The local fluctuations for several matrix models should be the same as those of some $P\left(X_{1}, \ldots, X_{n}\right), X_{i}$ independent GUE. Can we prove local fluctuations for $P\left(X_{1}, \ldots, X_{n}\right), X_{i}$ independent GUE (e.g when P is the gradient of a convex function)?
- The transport method is quite robust and should be "easily" adapted to other "one-matrix models".

