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Geometric Complexity Theory The Kronecker coefficients of Sn Positivity Other models Combinatorial primer: partitions

(Boolean) Complexity

Input: string of n bits, i.e. size(input) = n.

Decision problems:

Is there an object, s.t.... ?

P = solution can be found in time
Poly(n)

NP = solution can be verified in
Poly(n) (polynomial witness)

NP –Complete = in NP , and every
NP problem can be reduced to it poly
time; e.g.

Counting problems:

Compute F (input) =?

FP = solution can be found in time
Poly(n)

#P = NP counting analogue; in-

formally – F (input) counts Exp-
many objects, whose verification is
in P .
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(Boolean) Complexity

Input: string of n bits, i.e. size(input) = n.

Decision problems:

Is there an object, s.t.... ?

P = solution can be found in time
Poly(n)

NP = solution can be verified in
Poly(n) (polynomial witness)

NP –Complete = in NP , and every
NP problem can be reduced to it poly
time;

Counting problems:

Compute F (input) =?

FP = solution can be found in time
Poly(n)

#P = NP counting analogue; in-

formally – F (input) counts Exp-
many objects, whose verification is
in P .

The P vs NP Problem:
Is P = NP? Algebraic version: is VP = VNP?
An approach [Mulmuley, Sohoni]: Geometric Complexity Theory
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VP vs VNP: determinant vs permanent

Arithmetic Circuits:

y = 3x1 + x1x2

Polynomials fn ∈ F[X1, . . . ,Xn]. Circuit – nodes are +,× gates, input –
X1, . . . ,Xn and constants from F.

Class VP (Valliant’s P):
polynomials that can be computed
with poly(n) large circuit (size of
the associated graph).

Class VNP:
the class of polynomials fn, s.t.
∃gn ∈ VP with
fn =∑
b∈{0,1}n

gn(X1, . . . ,Xn, b1, . . . , bn).
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VP vs VNP: determinant vs permanent

Arithmetic Circuits:

y = 3x1 + x1x2

Polynomials fn ∈ F[X1, . . . ,Xn]. Circuit – nodes are +,× gates, input –
X1, . . . ,Xn and constants from F.

Class VP (Valliant’s P):
polynomials that can be computed
with poly(n) large circuit (size of
the associated graph).

Class VNP:
the class of polynomials fn, s.t.
∃gn ∈ VP with
fn =∑
b∈{0,1}n

gn(X1, . . . ,Xn, b1, . . . , bn).

Theorem[Bürgisser]: If VP = VNP, then P = NP if F - finite or the
Generalized Riemann Hypothesis holds.
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VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:
For every polynomial p in any number of variables there exists some n
such that

p = det(A),

where A is an n × n matrix whose entries are affine linear polynomials.
The smallest n possible is called the determinantal complexity dc(p).
Example: p = x2

1 + x1x2 + x2x3 + 2x1, then

p = det

[
x1 + 2 x2

−x3 + 2 x1 + x2

]
, dc(p) = 2
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VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:
For every polynomial p in any number of variables there exists some n
such that

p = det(A),

where A is an n × n matrix whose entries are affine linear polynomials.
The smallest n possible is called the determinantal complexity dc(p).

The permanent:

perm :=
∑
σ∈Sm

m∏
i=1

Xi,σ(i).

Theorem:[Valiant] perm is VNP-complete.

Conjecture (Valiant, VP 6= VNP equivalent)
dc(perm) grows superpolynomially.
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VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:
For every polynomial p in any number of variables there exists some n
such that

p = det(A),

where A is an n × n matrix whose entries are affine linear polynomials.
The smallest n possible is called the determinantal complexity dc(p).

The permanent:

perm :=
∑
σ∈Sm

m∏
i=1

Xi,σ(i).

Theorem:[Valiant] perm is VNP-complete.

Conjecture (Valiant, VP 6= VNP equivalent)
dc(perm) grows superpolynomially.

Known: dc(perm) ≤ 2m − 1 (Grenet 2011), dc(perm) ≥ m2

2 (Mignon,
Ressayre, 2004). Ryser’s formula:

perm(X ) = (−1)m
∑

S⊂[1..m]

(−1)|S|
m∏
i=1

(
∑
j∈S

Xi,j)
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Geometric Complexity Theory

GLN action on polynomials: A ∈ GLN(C), v := (X1, . . . ,XN),
f ∈ C[X1, . . . ,XN ], then A.f = f (A−1v)
(replaces variables with linear forms)

GLn2 detn := {g · detn | g ∈ GLn2} – determinant orbit.

Ωn := GLn2 detn - determinant orbit closure.

pernm := (X1,1)n−mperm – the padded permanent.

Proposition ( Lower bounds via geometry )
If pernm /∈ GLn2 detn, then dc(perm) > n.

Conjecture (GCT: Mulmuley and Sohoni)
max{n : pernm /∈ GLn2 detn}(≤ dc(perm)) grows superpolynomially.

pernm ∈ GLn2 detn ⇐⇒ GLn2pernm︸ ︷︷ ︸
=:Γn

m

⊆ GLn2 detn︸ ︷︷ ︸
Ωn

.
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Geometric Complexity Theory

Proposition ( Lower bounds via geometry )
If pernm /∈ GLn2 detn, then dc(perm) > n.

Conjecture (GCT: Mulmuley and Sohoni)
max{n : pernm /∈ GLn2 detn}(≤ dc(perm)) grows superpolynomially.

pernm ∈ GLn2 detn ⇐⇒ GLn2pernm︸ ︷︷ ︸
=:Γn

m

⊆ GLn2 detn︸ ︷︷ ︸
Ωn

.

Exploit the symmetry! Coordinate rings as GLn2 representations:

C[GLn2 detn]d '
⊕
λ`nd

V
⊕δλ,d,n
λ , C[GLn2pernm]d '

⊕
λ

V
⊕γλ,d,n,m
λ ,

Definition (Representation theoretic obstruction)
If δλ,d,n < γλ,d,n,m, then λ is a representation theoretic obstruction.
Its existence shows GLn2pernm 6⊆ GLn2 detn and so dc(perm) > n !
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(Non)existence of obstructions

C[GLn2 detn]d '
⊕
λ`nd

V
⊕δλ,d,n
λ , C[GLn2pernm]d '

⊕
λ

V
⊕γλ,d,n,m
λ ,

If δλ,d,n < γλ,d,n,m, then λ is a representation theoretic obstruction
and dc(perm) > n. If n > poly(m) =⇒ VP 6= VNP.
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(Non)existence of obstructions

C[GLn2 detn]d '
⊕
λ`nd

V
⊕δλ,d,n
λ , C[GLn2pernm]d '

⊕
λ

V
⊕γλ,d,n,m
λ ,

If δλ,d,n < γλ,d,n,m, then λ is a representation theoretic obstruction
and dc(perm) > n. If n > poly(m) =⇒ VP 6= VNP.

Conjecture (GCT: Mulmuley-Sohoni)
There exist representation theoretic obstructions that show
superpolynomial lower bounds on dc(perm).
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(Non)existence of obstructions

C[GLn2 detn]d '
⊕
λ`nd

V
⊕δλ,d,n
λ , C[GLn2pernm]d '

⊕
λ

V
⊕γλ,d,n,m
λ ,

If δλ,d,n < γλ,d,n,m, then λ is a representation theoretic obstruction
and dc(perm) > n. If n > poly(m) =⇒ VP 6= VNP.

Conjecture (GCT: Mulmuley-Sohoni)
There exist representation theoretic obstructions that show
superpolynomial lower bounds on dc(perm).

If also δλ,d,n = 0, then λ is an occurrence obstruction.

Conjecture (Mulmuley and Sohoni)
There exist occurrence obstructions that show superpolynomial lower
bounds on dc(perm).
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(Non)existence of obstructions

C[GLn2 detn]d '
⊕
λ`nd

V
⊕δλ,d,n
λ , C[GLn2pernm]d '

⊕
λ

V
⊕γλ,d,n,m
λ ,

If δλ,d,n < γλ,d,n,m, then λ is a representation theoretic obstruction
and dc(perm) > n. If n > poly(m) =⇒ VP 6= VNP.

Conjecture (GCT: Mulmuley-Sohoni)
There exist representation theoretic obstructions that show
superpolynomial lower bounds on dc(perm).

If also δλ,d,n = 0, then λ is an occurrence obstruction.

Conjecture (Mulmuley and Sohoni)
There exist occurrence obstructions that show superpolynomial lower
bounds on dc(perm).

Theorem (Bürgisser-Ikenmeyer-P(FOCS 2016))
This Conjecture is false.
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(Non)existence of obstructions

C[GLn2 detn]d '
⊕
λ`nd

V
⊕δλ,d,n
λ , C[GLn2pernm]d '

⊕
λ

V
⊕γλ,d,n,m
λ ,

If δλ,d,n < γλ,d,n,m, then λ is a representation theoretic obstruction
and dc(perm) > n. If n > poly(m) =⇒ VP 6= VNP.
Question: What are these δλ,d,n and γλ,d,n,m???
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(Non)existence of obstructions

C[GLn2 detn]d '
⊕
λ`nd

V
⊕δλ,d,n
λ , C[GLn2pernm]d '

⊕
λ

V
⊕γλ,d,n,m
λ ,

If δλ,d,n < γλ,d,n,m, then λ is a representation theoretic obstruction
and dc(perm) > n. If n > poly(m) =⇒ VP 6= VNP.
Question: What are these δλ,d,n and γλ,d,n,m???
Kronecker coefficients of the Symmetric Group:

δλ,d,n ≤ sk(λ, nd) ≤ g(λ, nd , nd)

(Symmetric Kronecker:
sk(λ, µ) := dim HomS|λ|(Sλ,S2(Sµ)) = multλC[GLn2 detn]d)
Plethysm coefficients: of GL.

aλ(d [n]) := multλSym
d(Symn(V )) ≥ γλ,d,n,m.

Problem (GCT program, “easy version”)
Find λ, such that the sk(λ, (nd)) < aλ(d [n])?
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Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)
For all c ∈ N≥1 , for infinitely many m, there exists a partition λ

occurring in C[GLn2X n−m
11 perm] but not in C[GLn2 · detn], where n = mc .

Theorem (Ikenmeyer-P (2015, FOCS’16))
Let n > 3m4, λ ` nd. If g(λ, nd , nd) = 0(so multλC[GLn2 detn] = 0),
then multλ(C[GLn2 (X1,1)n−mperm)] = 0.

Theorem (Bürgisser-Ikenmeyer-P (FOCS’16))
Let n, d ,m be positive integers with n ≥ m25 and λ ` nd. If λ occurs in

C[GLn2X n−m
11 perm], then λ also occurs in C[GLn2 · detn]. In particular,

the Conjecture is false, there are no “occurrence obstructions”.
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Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group Sn:

( group homomorphisms Sn → GLN(C) )

are the Specht modules Sλ
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Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group Sn:

( group homomorphisms Sn → GLN(C) )

are the Specht modules Sλ , indexed by

integer partitions λ ` n :

λ = (λ1, . . . , λ`),

λ1 ≥ λ2 ≥ · · · ≥ λ` > 0,
λ1 + λ2 + · · · = n, length `(λ) = ` (= number of nonzero parts)

Young diagram of λ:

( λ = (5, 3, 2), `(λ) = 3, n = |λ| = 5 + 3 + 2 = 10).

Basis for Sλ: Standard Young Tableaux of shape λ:

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4
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Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group Sn:

( group homomorphisms Sn → GLN(C) )

are the Specht modules Sλ
Tensor product decomposition:

Sλ ⊗ Sµ = ⊕ν`n(.........)Sν
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Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group Sn:

( group homomorphisms Sn → GLN(C) )

are the Specht modules Sλ
Tensor product decomposition:

Sλ ⊗ Sµ = ⊕ν`ng(λ, µ, ν)Sν
Kronecker coefficients: g(λ, µ, ν) – multiplicity of Sν in Sλ ⊗ Sµ

g(λ, µ, ν) = dim HomSn(Sν ,Sλ ⊗ Sµ)

In terms of GL(Cm) modules Vλ,Vµ,Vν

Sym(Cm ⊗ Cm ⊗ Cm) = ⊕λ,µ,νg(λ, µ, ν)Vλ ⊗ Vµ ⊗ Vν
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A bit of history

1873: Lie groups, Lie, Klein....

1896: Representations of finite groups, Frobenius ...

1923: Representations of Lie groups, H. Weyl. Quantum mechanics, von
Neumann

1934: Tensor products of irreducible representations of Lie groups:
Vλ – irreducible representation of GLN(C).

Vλ ⊗ Vµ = ⊕νcνλµVν
cνλµ – Littlewood-Richardson coefficients.
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A bit of history

1873: Lie groups, Lie, Klein....

1896: Representations of finite groups, Frobenius ...

1923: Representations of Lie groups, H. Weyl. Quantum mechanics, von
Neumann

1934: Tensor products of irreducible representations of Lie groups:
Vλ – irreducible representation of GLN(C).

Vλ ⊗ Vµ = ⊕νcνλµVν
cνλµ – Littlewood-Richardson coefficients.

Theorem (Littlewood-Richardson, 1934)
The coefficient cνλµ is equal to the number of LR tableaux of shape ν/µ
and type λ.
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A bit of history

1873: Lie groups, Lie, Klein....

1896: Representations of finite groups, Frobenius ...

1923: Representations of Lie groups, H. Weyl. Quantum mechanics, von
Neumann

1934: Tensor products of irreducible representations of Lie groups:
Vλ – irreducible representation of GLN(C).

Vλ ⊗ Vµ = ⊕νcνλµVν
cνλµ – Littlewood-Richardson coefficients.

Theorem (Littlewood-Richardson, 1934)
The coefficient cνλµ is equal to the number of LR tableaux of shape ν/µ
and type λ.

1 1 1
1 2 2

2 3 3

1 1 1
2 2 2

1 3 3

(LR tableaux of shape (7, 4, 3)/(3, 1) and type (4, 3, 2). c
(7,4,3)

(3,1)(4,3,2)
= 2)
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A bit of history

1873: Lie groups, Lie, Klein....

1896: Representations of finite groups, Frobenius ...

1923: Representations of Lie groups, H. Weyl. Quantum mechanics, von
Neumann

1934: Tensor products of irreducible representations of Lie groups:
Vλ – irreducible representation of GLN(C).

Vλ ⊗ Vµ = ⊕νcνλµVν
cνλµ – Littlewood-Richardson coefficients.

Theorem (Littlewood-Richardson, 1934)
The coefficient cνλµ is equal to the number of LR tableaux of shape ν/µ
and type λ.

1938: Tensor product of irreducible representations of Sn, Kronecker
coefficients, Murnaghan:

Sλ ⊗ Sµ = ⊕ν`ng(λ, µ, ν)Sν
Greta Panova 9
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The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)
Find a positive combinatorial interpretation for g(λ, µ, ν), i.e. a family of
combinatorial objects Oλ,µ,ν , s.t. g(λ, µ, ν) = #Oλ,µ,ν .
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The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)
Find a positive combinatorial interpretation for g(λ, µ, ν), i.e. a family of
combinatorial objects Oλ,µ,ν , s.t. g(λ, µ, ν) = #Oλ,µ,ν . Alternatively,
show that KRON is in #P .

Classical motivation: (Littlewood–Richardson: for cνλ,µ,
Oλ,µ,ν = { LR tableaux of shape ν/µ, type λ} )

Theorem (Murnaghan)
If |λ|+ |µ| = |ν| and n > |ν|, then

g((n + |µ|, λ), (n + |λ|, µ), (n, ν)) = cνλµ.

Modern motivation:
1. A positive combinatorial formula ”⇐⇒ ” Computing Kronecker
coefficients is in #P .
2. Geometric Complexity Theory.
3. Invariant Theory, moment polytopes [see Bürgisser,
Christandl,Mulmuley, Walter, Oliveira, Garg, Wigerson etc]
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The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)
Find a positive combinatorial interpretation for g(λ, µ, ν), i.e. a family of
combinatorial objects Oλ,µ,ν , s.t. g(λ, µ, ν) = #Oλ,µ,ν . Alternatively,
show that KRON is in #P .

Results since then:
Combinatorial formulas for g(λ, µ, ν), when:

• µ and ν are hooks ( ), [Remmel, 1989]

• ν = (n − k, k) ( ) and λ1 ≥ 2k − 1, [Ballantine–Orellana,

2006]
• ν = (n − k , k), λ = (n − r , r) [Remmel–Whitehead, 1994;

Blasiak–Mulmuley–Sohoni,2013]
• ν = (n − k, 1k) ( ), [Blasiak, 2012]

• Other special cases [Colmenarejo-Rosas,
Ikenmeyer-Mulmuley-Walter, Pak-Panova].
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The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)
Find a positive combinatorial interpretation for g(λ, µ, ν), i.e. a family of
combinatorial objects Oλ,µ,ν , s.t. g(λ, µ, ν) = #Oλ,µ,ν . Alternatively,
show that KRON is in #P .

Bounds and positivity:

[Pak-P]: g(λ, µ, µ) ≥ |χλ(2µ1 − 1, 2µ2 − 3, . . .) when µ = µT .

Corollaries: g(λ, µ, µ) > c 2
√

2k

k9/4 for λ = (|µ| − k , k), and diag(µ) ≥
√
k.

Complexity results:

[Bürgisser-Ikenmeyer]: KRON is in GapP.
( Littlewood-Richardson, i.e. KRON’s special case, is #P -complete )

[Pak-P]: If ν is a hook, then KronPositivity is in P. If λ, µ, ν have fixed
length there exists a linear time algorithm for deciding g(λ, µ, ν) > 0.

[Ikenmeyer-Mulmuley-Walter]: KronPositivity is NP -hard.

[Bürgisser-Christandl-Mulmuley-Walter]: membership in the moment
polytope is NP and coNP .
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Back to GCT: Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)
For all c ∈ N≥1 , for infinitely many m, there exists a partition λ

occurring in C[GLn2X n−m
11 perm] but not in C[GLn2 · detn], where n = mc .

Theorem (Ikenmeyer-P (2015, FOCS’16))
Let n > 3m4, λ ` nd. If g(λ, nd , nd) = 0(so multλC[GLn2 detn] = 0),
then multλ(C[GLn2 (X1,1)n−mperm)] = 0.

Theorem (Bürgisser-Ikenmeyer-P (FOCS’16))
Let n, d ,m be positive integers with n ≥ m25 and λ ` nd. If λ occurs in

C[GLn2X n−m
11 perm], then λ also occurs in C[GLn2 · detn]. In particular,

the Conjecture is false, there are no “occurrence obstructions”.
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No occurrence obstructions I: positive Kroneckers

Theorem (Ikenmeyer-P (2015, FOCS’16))
Let n > 3m4, λ ` nd. If g(λ, n × d , n × d) = 0, then
multλ(C[GLn2 (X1,1)n−mperm)] = 0.

Proof:
λ̄ := (λ2, λ3, . . .) ` |λ| − λ1

Theorem (Kadish-Landsberg)
If multλC[GLn2X n−m

11 perm] > 0, then |λ̄| ≤ md and `(λ) ≤ m2.

Theorem (Degree lower bound, [IP] )
If |λ̄| ≤ md with aλ(d [n]) > g(λ, n × d , n × d), then d > n

m .

Theorem (Kronecker positivity, [IP] )
Let λ ` dn. Let X := {(1), (2× 1), (4× 1), (6× 1), (2, 1), (3, 1)}.
(a) If λ̄ ∈ X , then aλ(d [n]) = 0.
(b) If λ̄ /∈ X and m ≥ 3 such that `(λ) ≤ m2, |λ̄| ≤ md, d > 3m3, and
n > 3m4, then g(λ, n × d , n × d) > 0.
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Kronecker positivity I: hook-like λs

Proposition (Ikenmeyer-P)

If there is an a, such that
g(νk(a2), a × a, a × a) > 0 for all k, s.t.
k 6∈ H1(ρ) and a2 − k 6∈ H2(ρ) for some
sets H1(ρ),H2(ρ) ⊂ [`, 2a + 1],
then g(νk(b2), b × b, b × b) > 0 for all k,
s.t. k 6∈ H1(ρ) and b2 − k 6∈ H2(ρ) for all
b ≥ a.

Proof idea:
Kronecker symmetries and semigroup properties:
Let Pc = {k : g(νk(c2), c × c , c × c) > 0}, we have
Claim: Suppose that k ∈ Pc , then k , k + 2c + 1 ∈ Pc+1.

Corollary
We have that g(λ, h × w , h × w) > 0 for λ = (hw − j − |ρ|, 1j + ρ) for
most “small” partitions ρ and all but finitely many values of j .
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Kronecker positivity II: squares, and decompositions

Theorem (Ikenmeyer-P)
Let ν /∈ X and ` = max(`(ν) + 1, 9), a > 3`3/2, b ≥ 3`2 and |ν| ≤ ab/6.
Then g(ν(ab), a× b, a× b) > 0.

Proof sketch: decomposition + regrouping

ν = ρ+ ξ +
∑̀
k=2

xk((k − 1)× k) +
∑̀
k=2

yk((k − 1)× 2).

Crucial facts:

• g(k × k, k × k, k × k) > 0 [Bessenrodt-Behns].

• Transpositions: g(α, β, γ) = g(α, βT , γT ) (with β = γ = wxh)

• Hooks and exceptional cases: g(λ, h × w , h × w) > 0 for all
λ = (hw − j − |ρ|, 1j + ρ) for |ρ| ≤ 6 and almost all js.

• Semigroup property for positive triples:
g(α1 + α2, β1 + β2, γ1 + γ2) ≥ max(g(α1, β1, γ1), g(α2, β2, γ2).
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Kronecker vs plethysm: inequality of multiplicities
Stability[Manivel]: g((nd − |ρ|, ρ), n × d , n × d) = aρ(d), as n→∞.
St1(ρ) := {(n, d) | g((nd − |ρ|, ρ), n × d , n × d)} = aρ(d).

Proposition (Ikenmeyer-P)
Fix ρ, and let (n, d) ∈ St1(ρ), which is true in particular if n ≥ |ρ|. Let
λ = (nd − |ρ|, ρ). Then g(λ, n × d , n × d) ≥ aλ(d [n]).

Proof: λ = µ+ d(n −m). Suppose g(λ, n × d , n × d) < aλ(d [n]):

KL’14: If µ ` md then multµ+d(n−m)(C[GLn2 (X1,1)n−mVm)] ≥ aµ(d [m]),

where Vm := SymmCm2

.

Stability: g(λ, n × d , n × d) = g(µ,m × d ,m × d).

GCT: If multλ(C[GLn2 (X1,1)n−mVm)] ≥ g(λ, n × d , n × d) then
dc(fm) > n for some fm ∈ Vm.

=⇒ multλ(C[GLn2 (X1,1)n−mVm)]≥ aµ(d [m]) = aλ(d [n]) > g(λ, n × d , n × d)

=⇒ max
f∈Vm

dc(fm) > n→∞
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Plethysm positivity

Theorem (Bürgisser-Ikenmeyer-P (FOSC’16))
Let n, d ,m be positive integers with n ≥ m25 and λ ` nd. If λ occurs in

C[GLn2X n−m
11 perm], then λ also occurs in C[GLn2 · detn]. In particular,

the Obstruction Existence Conjecture is false, there are no “occurrence
obstructions”.

Proof ideas:
• For multλC[GLn2X n−m

11 perm] > 0 we must have λ1 > d(n −m).
• (Valiant): dc(X s

1 + · · ·+ X s
k ) ≤ ks, hence...

`n−s(v s
1 + · · ·+ v s

k ) ∈ Ωn for n ≥ ks.
• If a highest weight vector of weight −λ does not vanish on Ωn (or in

particular, on the power sums), then δλ,n = multλC[Ωn] > 0.
• Then δλ,n > 0, because of the existence of λ-highest weight vectors

in SymdSymnV , i.e. aλ(d [n]) > 0 via explicit tableaux constructions:
tableaux T of shape λ, content d × n....
1 1 1 1 2 2 2 3 3 4 4 4 4 5
2 2 3 3 3
4 5 5 5 5
· decomposition into building blocks + regrouping
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Next time:

• Matrix Powering vs permanent and the symmetric Kronecker
coefficients.

• Iterated Matrix Multiplication vs permanent model.

• Matrix Multiplication lower bounds via GCT.

• Some combinatorics and bounds on the Kronecker coefficients.
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Thank you!
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