Geometric Complexity Theory via Algebraic Combinatorics

Greta Panova

University of Pennsylvania Institute for Advanced Study Princeton

IAS, CSDM Seminar

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

The Kronecker coefficients of *S_n* 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Boolean) Complexity

Input: string of *n* bits, i.e. size(input) = n.

Decision problems:

Is there an object, s.t... ?

P = solution can be found in time Poly(n)

 $\frac{NP}{Poly(n)} = solution can be verified in$ Poly(n) (polynomial witness)

$$\label{eq:NP-Complete} \begin{split} &\mathsf{NP} - \mathsf{Complete} \ = \mathsf{in} \ \mathsf{NP} \ \mathsf{, and every} \\ &\mathsf{NP} \ \mathsf{problem \ can \ be \ reduced \ to \ it \ poly} \\ &\mathsf{time; \ e.g.} \end{split}$$

Counting problems:

Compute *F*(*input*) =?

FP = solution can be found in time
Poly(n)#P = NP counting analogue; in-
formally - F(input) counts Exp-
many objects, whose verification is
in P.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

The Kronecker coefficients of *S_n* 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Boolean) Complexity

Input: string of *n* bits, i.e. size(input) = n.

Decision problems:

Is there an object, s.t... ?

P = solution can be found in time Poly(n)

 $\frac{NP}{Poly(n)} = solution can be verified in Poly(n) (polynomial witness)$

NP –Complete = in NP , and every NP problem can be reduced to it poly time;

The P vs NP Problem:

Is P = NP? Algebraic version: is VP = VNP?

Counting problems:

Compute *F*(*input*) =?

FP = solution can be found in time
Poly(n)#P = NP counting analogue; in-
formally - F(input) counts Exp-
many objects, whose verification is
in P.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

2

The Kronecker coefficients of *S_n*

Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Boolean) Complexity

Input: string of *n* bits, i.e. size(input) = n.

Decision problems:

Is there an object, s.t... ?

P = solution can be found in time Poly(n)

 $\frac{NP}{Poly(n)} = solution can be verified in Poly(n) (polynomial witness)$

NP –**Complete** = in NP , and every NP problem can be reduced to it poly time;

The P vs NP Problem:

Is P = NP? Algebraic version: is VP = VNP?

An approach [Mulmuley, Sohoni]: Geometric Complexity Theory

Counting problems:

Compute *F*(*input*) =?

FP = solution can be found in time
Poly(n)#P = NP counting analogue; in-
formally - F(input) counts Exp-
many objects, whose verification is
in P.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

VP vs VNP: determinant vs permanent

Arithmetic Circuits:

 $y = 3x_1 + x_1x_2$ Polynomials $f_n \in \mathbb{F}[X_1, \ldots, X_n]$. Circuit – nodes are $+, \times$ gates, input – X_1, \ldots, X_n and constants from \mathbb{F} . **Class** VP (Valliant's P): Class VNP: the class of polynomials f_n , s.t. polynomials that can be computed with poly(n) large circuit (size of $\exists g_n \in \mathsf{VP}$ with the associated graph). f_n $\sum_{i=1}^{n} g_n(X_1,\ldots,X_n,b_1,\ldots,b_n).$

 $b \in \{0,1\}^n$

イロト イロト イヨト イヨト 三日

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

VP vs VNP: determinant vs permanent

Arithmetic Circuits:

 $y = 3x_1 + x_1x_2$ Polynomials $f_n \in \mathbb{F}[X_1, \ldots, X_n]$. Circuit – nodes are $+, \times$ gates, input – X_1, \ldots, X_n and constants from \mathbb{F} . **Class** VP (Valliant's P): Class VNP: polynomials that can be computed the class of polynomials f_n , s.t. with poly(n) large circuit (size of $\exists g_n \in VP$ with the associated graph). f_n $\sum_{n=1}^{\infty} g_n(X_1,\ldots,X_n,b_1,\ldots,b_n).$

Theorem[Bürgisser]: If VP = VNP, then P = NP if \mathbb{F} - finite or the Generalized Riemann Hypothesis holds.

 $b \in \{0,1\}^n$

・ロト ・ 国 ト ・ 国 ト ・ 国 ト … 国

The Kronecker coefficients of S_r 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:

For every polynomial p in any number of variables there exists some n such that

$$p = \det(A),$$

where A is an $n \times n$ matrix whose entries are affine linear polynomials. The smallest n possible is called the *determinantal complexity* dc(p). **Example:** $p = x_1^2 + x_1x_2 + x_2x_3 + 2x_1$, then

$$p = \det \begin{bmatrix} x_1 + 2 & x_2 \\ -x_3 + 2 & x_1 + x_2 \end{bmatrix}, \qquad \operatorname{dc}(p) = 2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Kronecker coefficients of S_{I} 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:

For every polynomial p in any number of variables there exists some n such that

$$p = \det(A),$$

where A is an $n \times n$ matrix whose entries are affine linear polynomials. The smallest n possible is called the *determinantal complexity* dc(p).

The permanent:

$$\operatorname{per}_{m} := \sum_{\sigma \in S_{m}} \prod_{i=1}^{m} X_{i,\sigma(i)}.$$

Theorem:[Valiant] per_m is VNP-complete. Conjecture (Valiant, VP \neq VNP equivalent) dc(per_m) grows superpolynomially.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions

VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:

For every polynomial p in any number of variables there exists some n such that

$$p = \det(A),$$

where A is an $n \times n$ matrix whose entries are affine linear polynomials. The smallest n possible is called the *determinantal complexity* dc(p).

The permanent:

$$\operatorname{per}_{m} := \sum_{\sigma \in S_{m}} \prod_{i=1}^{m} X_{i,\sigma(i)}.$$

Theorem:[Valiant] *per_m* is VNP-complete.

Conjecture (Valiant, $VP \neq VNP$ equivalent)

 $dc(per_m)$ grows superpolynomially.

Known: $dc(per_m) \le 2^m - 1$ (Grenet 2011), $dc(per_m) \ge \frac{m^2}{2}$ (Mignon, Ressayre, 2004). Ryser's formula:

$$\operatorname{per}_{m}(X) = (-1)^{m} \sum_{S \subset [1..m]} (-1)^{|S|} \prod_{i=1}^{m} (\sum_{j \in S} X_{i,j})$$

Greta Panova

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Geometric Complexity Theory

 GL_N action on polynomials: $A \in GL_N(\mathbb{C})$, $v := (X_1, \ldots, X_N)$, $f \in \mathbb{C}[X_1, \ldots, X_N]$, then $A.f = f(A^{-1}v)$ (replaces variables with linear forms)

 $GL_{n^2} \det_n := \{g \cdot \det_n \mid g \in GL_{n^2}\}$ – determinant orbit.

 $\Omega_n := \overline{GL_{n^2} \det_n}$ - determinant orbit closure.

 $\operatorname{per}_m^n := (X_{1,1})^{n-m} \operatorname{per}_m$ – the padded permanent.

・ロト ・ 日 ・ モ ト ・ 日 ・ うへつ

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Geometric Complexity Theory

 GL_N action on polynomials: $A \in GL_N(\mathbb{C})$, $v := (X_1, \ldots, X_N)$, $f \in \mathbb{C}[X_1, \ldots, X_N]$, then $A.f = f(A^{-1}v)$ (replaces variables with linear forms)

 $GL_{n^2} \det_n := \{g \cdot \det_n \mid g \in GL_{n^2}\}$ – determinant orbit.

 $\Omega_n := \overline{GL_{n^2} \det_n}$ - determinant orbit closure.

per_mⁿ := $(X_{1,1})^{n-m}$ per_m - the padded permanent. Proposition (Lower bounds via geometry) If per_mⁿ $\notin \overline{GL_{n^2} \det_n}$, then dc(per_m) > n.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Geometric Complexity Theory

 GL_N action on polynomials: $A \in GL_N(\mathbb{C})$, $v := (X_1, \ldots, X_N)$, $f \in \mathbb{C}[X_1, \ldots, X_N]$, then $A.f = f(A^{-1}v)$ (replaces variables with linear forms)

 $GL_{n^2} \det_n := \{g \cdot \det_n \mid g \in GL_{n^2}\}$ – determinant orbit.

 $\Omega_n := \overline{GL_{n^2} \det_n} - \text{determinant orbit closure}.$

per_mⁿ := $(X_{1,1})^{n-m}$ per_m - the padded permanent. Proposition (Lower bounds via geometry) If per_mⁿ $\notin \overline{GL_{n^2} \det_{n}}$, then dc(per_m) > n.

Conjecture (GCT: Mulmuley and Sohoni) $\max\{n : \operatorname{per}_m^n \notin \overline{GL_{n^2} \operatorname{det}_n}\} (\leq \operatorname{dc}(\operatorname{per}_m)) \text{ grows superpolynomially.}$

$$\operatorname{per}_m^n \in \overline{GL_{n^2} \operatorname{det}_n} \Longleftrightarrow \underbrace{\overline{GL_{n^2} \operatorname{per}_m^n}}_{=:\Gamma_m^n} \subseteq \underbrace{\overline{GL_{n^2} \operatorname{det}_n}}_{\Omega_n}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Geometric Complexity Theory

Proposition (Lower bounds via geometry) If $per_m^n \notin \overline{GL_{n^2} \det_n}$, then $dc(per_m) > n$.

Conjecture (GCT: Mulmuley and Sohoni) $\max\{n : \operatorname{per}_m^n \notin \overline{GL_{n^2} \operatorname{det}_n}\} (\leq \operatorname{dc}(\operatorname{per}_m))$ grows superpolynomially.

$$\operatorname{per}_m^n \in \overline{GL_{n^2} \operatorname{det}_n} \Longleftrightarrow \underbrace{\overline{GL_{n^2} \operatorname{per}_m^n}}_{=:\Gamma_m^n} \subseteq \underbrace{\overline{GL_{n^2} \operatorname{det}_n}}_{\Omega_n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Geometric Complexity Theory

Proposition (Lower bounds via geometry) If $per_m^n \notin \overline{GL_{n^2} \det_n}$, then $dc(per_m) > n$.

Conjecture (GCT: Mulmuley and Sohoni) $\max\{n : \operatorname{per}_m^n \notin \overline{GL_{n^2} \operatorname{det}_n}\} (\leq \operatorname{dc}(\operatorname{per}_m))$ grows superpolynomially.

$$\operatorname{per}_{m}^{n} \in \overline{GL_{n^{2}} \operatorname{det}_{n}} \iff \underbrace{\overline{GL_{n^{2}} \operatorname{per}_{m}^{n}}}_{=:\Gamma_{m}^{n}} \subseteq \underbrace{\overline{GL_{n^{2}} \operatorname{det}_{n}}}_{\Omega_{n}}.$$
Exploit the symmetry! Coordinate rings as $GL_{n^{2}}$ representations:

$$\mathbb{C}[\overline{GL_{n^{2}}\mathsf{det}_{n}}]_{d} \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{GL_{n^{2}}\mathrm{per}_{m}^{n}}]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

Definition (Representation theoretic obstruction)

If $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$, then λ is a **representation theoretic obstruction**. Its existence shows $\overline{GL_{n^2} \text{per}_m^n} \not\subseteq \overline{GL_{n^2} \det_n}$ and so $\operatorname{dc}(\operatorname{per}_m) > n$!

(ロ) (同) (三) (三) (三) (0,0)

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Non)existence of obstructions

$$\mathbb{C}[\overline{GL_{n^2}\text{det}_n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{GL_{n^2}\text{per}_m^n}]_d \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

If $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$, then λ is a representation theoretic obstruction and dc(per_m) > n. If $n > poly(m) \Longrightarrow VP \neq VNP$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Kronecker coefficients of S_n 000

Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Non)existence of obstructions

$$\mathbb{C}[\overline{GL_{n^{2}}\mathsf{det}_{n}}]_{d} \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{GL_{n^{2}}\mathrm{per}_{m}^{n}}]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

If $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$, then λ is a representation theoretic obstruction and $dc(per_m) > n$. If $n > poly(m) \Longrightarrow VP \neq VNP$.

Conjecture (GCT: Mulmuley-Sohoni)

There exist representation theoretic obstructions that show superpolynomial lower bounds on $dc(per_m)$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Non)existence of obstructions

$$\mathbb{C}[\overline{GL_{n^{2}}\mathsf{det}_{n}}]_{d} \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{GL_{n^{2}}\mathrm{per}_{m}^{n}}]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

If $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$, then λ is a representation theoretic obstruction and $dc(per_m) > n$. If $n > poly(m) \Longrightarrow VP \neq VNP$.

Conjecture (GCT: Mulmuley-Sohoni)

There exist representation theoretic obstructions that show superpolynomial lower bounds on $dc(per_m)$.

If also $\delta_{\lambda,d,n} = 0$, then λ is an occurrence obstruction.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show superpolynomial lower bounds on $dc(per_m)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Non)existence of obstructions

$$\mathbb{C}[\overline{GL_{n^{2}}\mathsf{det}_{n}}]_{d} \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{GL_{n^{2}}\mathrm{per}_{m}^{n}}]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

If $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$, then λ is a representation theoretic obstruction and $dc(per_m) > n$. If $n > poly(m) \Longrightarrow VP \neq VNP$.

Conjecture (GCT: Mulmuley-Sohoni)

There exist representation theoretic obstructions that show superpolynomial lower bounds on $dc(per_m)$.

If also $\delta_{\lambda,d,n} = 0$, then λ is an occurrence obstruction.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show superpolynomial lower bounds on $dc(per_m)$.

Theorem (Bürgisser-Ikenmeyer-P(FOCS 2016)) This Conjecture is false.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Non)existence of obstructions

$$\mathbb{C}[\overline{GL_{n^{2}}\mathsf{det}_{n}}]_{d} \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{GL_{n^{2}}\mathrm{per}_{m}^{n}}]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

If $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$, then λ is a **representation theoretic obstruction** and dc(per_m) > n. If $n > poly(m) \Longrightarrow VP \neq VNP$. **Question:** What are these $\delta_{\lambda,d,n}$ and $\gamma_{\lambda,d,n,m}$???

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

(Non)existence of obstructions

$$\mathbb{C}[\overline{GL_{n^{2}}\mathsf{det}_{n}}]_{d} \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{GL_{n^{2}}\mathrm{per}_{m}^{n}}]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

If $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$, then λ is a representation theoretic obstruction and $dc(per_m) > n$. If $n > poly(m) \Longrightarrow VP \neq VNP$. Question: What are these $\delta_{\lambda,d,n}$ and $\gamma_{\lambda,d,n,m}$??? Kronecker coefficients of the Symmetric Group:

$$\delta_{\lambda,d,n} \leq sk(\lambda, n^d) \leq g(\lambda, n^d, n^d)$$

(Symmetric Kronecker: $sk(\lambda,\mu) := \dim \operatorname{Hom}_{S_{|\lambda|}}(\mathbb{S}^{\lambda}, S^{2}(\mathbb{S}^{\mu})) = mult_{\lambda}\mathbb{C}[GL_{n^{2}}det_{n}]_{d})$ Plethysm coefficients: of GL.

$$a_{\lambda}(d[n]) := mult_{\lambda}Sym^{d}(Sym^{n}(V)) \geq \gamma_{\lambda,d,n,m}.$$

Problem (GCT program, "easy version") Find λ , such that the $sk(\lambda, (n^d)) < a_\lambda(d[n])$?

Greta Panova

The Kronecker coefficients of S_r 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)

For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}]$ but not in $\mathbb{C}[\overline{GL_{n^2} \cdot \det_n}]$, where $n = m^c$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

The Kronecker coefficients of S_r 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)

For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}]$ but not in $\mathbb{C}[\overline{GL_{n^2} \cdot \det_n}]$, where $n = m^c$.

Theorem (Ikenmeyer-P (2015, FOCS'16)) Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n^d, n^d) = 0$ (so $mult_{\lambda}\mathbb{C}[GL_{n^2} \det_n] = 0$), then $mult_{\lambda}(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}per_m)] = 0$.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへの

The Kronecker coefficients of S_I 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)

For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}]$ but not in $\mathbb{C}[\overline{GL_{n^2} \cdot \det_n}]$, where $n = m^c$.

Theorem (Ikenmeyer-P (2015, FOCS'16)) Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n^d, n^d) = 0$ (so $mult_{\lambda}\mathbb{C}[GL_{n^2} \det_n] = 0$), then $mult_{\lambda}(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}per_m)] = 0$.

Theorem (Bürgisser-Ikenmeyer-P (FOCS'16)) Let n, d, m be positive integers with $n \ge m^{25}$ and $\lambda \vdash nd$. If λ occurs in $\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}]$, then λ also occurs in $\mathbb{C}[\overline{GL_{n^2} \cdot \det_n}]$. In particular, the Conjecture is false, there are no "occurrence obstructions".

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

The Kronecker coefficients of S_n $\bullet \circ \circ$ Positivity 000000 Other models

Combinatorial primer: partitions 00000

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_n :

group homomorphisms $S_n o GL_N(\mathbb{C})$)

are the **Specht modules** \mathbb{S}_{λ}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Positivity 000000 Other models

Combinatorial primer: partitions 00000

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_n :

group homomorphisms $S_n o GL_N(\mathbb{C})$)

are the Specht modules \mathbb{S}_{λ} , indexed by

integer partitions $\lambda \vdash n$:

$$\begin{split} \lambda &= (\lambda_1, \dots, \lambda_\ell), \\ \lambda_1 &\geq \lambda_2 \geq \dots \geq \lambda_\ell > 0, \\ \lambda_1 &+ \lambda_2 + \dots = n, \text{ length } \ell(\lambda) = \ell \text{ (= number of nonzero parts)} \end{split}$$

Young diagram of
$$\lambda$$
:
($\lambda = (5, 3, 2), \ \ell(\lambda) = 3, \ n = |\lambda| = 5 + 3 + 2 = 10$).

Basis for \mathbb{S}_{λ} : **S**tandard **Y**oung **T**ableaux of shape λ :

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Positivity 000000 Other models

Combinatorial primer: partitions 00000

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_n :

group homomorphisms $S_n o GL_N(\mathbb{C})$)

are the **Specht modules** \mathbb{S}_{λ}

Tensor product decomposition:

 $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu} = \oplus_{\nu \vdash n} (....) \mathbb{S}_{\nu}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Positivity 000000 Other models

Combinatorial primer: partitions

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_n :

group homomorphisms $S_n o GL_N(\mathbb{C})$)

are the **Specht modules** \mathbb{S}_{λ}

Tensor product decomposition:

 $\mathbb{S}_{\lambda}\otimes\mathbb{S}_{\mu}=\oplus_{\nu\vdash n}g(\lambda,\mu,\nu)\mathbb{S}_{\nu}$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Positivity 000000 Other models

Combinatorial primer: partitions

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_n :

group homomorphisms $S_n o GL_N(\mathbb{C})$)

are the **Specht modules** \mathbb{S}_{λ}

Tensor product decomposition:

 $\mathbb{S}_{\lambda}\otimes\mathbb{S}_{\mu}=\oplus_{\nu\vdash n}g(\lambda,\mu,\nu)\mathbb{S}_{\nu}$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

 $g(\lambda, \mu, \nu) = \dim \operatorname{Hom}_{S_n}(\mathbb{S}_{\nu}, \mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu})$

In terms of $GL(\mathbb{C}^m)$ modules $V_{\lambda}, V_{\mu}, V_{\nu}$

$$\operatorname{Sym}(\mathbb{C}^m\otimes\mathbb{C}^m\otimes\mathbb{C}^m)=\oplus_{\lambda,\mu,\nu}g(\lambda,\mu,\nu)V_\lambda\otimes V_\mu\otimes V_\nu$$

(ロ)、(型)、(E)、(E)、 E、 のQの

Geometric	Complexity	Theory
000000		

Positivity 000000 Other models

Combinatorial primer: partitions 00000

A bit of history

- 1873: Lie groups, Lie, Klein
- 1896: Representations of finite groups, Frobenius ...
- 1923: Representations of Lie groups, *H. Weyl.* Quantum mechanics, *von Neumann*
- 1934: Tensor products of irreducible representations of Lie groups: V_{λ} – irreducible representation of $GL_N(\mathbb{C})$.

$$V_\lambda \otimes V_\mu = \oplus_
u c^
u_{\lambda\mu} V_
u$$

 $c_{\lambda\mu}^{\nu}$ – Littlewood-Richardson coefficients.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Geometric	Complexity	Theory
000000		

Positivity 000000 Other models

Combinatorial primer: partitions 00000

A bit of history

- 1873: Lie groups, Lie, Klein
- 1896: Representations of finite groups, Frobenius ...
- 1923: Representations of Lie groups, *H. Weyl.* Quantum mechanics, *von Neumann*
- 1934: Tensor products of irreducible representations of Lie groups: V_{λ} – irreducible representation of $GL_N(\mathbb{C})$.

$$V_\lambda \otimes V_\mu = \oplus_
u c^
u_{\lambda\mu} V_
u$$

 $c^{
u}_{\lambda\mu}$ – Littlewood-Richardson coefficients.

Theorem (Littlewood-Richardson, 1934)

The coefficient $c_{\lambda\mu}^{\nu}$ is equal to the number of LR tableaux of shape ν/μ and type λ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Geometric	Complexity	Theory
000000		

Positivity 000000 Other models

Combinatorial primer: partitions 00000

A bit of history

- 1873: Lie groups, Lie, Klein
- 1896: Representations of finite groups, Frobenius ...
- 1923: Representations of Lie groups, *H. Weyl.* Quantum mechanics, *von Neumann*
- 1934: Tensor products of irreducible representations of Lie groups: V_{λ} – irreducible representation of $GL_N(\mathbb{C})$.

$$V_\lambda \otimes V_\mu = \oplus_
u c^
u_{\lambda\mu} V_
u$$

 $c_{\lambda\mu}^{\nu}$ – Littlewood-Richardson coefficients.

Theorem (Littlewood-Richardson, 1934)

The coefficient $c_{\lambda\mu}^{\nu}$ is equal to the number of LR tableaux of shape ν/μ and type λ .

(LR tableaux of shape (7,4,3)/(3,1) and type (4,3,2). $c_{(3,1)(4,3,2)}^{(7,4,3)} = 2$)

Geometric	Complexity	Theory
000000		

Positivity 000000 Other models

Combinatorial primer: partitions 00000

A bit of history

- 1873: Lie groups, Lie, Klein
- 1896: Representations of finite groups, Frobenius ...
- 1923: Representations of Lie groups, *H. Weyl.* Quantum mechanics, *von Neumann*
- 1934: Tensor products of irreducible representations of Lie groups: V_{λ} – irreducible representation of $GL_N(\mathbb{C})$.

$$V_\lambda \otimes V_\mu = \oplus_
u c^
u_{\lambda\mu} V_
u$$

 $c^{\nu}_{\lambda\mu}$ – Littlewood-Richardson coefficients.

Theorem (Littlewood-Richardson, 1934)

The coefficient $c_{\lambda\mu}^{\nu}$ is equal to the number of LR tableaux of shape ν/μ and type λ .

1938: Tensor product of irreducible representations of S_n , Kronecker coefficients, *Murnaghan*:

$$\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu} = \oplus_{\nu \vdash n} g(\lambda, \mu, \nu) \mathbb{S}_{\nu}$$

The Kronecker coefficients of S_n 00• Positivity 000000 Other models

Combinatorial primer: partitions 00000

(ロ)、(四)、(E)、(E)、(E)

10

The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al) Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda, \mu, \nu) = \#\mathcal{O}_{\lambda,\mu,\nu}$.

The Kronecker coefficients of S_n 00• Positivity 000000 Other models

Combinatorial primer: partitions 00000

The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda, \mu, \nu) = \#\mathcal{O}_{\lambda,\mu,\nu}$. Alternatively, show that KRON is in #P.

Classical motivation: (Littlewood–Richardson: for $c_{\lambda,\mu}^{\nu}$, $\mathcal{O}_{\lambda,\mu,\nu} = \{ LR \text{ tableaux of shape } \nu/\mu, \text{ type } \lambda \})$

Theorem (Murnaghan)

If $|\lambda| + |\mu| = |\nu|$ and $n > |\nu|$, then

$$g((n+|\mu|,\lambda),(n+|\lambda|,\mu),(n,
u))=c_{\lambda\mu}^{
u}.$$

Modern motivation:

1. A positive combinatorial formula " \iff " Computing Kronecker coefficients is in $\#\mathsf{P}$.

2. Geometric Complexity Theory.

3. Invariant Theory, moment polytopes [see Bürgisser,

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda, \mu, \nu) = \#\mathcal{O}_{\lambda,\mu,\nu}$. Alternatively, show that KRON is in #P.

Results since then:

Combinatorial formulas for $g(\lambda, \mu, \nu)$, when:

- μ and ν are hooks (_____), [*Remmel, 1989*]
- $\nu = (n k, k)$ (_____) and $\lambda_1 \ge 2k 1$, [Ballantine–Orellana, 2006]
- $\nu = (n k, k), \lambda = (n r, r)$ [Remmel–Whitehead, 1994; Blasiak–Mulmuley–Sohoni,2013]
- $\nu = (n k, 1^k)$ (_____), [Blasiak, 2012]
- Other special cases [Colmenarejo-Rosas, Ikenmeyer-Mulmuley-Walter, Pak-Panova].

・ロト ・同ト ・ヨト ・ヨト ・ヨー

The Kronecker coefficients of S_n 00• Positivity 000000 Other models

Combinatorial primer: partitions 00000

The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda,\mu,\nu) = \#\mathcal{O}_{\lambda,\mu,\nu}$. Alternatively, show that KRON is in #P.

Bounds and positivity:

 $\begin{array}{l} [\mathsf{Pak-P}]: \ g(\lambda,\mu,\mu) \geq |\chi^{\lambda}(2\mu_1-1,2\mu_2-3,\ldots) \ \text{when} \ \mu = \mu^{\mathcal{T}}. \\ \mathsf{Corollaries:} \ g(\lambda,\mu,\mu) > c \frac{2^{\sqrt{2k}}}{k^{9/4}} \ \text{for} \ \lambda = (|\mu|-k,k), \ \text{and} \ diag(\mu) \geq \sqrt{k}. \end{array}$

Complexity results:

[Bürgisser-Ikenmeyer]: KRON is in GapP. (Littlewood-Richardson, i.e. KRON's special case, is #P-complete) [Pak-P]: If ν is a hook, then KronPositivity is in P. If λ, μ, ν have fixed length there exists a linear time algorithm for deciding $g(\lambda, \mu, \nu) > 0$.

[Ikenmeyer-Mulmuley-Walter]: KronPositivity is NP -hard.

[Bürgisser-Christandl-Mulmuley-Walter]: membership in the moment polytope is NP and coNP .

The Kronecker coefficients of S_r 000 Positivity •00000 Other models

Combinatorial primer: partitions 00000

Back to GCT: Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)

For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}]$ but not in $\mathbb{C}[\overline{GL_{n^2} \cdot \det_n}]$, where $n = m^c$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

The Kronecker coefficients of S₁ 000 Positivity •00000 Other models

Combinatorial primer: partitions 00000

Back to GCT: Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)

For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}]$ but not in $\mathbb{C}[\overline{GL_{n^2} \cdot \det_n}]$, where $n = m^c$.

Theorem (Ikenmeyer-P (2015, FOCS'16)) Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n^d, n^d) = 0$ (so $mult_{\lambda}\mathbb{C}[GL_{n^2} \det_n] = 0$), then $mult_{\lambda}(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}per_m)] = 0$.

(ロ) (同) (三) (三) (三) (0,0)

The Kronecker coefficients of S_r 000 Positivity •00000 Other models

Combinatorial primer: partitions 00000

Back to GCT: Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)

For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}]$ but not in $\mathbb{C}[\overline{GL_{n^2} \cdot \det_n}]$, where $n = m^c$.

Theorem (Ikenmeyer-P (2015, FOCS'16)) Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n^d, n^d) = 0$ (so $mult_{\lambda}\mathbb{C}[GL_{n^2} \det_n] = 0$), then $mult_{\lambda}(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}per_m)] = 0$.

Theorem (Bürgisser-Ikenmeyer-P (FOCS'16)) Let n, d, m be positive integers with $n \ge m^{25}$ and $\lambda \vdash nd$. If λ occurs in $\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}]$, then λ also occurs in $\mathbb{C}[\overline{GL_{n^2} \cdot \det_n}]$. In particular, the Conjecture is false, there are no "occurrence obstructions".

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

The Kronecker coefficients of S_n 000 Positivity 000000 Other models 0000 Combinatorial primer: partitions 00000

No occurrence obstructions I: positive Kroneckers

Theorem (Ikenmeyer-P (2015, FOCS'16)) Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n \times d, n \times d) = 0$, then $mult_{\lambda}(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}per_m)] = 0.$

Proof:

$$\overline{\lambda} := (\lambda_2, \lambda_3, \ldots) \vdash |\lambda| - \lambda_1$$

Theorem (Kadish-Landsberg) If $mult_{\lambda}\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}] > 0$, then $|\bar{\lambda}| \leq md$ and $\ell(\lambda) \leq m^2$.

Theorem (Degree lower bound, [IP]) If $|\bar{\lambda}| \leq md$ with $a_{\lambda}(d[n]) > g(\lambda, n \times d, n \times d)$, then $d > \frac{n}{m}$.

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなの

The Kronecker coefficients of S_n 000 Positivity 000000 Other models 0000 Combinatorial primer: partitions 00000

No occurrence obstructions I: positive Kroneckers

Theorem (Ikenmeyer-P (2015, FOCS'16)) Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n \times d, n \times d) = 0$, then $mult_{\lambda}(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}per_m)] = 0.$

Proof:

$$ar{\lambda} := (\lambda_2, \lambda_3, \ldots) \vdash |\lambda| - \lambda_1$$

Theorem (Kadish-Landsberg) If $mult_{\lambda}\mathbb{C}[\overline{GL_{n^2}X_{11}^{n-m}per_m}] > 0$, then $|\bar{\lambda}| \leq md$ and $\ell(\lambda) \leq m^2$.

Theorem (Degree lower bound, [IP]) If $|\bar{\lambda}| \leq md$ with $a_{\lambda}(d[n]) > g(\lambda, n \times d, n \times d)$, then $d > \frac{n}{m}$.

Theorem (Kronecker positivity, [IP]) Let $\lambda \vdash dn$. Let $\mathcal{X} := \{(1), (2 \times 1), (4 \times 1), (6 \times 1), (2, 1), (3, 1)\}$. (a) If $\overline{\lambda} \in \mathcal{X}$, then $a_{\lambda}(d[n]) = 0$. (b) If $\overline{\lambda} \notin \mathcal{X}$ and $m \ge 3$ such that $\ell(\lambda) \le m^2$, $|\overline{\lambda}| \le md$, $d > 3m^3$, and $n > 3m^4$, then $g(\lambda, n \times d, n \times d) > 0$.

The Kronecker coefficients of S_n 000

Positivity 000000 Other models

Combinatorial primer: partitions 00000

Kronecker positivity I: hook-like λ s

Proposition (Ikenmeyer-P)

If there is an a, such that $g(\nu^k(a^2), a \times a, a \times a) > 0$ for all k, s.t. $k \notin H^1(\rho)$ and $a^2 - k \notin H^2(\rho)$ for some sets $H^1(\rho), H^2(\rho) \subset [\ell, 2a + 1]$, then $g(\nu^k(b^2), b \times b, b \times b) > 0$ for all k, s.t. $k \notin H^1(\rho)$ and $b^2 - k \notin H^2(\rho)$ for all $b \ge a$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proof idea:

Kronecker symmetries and semigroup properties: Let $P_c = \{k : g(\nu^k(c^2), c \times c, c \times c) > 0\}$, we have **Claim:** Suppose that $k \in P_c$, then $k, k + 2c + 1 \in P_{c+1}$.

The Kronecker coefficients of S_n 000

Positivity 000000 Other models

Combinatorial primer: partitions 00000

Kronecker positivity I: hook-like λ s

Proposition (Ikenmeyer-P)

If there is an a, such that $g(\nu^k(a^2), a \times a, a \times a) > 0$ for all k, s.t. $k \notin H^1(\rho)$ and $a^2 - k \notin H^2(\rho)$ for some sets $H^1(\rho), H^2(\rho) \subset [\ell, 2a + 1]$, then $g(\nu^k(b^2), b \times b, b \times b) > 0$ for all k, s.t. $k \notin H^1(\rho)$ and $b^2 - k \notin H^2(\rho)$ for all $b \ge a$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

Proof idea:

Kronecker symmetries and semigroup properties: Let $P_c = \{k : g(\nu^k(c^2), c \times c, c \times c) > 0\}$, we have **Claim:** Suppose that $k \in P_c$, then $k, k + 2c + 1 \in P_{c+1}$.

Corollary

We have that $g(\lambda, h \times w, h \times w) > 0$ for $\lambda = (hw - j - |\rho|, 1^j + \rho)$ for most "small" partitions ρ and all but finitely many values of j.

etric Complexity Theory The Kronecker coefficients of S_n **Positivity** Other models Combinatorial prino 000 000 0000 0000 0000 00000

Kronecker positivity II: squares, and decompositions

Theorem (Ikenmeyer-P)

Let $\nu \notin \mathcal{X}$ and $\ell = \max(\ell(\nu) + 1, 9)$, $a > 3\ell^{3/2}$, $b \ge 3\ell^2$ and $|\nu| \le ab/6$. Then $g(\nu(ab), a \times b, a \times b) > 0$.

Proof sketch: decomposition + regrouping

$$u = \rho + \xi + \sum_{k=2}^{\ell} x_k((k-1) \times k) + \sum_{k=2}^{\ell} y_k((k-1) \times 2).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

: Complexity Theory The Kronecker coefficients of S_n Positivity Other models Combin.

Kronecker positivity II: squares, and decompositions

Theorem (Ikenmeyer-P)

Let $\nu \notin \mathcal{X}$ and $\ell = max(\ell(\nu) + 1, 9)$, $a > 3\ell^{3/2}$, $b \ge 3\ell^2$ and $|\nu| \le ab/6$. Then $g(\nu(ab), a \times b, a \times b) > 0$.

Proof sketch: decomposition + regrouping

$$\nu = \rho + \xi + \sum_{k=2}^{\ell} x_k((k-1) \times k) + \sum_{k=2}^{\ell} y_k((k-1) \times 2).$$

Crucial facts:

- $g(k \times k, k \times k, k \times k) > 0$ [Bessenrodt-Behns].
- Transpositions: $g(\alpha, \beta, \gamma) = g(\alpha, \beta^T, \gamma^T)$ (with $\beta = \gamma = wxh$)
- Hooks and exceptional cases: $g(\lambda, h \times w, h \times w) > 0$ for all $\lambda = (hw j |\rho|, 1^j + \rho)$ for $|\rho| \le 6$ and almost all js.
- Semigroup property for positive triples: $g(\alpha^1 + \alpha^2, \beta^1 + \beta^2, \gamma^1 + \gamma^2) \ge \max(g(\alpha^1, \beta^1, \gamma^1), g(\alpha^2, \beta^2, \gamma^2))$

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

15

Kronecker vs plethysm: inequality of multiplicities **Stability**[Manivel]: $g((nd - |\rho|, \rho), n \times d, n \times d) = a_{\rho}(d)$, as $n \to \infty$. $St^{1}(\rho) := \{(n, d) \mid g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_{\rho}(d)$.

The Kronecker coefficients of S_n 000 Positivity 000000 Other models

Combinatorial primer: partitions 00000

Kronecker vs plethysm: inequality of multiplicities **Stability**[Manivel]: $g((nd - |\rho|, \rho), n \times d, n \times d) = a_{\rho}(d)$, as $n \to \infty$. $St^{1}(\rho) := \{(n, d) | g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_{\rho}(d)$.

Proposition (Ikenmeyer-P)

Fix ρ , and let $(n, d) \in St^1(\rho)$, which is true in particular if $n \ge |\rho|$. Let $\lambda = (nd - |\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \ge a_{\lambda}(d[n])$.

(ロ) (同) (三) (三) (三) (0,0)

Theory The Kronecker coefficients of *S*_n

Positivity 000000 Other models 0000 Combinatorial primer: partitions 00000

Kronecker vs plethysm: inequality of multiplicities **Stability**[Manivel]: $g((nd - |\rho|, \rho), n \times d, n \times d) = a_{\rho}(d)$, as $n \to \infty$. $St^{1}(\rho) := \{(n, d) | g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_{\rho}(d)$.

Proposition (Ikenmeyer-P) Fix ρ , and let $(n, d) \in St^1(\rho)$, which is true in particular if $n \ge |\rho|$. Let $\lambda = (nd - |\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \ge a_{\lambda}(d[n])$. Proof: $\lambda = \mu + d(n - m)$. Suppose $g(\lambda, n \times d, n \times d) < a_{\lambda}(d[n])$: KL'14: If $\mu \vdash md$ then $mult_{\mu+d(n-m)}(\mathbb{C}[\overline{GL_{n^2}(X_{1,1})^{n-m}V_m}] \ge a_{\mu}(d[m])$, where $V_m := Sym^m \mathbb{C}^{m^2}$.

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなの

Fheory	The Kronecker o	coefficients of	S _n P	osit
	000		C	boc

ositivity 000000

Other models 0000 Combinatorial primer: partitions

Kronecker vs plethysm: inequality of multiplicities **Stability**[Manivel]: $g((nd - |\rho|, \rho), n \times d, n \times d) = a_{\rho}(d)$, as $n \to \infty$. $St^{1}(\rho) := \{(n, d) | g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_{\rho}(d)$.

Proposition (Ikenmeyer-P) Fix ρ , and let $(n, d) \in St^1(\rho)$, which is true in particular if $n \ge |\rho|$. Let $\lambda = (nd - |\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \ge a_{\lambda}(d[n])$. Proof: $\lambda = \mu + d(n - m)$. Suppose $g(\lambda, n \times d, n \times d) < a_{\lambda}(d[n])$: KL'14: If $\mu \vdash md$ then $mult_{\mu+d(n-m)}(\mathbb{C}[\overline{GL_{n^2}(X_{1,1})^{n-m}V_m}] \ge a_{\mu}(d[m])$, where $V_m := Sym^m \mathbb{C}^{m^2}$.

Stability: $g(\lambda, n \times d, n \times d) = g(\mu, m \times d, m \times d)$.

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - のへの

heory	The Kronecker	coefficients	of	Sn	P
	000				C

Positivity 0000●0 Other models

Combinatorial primer: partitions

Kronecker vs plethysm: inequality of multiplicities **Stability**[Manivel]: $g((nd - |\rho|, \rho), n \times d, n \times d) = a_{\rho}(d)$, as $n \to \infty$. $St^{1}(\rho) := \{(n, d) | g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_{\rho}(d)$.

Proposition (Ikenmeyer-P) Fix ρ , and let $(n, d) \in St^1(\rho)$, which is true in particular if $n \ge |\rho|$. Let $\lambda = (nd - |\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \ge a_{\lambda}(d[n])$. Proof: $\lambda = \mu + d(n - m)$. Suppose $g(\lambda, n \times d, n \times d) < a_{\lambda}(d[n])$: KL'14: If $\mu \vdash md$ then $mult_{\mu+d(n-m)}(\mathbb{C}[\overline{GL_{n^2}(X_{1,1})^{n-m}V_m}] \ge a_{\mu}(d[m])$, where $V_m := Sym^m \mathbb{C}^{m^2}$.

Stability: $g(\lambda, n \times d, n \times d) = g(\mu, m \times d, m \times d)$.

GCT: If $mult_{\lambda}(\mathbb{C}[\overline{GL_{n^2}(X_{1,1})^{n-m}V_m})] \ge g(\lambda, n \times d, n \times d)$ then $dc(f_m) > n$ for some $f_m \in V_m$.

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - のへの

Theory	The Kronecker o	oefficients o	S _n	Positivity
	000			000000

Other models

Combinatorial primer: partitions

Kronecker vs plethysm: inequality of multiplicities **Stability**[Manivel]: $g((nd - |\rho|, \rho), n \times d, n \times d) = a_{\rho}(d)$, as $n \to \infty$. $St^{1}(\rho) := \{(n, d) | g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_{\rho}(d)$.

Proposition (Ikenmeyer-P) Fix ρ , and let $(n, d) \in St^1(\rho)$, which is true in particular if $n \ge |\rho|$. Let $\lambda = (nd - |\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \ge a_{\lambda}(d[n])$. Proof: $\lambda = \mu + d(n - m)$. Suppose $g(\lambda, n \times d, n \times d) < a_{\lambda}(d[n])$: KL'14: If $\mu \vdash md$ then $mult_{\mu+d(n-m)}(\mathbb{C}[\overline{GL_{n^2}(X_{1,1})^{n-m}V_m})] \ge a_{\mu}(d[m])$, where $V_m := Sym^m \mathbb{C}^{m^2}$. Stability: $g(\lambda, n \times d, n \times d) = g(\mu, m \times d, m \times d)$.

GCT: If $mult_{\lambda}(\mathbb{C}[\overline{GL_{n^2}(X_{1,1})^{n-m}V_m})] \ge g(\lambda, n \times d, n \times d)$ then $dc(f_m) > n$ for some $f_m \in V_m$.

 $\implies mult_{\lambda}(\mathbb{C}[\overline{GL_{n^{2}}(X_{1,1})^{n-m}V_{m}}] \ge a_{\mu}(d[m]) = a_{\lambda}(d[n]) > g(\lambda, n \times d, n \times d)$ $\implies \max_{f \in V_{m}} dc(f_{m}) > n \to \infty$

Positivity 00000

Plethysm positivity

Theorem (Bürgisser-Ikenmeyer-P (FOSC'16))

Let n, d, m be positive integers with $n > m^{25}$ and $\lambda \vdash nd$. If λ occurs in $\mathbb{C}[GL_{n^2}X_{11}^{n-m}per_m]$, then λ also occurs in $\mathbb{C}[\overline{GL_{n^2}} \cdot \det_n]$. In particular, the Obstruction Existence Conjecture is false, there are no "occurrence obstructions"

Proof ideas:

- For $mult_{\lambda}\mathbb{C}[GL_{n^2}X_{11}^{n-m}per_m] > 0$ we must have $\lambda_1 > d(n-m)$.
- (Valiant): $dc(X_1^s + \cdots + X_k^s) < ks$, hence... $\ell^{n-s}(v_1^s + \cdots + v_k^s) \in \Omega_n$ for n > ks.
- If a highest weight vector of weight $-\lambda$ does not vanish on Ω_n (or in particular, on the power sums), then $\delta_{\lambda,n} = mult_{\lambda}\mathbb{C}[\Omega_n] > 0$.
- Then $\delta_{\lambda,n} > 0$, because of the existence of λ -highest weight vectors in $Sym^d Sym^n V$, i.e. $a_{\lambda}(d[n]) > 0$ via explicit tableaux constructions: tableaux T of shape λ , content $d \times n$

5 5 5 5

· decomposition into building blocks + regrouping \neg · · · · · · · ·

Geometric Complexity Theory	The Kronecker coefficients of <i>S_n</i> 000	Positivity 000000	Other models	Combinatorial primer: partitions		

Next time:

- Matrix Powering vs permanent and the symmetric Kronecker coefficients.
- Iterated Matrix Multiplication vs permanent model.
- Matrix Multiplication lower bounds via GCT.
- Some combinatorics and bounds on the Kronecker coefficients.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへ⊙

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ