Geometric Complexity Theory via Algebraic Combinatorics

Greta Panova
University of Pennsylvania
Institute for Advanced Study Princeton

IAS, CSDM Seminar

(Boolean) Complexity

Input: string of n bits, i.e. size $($ input $)=n$.

Decision problems:
Is there an object, s.t.... ?
$P=$ solution can be found in time Poly(n)
NP = solution can be verified in Poly(n) (polynomial witness)
NP -Complete = in NP, and every NP problem can be reduced to it poly time; e.g.

Counting problems:

Compute $F($ input $)=$?
FP = solution can be found in time Poly(n)
\#P $=$ NP counting analogue; informally - F(input) counts Expmany objects, whose verification is in P.

(Boolean) Complexity

Input: string of n bits, i.e. size $($ input $)=n$.
Decision problems:
Is there an object, s.t.... ?
$P=$ solution can be found in time Poly(n)
NP = solution can be verified in Poly(n) (polynomial witness)
NP -Complete = in NP, and every NP problem can be reduced to it poly time;
The P vs NP Problem:
Is $\mathrm{P}=\mathrm{NP}$? Algebraic version: is $\mathrm{VP}=\mathrm{VNP}$?

(Boolean) Complexity

Input: string of n bits, i.e. size $($ input $)=n$.

Decision problems:

Is there an object, s.t.... ?
$P=$ solution can be found in time Poly(n)
NP = solution can be verified in Poly(n) (polynomial witness)
NP -Complete = in NP, and every NP problem can be reduced to it poly time;

Counting problems:

Compute $F($ input $)=$?
FP = solution can be found in time Poly(n)
\#P $=$ NP counting analogue; informally - F(input) counts Expmany objects, whose verification is in P.

The P vs NP Problem:
Is $\mathrm{P}=\mathrm{NP}$? Algebraic version: is VP $=\mathrm{VNP}$?
An approach [Mulmuley, Sohoni]: Geometric Complexity Theory

VP vs VNP: determinant vs permanent

Arithmetic Circuits:

$$
y=3 x_{1}+x_{1} x_{2}
$$

Polynomials $f_{n} \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$. Circuit - nodes are,$+ \times$ gates, input X_{1}, \ldots, X_{n} and constants from \mathbb{F}.

Class VP (Valliant's P): polynomials that can be computed with poly (n) large circuit (size of the associated graph).

Class VNP:
the class of polynomials f_{n}, s.t.
$\exists g_{n} \in \mathrm{VP}$ with
$\sum_{b \in\{0,1\}^{n}}^{f_{n}} g_{n}\left(X_{1}, \ldots, X_{n}, b_{1}, \ldots, b_{n}\right)$.

VP vs VNP: determinant vs permanent

Arithmetic Circuits:

$$
y=3 x_{1}+x_{1} x_{2}
$$

Polynomials $f_{n} \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$. Circuit - nodes are,$+ \times$ gates, input X_{1}, \ldots, X_{n} and constants from \mathbb{F}.

Class VP (Valliant's P): polynomials that can be computed with poly (n) large circuit (size of the associated graph).

Class VNP:
the class of polynomials f_{n}, s.t. $\exists g_{n} \in \mathrm{VP}$ with
$\sum_{b \in\{0,1\}^{n}}^{f_{n}} g_{n}\left(X_{1}, \ldots, X_{n}, b_{1}, \ldots, b_{n}\right)$.

Theorem[Bürgisser]: If $\mathrm{VP}=\mathrm{VNP}$, then $\mathrm{P}=\mathrm{NP}$ if \mathbb{F} - finite or the Generalized Riemann Hypothesis holds.

VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:

For every polynomial p in any number of variables there exists some n such that

$$
p=\operatorname{det}(A)
$$

where A is an $n \times n$ matrix whose entries are affine linear polynomials. The smallest n possible is called the determinantal complexity $\mathrm{dc}(p)$. Example: $p=x_{1}^{2}+x_{1} x_{2}+x_{2} x_{3}+2 x_{1}$, then

$$
p=\operatorname{det}\left[\begin{array}{cc}
x_{1}+2 & x_{2} \\
-x_{3}+2 & x_{1}+x_{2}
\end{array}\right], \quad \operatorname{dc}(p)=2
$$

VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:

For every polynomial p in any number of variables there exists some n such that

$$
p=\operatorname{det}(A)
$$

where A is an $n \times n$ matrix whose entries are affine linear polynomials. The smallest n possible is called the determinantal complexity $\operatorname{dc}(p)$.

The permanent:

$$
\operatorname{per}_{m}:=\sum_{\sigma \in S_{m}} \prod_{i=1}^{m} X_{i, \sigma(i)}
$$

Theorem:[Valiant] per ${ }_{m}$ is VNP-complete.
Conjecture (Valiant, VP \neq VNP equivalent) dc(per_{m}) grows superpolynomially.

VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:

For every polynomial p in any number of variables there exists some n such that

$$
p=\operatorname{det}(A)
$$

where A is an $n \times n$ matrix whose entries are affine linear polynomials.
The smallest n possible is called the determinantal complexity $\operatorname{dc}(p)$.
The permanent:

$$
\operatorname{per}_{m}:=\sum_{\sigma \in S_{m}} \prod_{i=1}^{m} X_{i, \sigma(i)} .
$$

Theorem:[Valiant] per r_{m} is VNP-complete.
Conjecture (Valiant, VP \neq VNP equivalent) dc $\left(\operatorname{per}_{m}\right)$ grows superpolynomially. Known: $\operatorname{dc}\left(\operatorname{per}_{m}\right) \leq 2^{m}-1$ (Grenet 2011), dc $\left(\operatorname{per}_{m}\right) \geq \frac{m^{2}}{2}$ (Mignon, Ressayre, 2004). Ryser's formula:

$$
\begin{equation*}
\operatorname{per}_{m}(X)=(-1)^{m} \sum_{S \subset[1 . . m]}(-1)^{|S|} \prod_{i=1}^{m}\left(\sum_{j \in S} X_{i, j}\right) \tag{3}
\end{equation*}
$$

Geometric Complexity Theory

$G L_{N}$ action on polynomials: $A \in G L_{N}(\mathbb{C}), v:=\left(X_{1}, \ldots, X_{N}\right)$, $f \in \mathbb{C}\left[X_{1}, \ldots, X_{N}\right]$, then A.f $=f\left(A^{-1} v\right)$
(replaces variables with linear forms)
$G L_{n^{2}} \operatorname{det}_{n}:=\left\{g \cdot \operatorname{det}_{n} \mid g \in G L_{n^{2}}\right\}$ - determinant orbit.
$\Omega_{n}:=\overline{G L_{n^{2}} \operatorname{det}_{n}}$ - determinant orbit closure.
$\operatorname{per}_{m}^{n}:=\left(X_{1,1}\right)^{n-m} \operatorname{per}_{m}$ - the padded permanent.

Geometric Complexity Theory

$G L_{N}$ action on polynomials: $A \in G L_{N}(\mathbb{C}), v:=\left(X_{1}, \ldots, X_{N}\right)$, $f \in \mathbb{C}\left[X_{1}, \ldots, X_{N}\right]$, then A.f $=f\left(A^{-1} v\right)$
(replaces variables with linear forms)
$G L_{n^{2}} \operatorname{det}_{n}:=\left\{g \cdot \operatorname{det}_{n} \mid g \in G L_{n^{2}}\right\}$ - determinant orbit.
$\Omega_{n}:=\overline{G L_{n^{2}} \operatorname{det}_{n}}$ - determinant orbit closure.
$\operatorname{per}_{m}^{n}:=\left(X_{1,1}\right)^{n-m} \operatorname{per}_{m}$ - the padded permanent.
Proposition (Lower bounds via geometry)
If $\operatorname{per}_{m}^{n} \notin \overline{G L_{n^{2}} \operatorname{det}_{n}}$, then $\operatorname{dc}\left(\operatorname{per}_{m}\right)>n$.

Geometric Complexity Theory

$G L_{N}$ action on polynomials: $A \in G L_{N}(\mathbb{C}), v:=\left(X_{1}, \ldots, X_{N}\right)$,
$f \in \mathbb{C}\left[X_{1}, \ldots, X_{N}\right]$, then A.f $=f\left(A^{-1} v\right)$
(replaces variables with linear forms)
$G L_{n^{2}} \operatorname{det}_{n}:=\left\{g \cdot \operatorname{det}_{n} \mid g \in G L_{n^{2}}\right\}$ - determinant orbit.
$\Omega_{n}:=\overline{G L_{n^{2}} \operatorname{det}_{n}}$ - determinant orbit closure.
$\operatorname{per}_{m}^{n}:=\left(X_{1,1}\right)^{n-m} \operatorname{per}_{m}$ - the padded permanent.
Proposition (Lower bounds via geometry)
If $\operatorname{per}_{m}^{n} \notin \overline{G L_{n^{2}} \operatorname{det}_{n}}$, then $\operatorname{dc}\left(\right.$ per $\left._{m}\right)>n$.
Conjecture (GCT: Mulmuley and Sohoni)
$\max \left\{n: \operatorname{per}_{m}^{n} \notin \overline{G L_{n^{2}} \operatorname{det}_{n}}\right\}\left(\leq \operatorname{dc}^{\left(\operatorname{per}_{m}\right)}\right)$ grows superpolynomially.
$\operatorname{per}_{m}^{n} \in \overline{G L_{n^{2}} \operatorname{det}_{n}} \Longleftrightarrow \underbrace{\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}}_{=: \Gamma_{m}^{n}} \subseteq \underbrace{\overline{G L_{n^{2}} \operatorname{det}_{n}}}_{\Omega_{n}}$.

Geometric Complexity Theory

Proposition (Lower bounds via geometry)
If $\operatorname{per}_{m}^{n} \notin \overline{G L_{n^{2}} \operatorname{det}_{n}}$, then $\mathrm{dc}\left(\right.$ per $\left._{m}\right)>n$.
Conjecture (GCT: Mulmuley and Sohoni)
$\max \left\{n: \operatorname{per}_{m}^{n} \notin \overline{\left.G L_{n^{2}} \operatorname{det}_{n}\right\}\left(\leq \operatorname{dc}\left(\operatorname{per}_{m}\right)\right) \text { grows superpolynomially. }}\right.$
$\operatorname{per}_{m}^{n} \in \overline{G L_{n^{2}} \operatorname{det}_{n}} \Longleftrightarrow \underbrace{\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}}_{=: \Gamma_{m}^{n}} \subseteq \underbrace{\overline{G L_{n^{2}} \operatorname{det}} n}_{\Omega_{n}}$.

Geometric Complexity Theory

Proposition (Lower bounds via geometry)
If per $_{m}^{n} \notin G L_{n^{2}} \operatorname{det}_{n}$, then $\operatorname{dc}\left(\right.$ per $\left._{m}\right)>n$.
Conjecture (GCT: Mulmuley and Sohoni)

$$
\operatorname{per}_{m}^{n} \in \overline{G L_{n^{2}} \operatorname{det}_{n}} \Longleftrightarrow \underbrace{\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}}_{=: \Gamma_{m}^{n}} \subseteq \underbrace{\overline{G L_{n^{2}} \operatorname{det}_{n}}}_{\Omega_{n}} .
$$

Exploit the symmetry! Coordinate rings as $G L_{n^{2}}$ representations:

$$
\mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{det}_{n}}\right]_{d} \simeq \bigoplus_{\lambda \vdash n d} V_{\lambda}^{\oplus \delta_{\lambda, d, n}}, \quad \mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}\right]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda, d, n, m}}
$$

Definition (Representation theoretic obstruction)
If $\delta_{\lambda, d, n}<\gamma_{\lambda, d, n, m}$, then λ is a representation theoretic obstruction. Its existence shows $\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}} \nsubseteq \overline{G L_{n^{2}} \operatorname{det}_{n}}$ and so $\mathrm{dc}\left(\operatorname{per}_{m}\right)>n \quad$!

(Non)existence of obstructions

$$
\mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{det}_{n}}\right]_{d} \simeq \bigoplus_{\lambda \vdash n d} V_{\lambda}^{\oplus \delta_{\lambda, d, n}}, \quad \mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}\right]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda, d, n, m}}
$$

If $\delta_{\lambda, d, n}<\gamma_{\lambda, d, n, m}$, then λ is a representation theoretic obstruction and $\operatorname{dc}\left(\operatorname{per}_{m}\right)>n$. If $n>\operatorname{poly}(m) \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.

(Non)existence of obstructions

$$
\mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{det}_{n}}\right]_{d} \simeq \bigoplus_{\lambda \vdash n d} V_{\lambda}^{\oplus \delta_{\lambda, d, n}}, \quad \mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}\right]_{d} \simeq \bigoplus_{\lambda} v_{\lambda}^{\oplus \gamma_{\lambda, d, n, m}},
$$

If $\delta_{\lambda, d, n}<\gamma_{\lambda, d, n, m}$, then λ is a representation theoretic obstruction and $\operatorname{dc}\left(\operatorname{per}_{m}\right)>n$. If $n>\operatorname{poly}(m) \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.
Conjecture (GCT: Mulmuley-Sohoni)
There exist representation theoretic obstructions that show superpolynomial lower bounds on dc(per_{m}).

(Non)existence of obstructions

$$
\mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{det}_{n}}\right]_{d} \simeq \bigoplus_{\lambda \vdash n d} V_{\lambda}^{\oplus \delta_{\lambda, d, n}}, \quad \mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}\right]_{d} \simeq \bigoplus_{\lambda} v_{\lambda}^{\oplus \gamma_{\lambda, d, n, m}},
$$

If $\delta_{\lambda, d, n}<\gamma_{\lambda, d, n, m}$, then λ is a representation theoretic obstruction and $\operatorname{dc}\left(\operatorname{per}_{m}\right)>n$. If $n>\operatorname{poly}(m) \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.
Conjecture (GCT: Mulmuley-Sohoni)
There exist representation theoretic obstructions that show superpolynomial lower bounds on dc(per_{m}).
If also $\delta_{\lambda, d, n}=0$, then λ is an occurrence obstruction.
Conjecture (Mulmuley and Sohoni)
There exist occurrence obstructions that show superpolynomial lower bounds on dc $\left(\operatorname{per}_{m}\right)$.

(Non)existence of obstructions

$$
\mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{det}_{n}}\right]_{d} \simeq \bigoplus_{\lambda \vdash n d} V_{\lambda}^{\oplus \delta_{\lambda, d, n}}, \quad \mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}\right]_{d} \simeq \bigoplus_{\lambda} v_{\lambda}^{\oplus \gamma_{\lambda, d, n, m}},
$$

If $\delta_{\lambda, d, n}<\gamma_{\lambda, d, n, m}$, then λ is a representation theoretic obstruction and $\operatorname{dc}\left(\operatorname{per}_{m}\right)>n$. If $n>\operatorname{poly}(m) \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.
Conjecture (GCT: Mulmuley-Sohoni)
There exist representation theoretic obstructions that show superpolynomial lower bounds on dc(per_{m}).
If also $\delta_{\lambda, d, n}=0$, then λ is an occurrence obstruction.
Conjecture (Mulmuley and Sohoni)
There exist occurrence obstructions that show superpolynomial lower bounds on dc $\left(\operatorname{per}_{m}\right)$.

Theorem (Bürgisser-Ikenmeyer-P(FOCS 2016))
This Conjecture is false.

(Non)existence of obstructions

$$
\mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{det}_{n}}\right]_{d} \simeq \bigoplus_{\lambda \vdash n d} V_{\lambda}^{\oplus \delta_{\lambda, d, n}}, \quad \mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{per}_{m}^{n}}\right]_{d} \simeq \bigoplus_{\lambda} V_{\lambda}^{\oplus \gamma_{\lambda, d, n, m}}
$$

If $\delta_{\lambda, d, n}<\gamma_{\lambda, d, n, m}$, then λ is a representation theoretic obstruction and $\operatorname{dc}\left(\operatorname{per}_{m}\right)>n$. If $n>\operatorname{poly}(m) \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.
Question: What are these $\delta_{\lambda, d, n}$ and $\gamma_{\lambda, d, n, m}$???

(Non)existence of obstructions

$$
\mathbb{C}\left[\overline{G L_{n^{2}} \operatorname{det}_{n}}\right]_{d} \simeq \bigoplus_{\lambda-n d} v_{\lambda}^{\oplus \delta_{\lambda, d, n}}, \quad \mathbb{C}\left[\overline{G L_{n^{2}} \mathrm{per}_{m}^{n}}\right]_{d} \simeq \bigoplus_{\lambda} v_{\lambda}^{\oplus \lambda_{\lambda, d, n, m}},
$$

If $\delta_{\lambda, d, n}<\gamma_{\lambda, d, n, m}$, then λ is a representation theoretic obstruction and $\operatorname{dc}\left(\operatorname{per}_{m}\right)>n$. If $n>\operatorname{poly}(m) \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.
Question: What are these $\delta_{\lambda, d, n}$ and $\gamma_{\lambda, d, n, m}$???
Kronecker coefficients of the Symmetric Group:

$$
\delta_{\lambda, d, n} \leq s k\left(\lambda, n^{d}\right) \leq g\left(\lambda, n^{d}, n^{d}\right)
$$

(Symmetric Kronecker:
$\left.s k(\lambda, \mu):=\operatorname{dim} \operatorname{Hom}_{S_{|\lambda|}}\left(\mathbb{S}^{\lambda}, S^{2}\left(\mathbb{S}^{\mu}\right)\right)=m u l t_{\lambda} \mathbb{C}\left[G L_{n^{2}} \operatorname{det}_{n}\right]_{d}\right)$
Plethysm coefficients: of GL.

$$
a_{\lambda}(d[n]):=\operatorname{mult}_{\lambda} \operatorname{Sym}^{d}\left(\operatorname{Sym}^{n}(V)\right) \geq \gamma_{\lambda, d, n, m} .
$$

Problem (GCT program, "easy version")
Find λ, such that the $s k\left(\lambda,\left(n^{d}\right)\right)<a_{\lambda}(d[n])$?

Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)
For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}\left[\overline{\left.G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}\right]}\right.$ but not in $\mathbb{C}\left[\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}\right]$, where $n=m^{c}$.

Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)
For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}\left[\overline{\left.G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}\right]}\right]$ but not in $\mathbb{C}\left[\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}\right]$, where $n=m^{c}$.

Theorem (Ikenmeyer-P (2015, FOCS'16))
Let $n>3 m^{4}, \lambda \vdash n d$. If $g\left(\lambda, n^{d}, n^{d}\right)=0\left(\right.$ so mult $\left.\mathbb{C}\left[G L_{n^{2}} \operatorname{det}_{n}\right]=0\right)$, then mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} \text { per }_{m}\right)}\right]=0\right.$.

Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)

For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}\left[\overline{\left.G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}\right]}\right]$ but not in $\mathbb{C}\left[\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}\right]$, where $n=m^{c}$.

Theorem (Ikenmeyer-P (2015, FOCS'16))
Let $n>3 m^{4}, \lambda \vdash n d$. If $g\left(\lambda, n^{d}, n^{d}\right)=0\left(\right.$ so mult $\left.\mathbb{C} \mathbb{C}\left[G L_{n^{2}} \operatorname{det}_{n}\right]=0\right)$, then mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} \text { per }_{m}\right)}\right]=0\right.$.

Theorem (Bürgisser-Ikenmeyer-P (FOCS'16))
Let n, d, m be positive integers with $n \geq m^{25}$ and $\lambda \vdash n d$. If λ occurs in $\mathbb{C}\left[\overline{G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}}\right]$, then λ also occurs in $\mathbb{C}\left[\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}\right]$. In particular, the Conjecture is false, there are no "occurrence obstructions".

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_{n} :
(group homomorphisms $\quad S_{n} \rightarrow G L_{N}(\mathbb{C})$)
are the Specht modules \mathbb{S}_{λ}

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_{n} :

group homomorphisms $\quad S_{n} \rightarrow G L_{N}(\mathbb{C})$)

are the Specht modules \mathbb{S}_{λ}, indexed by integer partitions $\lambda \vdash n$:
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$,
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$,
$\lambda_{1}+\lambda_{2}+\cdots=n$, length $\ell(\lambda)=\ell$ (= number of nonzero parts)
Young diagram of λ :

$(\lambda=(5,3,2), \ell(\lambda)=3, n=|\lambda|=5+3+2=10)$.
Basis for \mathbb{S}_{λ} : Standard Young Tableaux of shape λ :

123 3	${ }_{1}^{12} 24$	${ }_{112}^{125}$		1335
45	35	34	25	

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_{n} :
(group homomorphisms $S_{n} \rightarrow G L_{N}(\mathbb{C})$)
are the Specht modules \mathbb{S}_{λ}
Tensor product decomposition:

$$
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n}(\ldots \ldots \ldots) \mathbb{S}_{\nu}
$$

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_{n} :
(group homomorphisms $S_{n} \rightarrow G L_{N}(\mathbb{C})$)
are the Specht modules \mathbb{S}_{λ}
Tensor product decomposition:

$$
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n} g(\lambda, \mu, \nu) \mathbb{S}_{\nu}
$$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ - multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

Classical problems in Algebraic Combinatorics

Irreducible representations of the symmetric group S_{n} :

$$
\left(\text { group homomorphisms } \quad S_{n} \rightarrow G L_{N}(\mathbb{C})\right. \text {) }
$$

are the Specht modules \mathbb{S}_{λ}
Tensor product decomposition:

$$
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n} g(\lambda, \mu, \nu) \mathbb{S}_{\nu}
$$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ - multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

$$
g(\lambda, \mu, \nu)=\operatorname{dim} \operatorname{Hom}_{S_{n}}\left(\mathbb{S}_{\nu}, \mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}\right)
$$

In terms of $G L\left(\mathbb{C}^{m}\right)$ modules $V_{\lambda}, V_{\mu}, V_{\nu}$

$$
\operatorname{Sym}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{m}\right)=\oplus_{\lambda, \mu, \nu} g(\lambda, \mu, \nu) V_{\lambda} \otimes V_{\mu} \otimes V_{\nu}
$$

A bit of history

1873: Lie groups, Lie, Klein....
1896: Representations of finite groups, Frobenius ...
1923: Representations of Lie groups, H. Weyl. Quantum mechanics, von Neumann

1934: Tensor products of irreducible representations of Lie groups: V_{λ} - irreducible representation of $G L_{N}(\mathbb{C})$.

$$
V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} c_{\lambda \mu}^{\nu} V_{\nu}
$$

$c_{\lambda \mu}^{\nu}$ - Littlewood-Richardson coefficients.

A bit of history

1873: Lie groups, Lie, Klein....
1896: Representations of finite groups, Frobenius ...
1923: Representations of Lie groups, H. Weyl. Quantum mechanics, von Neumann
1934: Tensor products of irreducible representations of Lie groups: V_{λ} - irreducible representation of $G L_{N}(\mathbb{C})$.

$$
V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} c_{\lambda \mu}^{\nu} V_{\nu}
$$

$c_{\lambda \mu}^{\nu}$ - Littlewood-Richardson coefficients.
Theorem (Littlewood-Richardson, 1934)
The coefficient $c_{\lambda \mu}^{\nu}$ is equal to the number of $L R$ tableaux of shape ν / μ and type λ.

A bit of history

1873: Lie groups, Lie, Klein....
1896: Representations of finite groups, Frobenius ...
1923: Representations of Lie groups, H. Weyl. Quantum mechanics, von Neumann
1934: Tensor products of irreducible representations of Lie groups: V_{λ} - irreducible representation of $G L_{N}(\mathbb{C})$.

$$
V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} c_{\lambda \mu}^{\nu} V_{\nu}
$$

$c_{\lambda \mu}^{\nu}$ - Littlewood-Richardson coefficients.
Theorem (Littlewood-Richardson, 1934)
The coefficient $c_{\lambda \mu}^{\nu}$ is equal to the number of $L R$ tableaux of shape ν / μ and type λ.

(LR tableaux of shape $(7,4,3) /(3,1)$ and type $\left.(4,3,2) \cdot c_{(3,1)(4,3,2)}^{(7,4,3)}=2\right)$

A bit of history

1873: Lie groups, Lie, Klein....
1896: Representations of finite groups, Frobenius ..
1923: Representations of Lie groups, H. Weyl. Quantum mechanics, von Neumann
1934: Tensor products of irreducible representations of Lie groups: V_{λ} - irreducible representation of $G L_{N}(\mathbb{C})$.

$$
V_{\lambda} \otimes V_{\mu}=\oplus_{\nu} c_{\lambda \mu}^{\nu} V_{\nu}
$$

$c_{\lambda \mu}^{\nu}$ - Littlewood-Richardson coefficients.
Theorem (Littlewood-Richardson, 1934)
The coefficient $c_{\lambda \mu}^{\nu}$ is equal to the number of $L R$ tableaux of shape ν / μ and type λ.
1938: Tensor product of irreducible representations of S_{n}, Kronecker coefficients, Murnaghan:

$$
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n} g(\lambda, \mu, \nu) \mathbb{S}_{\nu}
$$

The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)
Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.

The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)
Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$. Alternatively, show that KRON is in \#P .
Classical motivation: (Littlewood-Richardson: for $c_{\lambda, \mu}^{\nu}$,
$\mathcal{O}_{\lambda, \mu, \nu}=\{$ LR tableaux of shape ν / μ, type $\lambda\}$)
Theorem (Murnaghan)
If $|\lambda|+|\mu|=|\nu|$ and $n>|\nu|$, then

$$
g((n+|\mu|, \lambda),(n+|\lambda|, \mu),(n, \nu))=c_{\lambda \mu}^{\nu} .
$$

Modern motivation:

1. A positive combinatorial formula " $\Longleftrightarrow "$ Computing Kronecker coefficients is in \#P.
2. Geometric Complexity Theory.
3. Invariant Theory, moment polytopes [see Bürgisser, Christandl,Mulmuley, Walter, Oliveira, Garg, Wigerson etc]

The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$. Alternatively, show that KRON is in \#P .

Results since then:

Combinatorial formulas for $g(\lambda, \mu, \nu)$, when:

- μ and ν are hooks (\quad), [Remmel, 1989]
- $\nu=(n-k, k)$ ($\# \square \square)$ and $\lambda_{1} \geq 2 k-1$, [Ballantine-Orellana, 2006]
- $\nu=(n-k, k), \lambda=(n-r, r)$ [Remmel-Whitehead, 1994;

Blasiak-Mulmuley-Sohoni,2013]

- $\nu=\left(n-k, 1^{k}\right)$

- Other special cases [Colmenarejo-Rosas, Ikenmeyer-Mulmuley-Walter, Pak-Panova].

The combinatorics questions

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$. Alternatively, show that KRON is in \#P .

Bounds and positivity:

[Pak-P]: $g(\lambda, \mu, \mu) \geq \mid \chi^{\lambda}\left(2 \mu_{1}-1,2 \mu_{2}-3, \ldots\right)$ when $\mu=\mu^{T}$.
Corollaries: $g(\lambda, \mu, \mu)>c c_{k^{2 / 4}}^{2^{2 k}}$ for $\lambda=(|\mu|-k, k)$, and $\operatorname{diag}(\mu) \geq \sqrt{k}$.

Complexity results:

[Bürgisser-Ikenmeyer]: KRON is in GapP.
(Littlewood-Richardson, i.e. KRON's special case, is \#P -complete)
[Pak-P]: If ν is a hook, then KronPositivity is in P. If λ, μ, ν have fixed length there exists a linear time algorithm for deciding $g(\lambda, \mu, \nu)>0$.
[Ikenmeyer-Mulmuley-Walter]: KronPositivity is NP -hard.
[Bürgisser-Christandl-Mulmuley-Walter]: membership in the moment polytope is NP and coNP.

Back to GCT: Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)
For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}\left[\overline{\left.G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}\right]}\right.$ but not in $\mathbb{C}\left[\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}\right]$, where $n=m^{c}$.

Back to GCT: Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)
For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}\left[\overline{\left.G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}\right]}\right]$ but not in $\mathbb{C}\left[\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}\right]$, where $n=m^{c}$.

Theorem (Ikenmeyer-P (2015, FOCS'16))
Let $n>3 m^{4}, \lambda \vdash n d$. If $g\left(\lambda, n^{d}, n^{d}\right)=0\left(\right.$ so mult $\left.\lambda_{\lambda} \mathbb{C}\left[G L_{n^{2}} \operatorname{det}_{n}\right]=0\right)$, then mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} \text { per }_{m}\right)}\right]=0\right.$.

Back to GCT: Positivity towards negativity

Conjecture (Mulmuley and Sohoni 2001)
For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}\left[\overline{\left.G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}\right]}\right]$ but not in $\mathbb{C}\left[\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}\right]$, where $n=m^{c}$.

Theorem (Ikenmeyer-P (2015, FOCS'16))
Let $n>3 m^{4}, \lambda \vdash n d$. If $g\left(\lambda, n^{d}, n^{d}\right)=0\left(\right.$ so mult $\left.\lambda_{\lambda} \mathbb{C}\left[G L_{n^{2}} \operatorname{det}_{n}\right]=0\right)$, then mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} \text { per }_{m}\right)}\right]=0\right.$.

Theorem (Bürgisser-Ikenmeyer-P (FOCS'16))
Let n, d, m be positive integers with $n \geq m^{25}$ and $\lambda \vdash n d$. If λ occurs in $\mathbb{C}\left[\overline{G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}}\right]$, then λ also occurs in $\mathbb{C}\left[\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}\right]$. In particular, the Conjecture is false, there are no "occurrence obstructions".

No occurrence obstructions I: positive Kroneckers
Theorem (Ikenmeyer-P (2015, FOCS'16))
Let $n>3 m^{4}, \lambda \vdash n d$. If $g(\lambda, n \times d, n \times d)=0$, then
mult $_{\lambda}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} \text { per }_{m}\right)}\right]=0\right.$.
Proof:
$\bar{\lambda}:=\left(\lambda_{2}, \lambda_{3}, \ldots\right) \vdash|\lambda|-\lambda_{1}$
Theorem (Kadish-Landsberg)
If mult $\mathbb{C}_{\lambda}\left[\overline{G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}}\right]>0$, then $|\bar{\lambda}| \leq m d$ and $\ell(\lambda) \leq m^{2}$.
Theorem (Degree lower bound, [IP])
If $|\bar{\lambda}| \leq m d$ with $a_{\lambda}(d[n])>g(\lambda, n \times d, n \times d)$, then $d>\frac{n}{m}$.

No occurrence obstructions I: positive Kroneckers
Theorem (Ikenmeyer-P (2015, FOCS'16))
Let $n>3 m^{4}, \lambda \vdash n d$. If $g(\lambda, n \times d, n \times d)=0$, then
$m u l t_{\lambda}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} \text { per }_{m}\right)}\right]=0\right.$.
Proof:
$\bar{\lambda}:=\left(\lambda_{2}, \lambda_{3}, \ldots\right) \vdash|\lambda|-\lambda_{1}$
Theorem (Kadish-Landsberg)
If mult $\mathbb{C}_{\lambda}\left[\overline{G L_{n^{2}} X_{11}^{n-m} \text { per }_{m}}\right]>0$, then $|\bar{\lambda}| \leq m d$ and $\ell(\lambda) \leq m^{2}$.
Theorem (Degree lower bound, [IP])
If $|\bar{\lambda}| \leq m d$ with $a_{\lambda}(d[n])>g(\lambda, n \times d, n \times d)$, then $d>\frac{n}{m}$.
Theorem (Kronecker positivity, [IP])
Let $\lambda \vdash \operatorname{dn}$. Let $\mathcal{X}:=\{(1),(2 \times 1),(4 \times 1),(6 \times 1),(2,1),(3,1)\}$.
(a) If $\bar{\lambda} \in \mathcal{X}$, then $a_{\lambda}(d[n])=0$.
(b) If $\bar{\lambda} \notin \mathcal{X}$ and $m \geq 3$ such that $\ell(\lambda) \leq m^{2},|\bar{\lambda}| \leq m d, d>3 m^{3}$, and $n>3 m^{4}$, then $g(\lambda, n \times d, n \times d)>0$.

Kronecker positivity I: hook-like $\lambda \mathrm{s}$

Proposition (Ikenmeyer-P)

If there is an a, such that $g\left(\nu^{k}\left(a^{2}\right), a \times a, a \times a\right)>0$ for all k, s.t. $k \notin H^{1}(\rho)$ and $a^{2}-k \notin H^{2}(\rho)$ for some sets $H^{1}(\rho), H^{2}(\rho) \subset[\ell, 2 a+1]$, then $g\left(\nu^{k}\left(b^{2}\right), b \times b, b \times b\right)>0$ for all k, s.t. $k \notin H^{1}(\rho)$ and $b^{2}-k \notin H^{2}(\rho)$ for all $b \geq a$.
Proof idea:
Kronecker symmetries and semigroup properties:
Let $P_{c}=\left\{k: g\left(\nu^{k}\left(c^{2}\right), c \times c, c \times c\right)>0\right\}$, we have
Claim: Suppose that $k \in P_{c}$, then $k, k+2 c+1 \in P_{c+1}$.

Kronecker positivity I: hook-like $\lambda \mathrm{s}$

Proposition (Ikenmeyer-P)

If there is an a, such that $g\left(\nu^{k}\left(a^{2}\right), a \times a, a \times a\right)>0$ for all k, s.t. $k \notin H^{1}(\rho)$ and $a^{2}-k \notin H^{2}(\rho)$ for some sets $H^{1}(\rho), H^{2}(\rho) \subset[\ell, 2 a+1]$, then $g\left(\nu^{k}\left(b^{2}\right), b \times b, b \times b\right)>0$ for all k, s.t. $k \notin H^{1}(\rho)$ and $b^{2}-k \notin H^{2}(\rho)$ for all $b \geq a$.

Proof idea:

Kronecker symmetries and semigroup properties:
Let $P_{c}=\left\{k: g\left(\nu^{k}\left(c^{2}\right), c \times c, c \times c\right)>0\right\}$, we have
Claim: Suppose that $k \in P_{c}$, then $k, k+2 c+1 \in P_{c+1}$.
Corollary
We have that $g(\lambda, h \times w, h \times w)>0$ for $\lambda=\left(h w-j-|\rho|, 1^{j}+\rho\right)$ for most "small" partitions ρ and all but finitely many values of j.

Kronecker positivity II: squares, and decompositions

Theorem (Ikenmeyer-P)
Let $\nu \notin \mathcal{X}$ and $\ell=\max (\ell(\nu)+1,9), a>3 \ell^{3 / 2}, b \geq 3 \ell^{2}$ and $|\nu| \leq a b / 6$. Then $g(\nu(a b), a \times b, a \times b)>0$.
Proof sketch: decomposition + regrouping

$$
\nu=\rho+\xi+\sum_{k=2}^{\ell} x_{k}((k-1) \times k)+\sum_{k=2}^{\ell} y_{k}((k-1) \times 2) .
$$

Kronecker positivity II: squares, and decompositions

Theorem (Ikenmeyer-P)
Let $\nu \notin \mathcal{X}$ and $\ell=\max (\ell(\nu)+1,9), a>3 \ell^{3 / 2}, b \geq 3 \ell^{2}$ and $|\nu| \leq a b / 6$.
Then $g(\nu(a b), a \times b, a \times b)>0$.
Proof sketch: decomposition + regrouping

$$
\nu=\rho+\xi+\sum_{k=2}^{\ell} x_{k}((k-1) \times k)+\sum_{k=2}^{\ell} y_{k}((k-1) \times 2) .
$$

Crucial facts:

- $g(k \times k, k \times k, k \times k)>0$ [Bessenrodt-Behns].
- Transpositions: $g(\alpha, \beta, \gamma)=g\left(\alpha, \beta^{T}, \gamma^{T}\right)$ (with $\left.\beta=\gamma=w \times h\right)$
- Hooks and exceptional cases: $g(\lambda, h \times w, h \times w)>0$ for all $\lambda=\left(h w-j-|\rho|, 1^{j}+\rho\right)$ for $|\rho| \leq 6$ and almost all j s.
- Semigroup property for positive triples: $g\left(\alpha^{1}+\alpha^{2}, \beta^{1}+\beta^{2}, \gamma^{1}+\gamma^{2}\right) \geq \max \left(g\left(\alpha^{1}, \beta^{1}, \gamma^{1}\right), g\left(\alpha^{2}, \beta^{2}, \gamma^{2}\right)\right.$.

Kronecker vs plethysm: inequality of multiplicities

Stability[Manivel]: $g((n d-|\rho|, \rho), n \times d, n \times d)=a_{\rho}(d)$, as $n \rightarrow \infty$. $\mathrm{St}^{1}(\rho):=\{(n, d) \mid g((n d-|\rho|, \rho), n \times d, n \times d)\}=a_{\rho}(d)$.

Kronecker vs plethysm: inequality of multiplicities Stability[Manivel]: $g((n d-|\rho|, \rho), n \times d, n \times d)=a_{\rho}(d)$, as $n \rightarrow \infty$. $\mathrm{St}^{1}(\rho):=\{(n, d) \mid g((n d-|\rho|, \rho), n \times d, n \times d)\}=a_{\rho}(d)$.

Proposition (Ikenmeyer-P)
Fix ρ, and let $(n, d) \in S t^{1}(\rho)$, which is true in particular if $n \geq|\rho|$. Let $\lambda=(n d-|\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \geq a_{\lambda}(d[n])$.

Kronecker vs plethysm: inequality of multiplicities
Stability[Manivel]: $g((n d-|\rho|, \rho), n \times d, n \times d)=a_{\rho}(d)$, as $n \rightarrow \infty$.
$\operatorname{St}^{1}(\rho):=\{(n, d) \mid g((n d-|\rho|, \rho), n \times d, n \times d)\}=a_{\rho}(d)$.
Proposition (Ikenmeyer-P)
Fix ρ, and let $(n, d) \in S t^{1}(\rho)$, which is true in particular if $n \geq|\rho|$. Let $\lambda=(n d-|\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \geq a_{\lambda}(d[n])$.
Proof: $\lambda=\mu+d(n-m)$. Suppose $g(\lambda, n \times d, n \times d)<a_{\lambda}(d[n])$:
KL'14: If $\mu \vdash m d$ then $m u l t_{\mu+d(n-m)}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} V_{m}\right)}\right] \geq a_{\mu}(d[m])\right.$, where $V_{m}:=\operatorname{Sym}^{m} \mathbb{C}^{m^{2}}$.

Kronecker vs plethysm: inequality of multiplicities
Stability[Manivel]: $g((n d-|\rho|, \rho), n \times d, n \times d)=a_{\rho}(d)$, as $n \rightarrow \infty$.
$\mathrm{St}^{1}(\rho):=\{(n, d) \mid g((n d-|\rho|, \rho), n \times d, n \times d)\}=a_{\rho}(d)$.

Proposition (Ikenmeyer-P)

Fix ρ, and let $(n, d) \in S t^{1}(\rho)$, which is true in particular if $n \geq|\rho|$. Let $\lambda=(n d-|\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \geq a_{\lambda}(d[n])$.
Proof: $\lambda=\mu+d(n-m)$. Suppose $g(\lambda, n \times d, n \times d)<a_{\lambda}(d[n])$:
KL'14: If $\mu \vdash m d$ then mult $t_{\mu+d(n-m)}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} V_{m}\right)}\right] \geq a_{\mu}(d[m])\right.$, where $V_{m}:=S_{y_{m}}{ }^{T} \mathbb{C}^{m^{2}}$.

Stability: $g(\lambda, n \times d, n \times d)=g(\mu, m \times d, m \times d)$.

Kronecker vs plethysm: inequality of multiplicities
Stability[Manivel]: $g((n d-|\rho|, \rho), n \times d, n \times d)=a_{\rho}(d)$, as $n \rightarrow \infty$.
$\mathrm{St}^{1}(\rho):=\{(n, d) \mid g((n d-|\rho|, \rho), n \times d, n \times d)\}=a_{\rho}(d)$.

Proposition (Ikenmeyer-P)

Fix ρ, and let $(n, d) \in S t^{1}(\rho)$, which is true in particular if $n \geq|\rho|$. Let $\lambda=(n d-|\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \geq a_{\lambda}(d[n])$.
Proof: $\lambda=\mu+d(n-m)$. Suppose $g(\lambda, n \times d, n \times d)<a_{\lambda}(d[n])$:
KL'14: If $\mu \vdash m d$ then mult $t_{\mu+d(n-m)}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} V_{m}\right)}\right] \geq a_{\mu}(d[m])\right.$, where $V_{m}:=S_{y_{m}}{ }^{T} \mathbb{C}^{m^{2}}$.

Stability: $g(\lambda, n \times d, n \times d)=g(\mu, m \times d, m \times d)$.
GCT: If $\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} V_{m}\right)}\right] \geq g(\lambda, n \times d, n \times d)\right.$ then $d c\left(f_{m}\right)>n$ for some $f_{m} \in V_{m}$.

Kronecker vs plethysm: inequality of multiplicities
Stability[Manivel]: $g((n d-|\rho|, \rho), n \times d, n \times d)=a_{\rho}(d)$, as $n \rightarrow \infty$.
$\mathrm{St}^{1}(\rho):=\{(n, d) \mid g((n d-|\rho|, \rho), n \times d, n \times d)\}=a_{\rho}(d)$.

Proposition (Ikenmeyer-P)

Fix ρ, and let $(n, d) \in S t^{1}(\rho)$, which is true in particular if $n \geq|\rho|$. Let $\lambda=(n d-|\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \geq a_{\lambda}(d[n])$.
Proof: $\lambda=\mu+d(n-m)$. Suppose $g(\lambda, n \times d, n \times d)<a_{\lambda}(d[n])$:
KL'14: If $\mu \vdash m d$ then mult $t_{\mu+d(n-m)}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} V_{m}\right)}\right] \geq a_{\mu}(d[m])\right.$, where $V_{m}:=S_{y_{m}}{ }^{T} \mathbb{C}^{m^{2}}$.

Stability: $g(\lambda, n \times d, n \times d)=g(\mu, m \times d, m \times d)$.
GCT: If $\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\left.G L_{n^{2}}\left(X_{1,1}\right)^{n-m} V_{m}\right)}\right] \geq g(\lambda, n \times d, n \times d)\right.$ then $d c\left(f_{m}\right)>n$ for some $f_{m} \in V_{m}$.
$\Longrightarrow m u l t_{\lambda}\left(\mathbb{C}\left[\overline{G L_{n^{2}}\left(X_{1,1}\right)^{n-m} V_{m}}\right)\right] \geq a_{\mu}(d[m])=a_{\lambda}(d[n])>g(\lambda, n \times d, n \times d)$

$$
\Longrightarrow \max _{f \in V_{m}} d c\left(f_{m}\right)>n \rightarrow \infty
$$

Plethysm positivity

Theorem (Bürgisser-Ikenmeyer-P (FOSC'16))

Let n, d, m be positive integers with $n \geq m^{25}$ and $\lambda \vdash n d$. If λ occurs in
 the Obstruction Existence Conjecture is false, there are no "occurrence obstructions".
Proof ideas:

- For mult $\lambda_{\lambda} \mathbb{C}\left[G L_{n^{2}} X_{11}^{n-m}\right.$ per $\left._{m}\right]>0$ we must have $\lambda_{1}>d(n-m)$.
- (Valiant): $d c\left(X_{1}^{s}+\cdots+X_{k}^{s}\right) \leq k s$, hence... $\ell^{n-s}\left(v_{1}^{s}+\cdots+v_{k}^{s}\right) \in \Omega_{n}$ for $n \geq k s$.
- If a highest weight vector of weight $-\lambda$ does not vanish on Ω_{n} (or in particular, on the power sums), then $\delta_{\lambda, n}=m u / t_{\lambda} \mathbb{C}\left[\Omega_{n}\right]>0$.
- Then $\delta_{\lambda, n}>0$, because of the existence of λ-highest weight vectors in Sym d Sym $^{n} V$, i.e. $a_{\lambda}(d[n])>0$ via explicit tableaux constructions: tableaux T of shape λ, content $d \times n \ldots$.

1	1	1	1	2	2	2	3	3	4	4	4	4
2	2	3	3	3								
4	5	5	5	5								

- decomposition into building blocks + regrouping

Next time:

- Matrix Powering vs permanent and the symmetric Kronecker coefficients.
- Iterated Matrix Multiplication vs permanent model.
- Matrix Multiplication lower bounds via GCT.
- Some combinatorics and bounds on the Kronecker coefficients.

Thank you!

