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Symplectic embeddings

Let (M1, ω1), (M2, ω2) be symplectic manifolds. A symplectic
embedding

Ψ : (M1, ω1) −→ (M2, ω2)

is an embedding such that Ψ∗(ω2) = ω1.

The question of when one symplectic manifold embeds into
another is poorly understood. In dimension 4, Hutchings’
embedded contact homology gives obstructions to the existence of
symplectic embeddings.

We would like to better understand to what extent these
obstructions are sharp.
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ECH capacities

ECH capacities are one kind of obstruction coming from embedded
contact homology.

Let (M, ω) be a symplectic 4-manifold. The ECH capacities of
(M, ω) are a sequence of nonnegative real numbers

0 = c0(X , ω) < c1(X , ω) ≤ c2(X , ω) ≤ . . . ≤ ∞

that are monotone under symplectic embeddings.
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ECH capacities (cont.)

ECH capacities are known to be sharp in several interesting cases

:

embedding any disjoint union of (open) balls into a ball
(Hutchings; McDuff)

embedding an ellipsoid into another (McDuff)

embedding an ellipsoid into a polydisc (Frenkel, Müller)

embedding any disjoint union of balls into certain unions of a
ball and a cylinder (Choi, CG., Frenkel, Hutchings, Ramos)

On the other hand, there are also cases where ECH capacities are
known to not be sharp, e.g. embeddings of one polydisc into
another, embeddings of a polydisc into a ball.
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Toric domains

A natural class of further examples to consider is given as follows:

Let Ω ⊂ R2 be a region in the first quadrant, and define the toric
domain

XΩ := {(z1, z2) ∈ C2|(π|z1|2, π|z2|2) ∈ Ω}.

For example, if Ω is a right triangle with legs on the axes, then XΩ

is an ellipsoid. If Ω is a rectangle with legs on the axes, then XΩ is
a polydisc.
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Concave and convex toric domains

Are there other examples of toric domains for which ECH
capacities give a sharp obstruction?

Definition

A concave toric domain is a toric domain XΩ, where Ω is the
closed region in the first quadrant underneath the graph of a
convex function f : [0, a] −→ [0, b], where a and b are positive real
numbers, f (0) = b and f (a) = 0.

Definition

A convex toric domain is a toric domain XΩ, where Ω is the closed
region in the first quadrant bounded by the axes and a convex
curve from (a, 0) to (0, b), where a and b are positive real numbers.
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Examples
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The main theorem

It turns out that for embeddings of concave domains into convex
ones, the obstruction given by the ECH capacities is sharp:

Theorem (CG.)

Let XΩ1 be a concave toric domain, and let XΩ2 be a convex one.
Then there is a symplectic embedding

int(XΩ1) −→ int(XΩ2)

if and only if ck(XΩ1) ≤ ck(XΩ2) for all k.

The ECH capacities of concave and convex domains are
well-understood (and combinatorially interesting!).
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Idea of the proof
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Weight sequences

Proof is similar to McDuff’s proof that ECH capacities give a sharp
obstruction to embedding one ellipsoid into another.

The following
decomposition of a concave domain is central:

The key point is that XΩ1 is a ball, while Ω′2 and Ω′3 are SL2(Z)
equivalent to concave toric domains.
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Weight sequences (cont.)

Assume that Ω is concave, and its upper boundary is piecewise
linear, with rational nonsmooth points. We call such an Ω a
rational concave domain.

If we iterate this procedure, we can decompose Ω into finitely
many regions, all of which are affine equivalent to isoceles right
triangles. By a version of the “Traynor trick”, we therefore get a
canonical packing of XΩ by open balls:

n∐
i=1

int(B(ai )) −→ XΩ.

The numbers ai are determined by Ω, and are called the weight
sequence of Ω
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More on weight sequences

If Ω is rational and convex, then there is a similar decomposition:

Here the key point is that XΩ1 is a ball, while Ω′2 and Ω′3 are affine
equivalent to convex domains.
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Weight sequences of convex domains

Thus, by using the weight sequence procedure for a concave
domain, we find that if Ω is rational convex, there is a canonical
packing

n∐
i=1

int(B(bi ))
∐

int(XΩ) −→ B(b).

The numbers b, b1 . . . , bn are called the convex weight sequence
for Ω. We call b the head.
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Ball packings

If Ω1 is concave, Ω2 is convex, and we have a symplectic
embedding

int(XΩ1) −→ int(XΩ2),

then we therefore have a ball packing

n∐
i=1

int(B(ai ))
m∐
j=1

int(B(bi )) −→ B(b).

In fact, the converse is also true:
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Theorem (CG.)

Let XΩ1 be a rational concave toric domain, and let XΩ2 be a
rational convex one. Let (a1, . . . , an) be the weight sequence for
Ω1, and let (b; b1, . . . , bm) be the convex weight sequence for Ω2.

There is a symplectic embedding

int(XΩ1) −→ int(XΩ2)

if and only if there is a ball packing

n∐
i=1

int(B(ai ))
m∐
j=1

int(B(bi )) −→ B(b).

It is not hard to determine if such a ball packing exists, so this
theorem is of potentially independent interest.
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Relationship with ECH capacities

In fact, this is all we need to know to conclude that ECH capacities
are sharp for embeddings of a concave domain into a convex one.

This is because ECH capacities are sharp for all ball packings of a
ball, so if ck(XΩ1) ≤ ck(XΩ2), it is not hard to show that the
required ball packing exists.
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Section 3

The proof in more depth

Dan Cristofaro-Gardiner Symplectic embeddings of concave toric domains into convex ones



Introduction
Idea of the proof

The proof in more depth
The geometric meaning of ECH capacities

Symplectic blowup

If we have a symplectic ball B(a) in a manifold X , we can perform
a symplectic blow up.

This means that we remove the interior of
the ball, and collapse the boundary under the characteristic
foliation to the associated exceptional sphere.

We will want to associate a sequence of blow ups of (CP2, ω) to a
rational concave domain, by mimicking the definition of the weight
sequence.
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Blowing up a concave domain

Let Ω be concave, and include XΩ in some much larger open ball.
Include this ball into a (CP2, ω) of the same volume. Now define a
symplectic blow-up of (CP2, ω) as follows:

Let a > 0 be the largest real number such that Ω contains the
triangle with vertices (0, 0), (a, 0) and (0, a), and let δ > 0 be a
small real number. Then there is a symplectic embedding

B(a + δ) −→ (CP2, ω).

Blow up along this embedding.
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Triangle with slant edge the red line gives a ball which we can blow
up. This leaves an exceptional sphere.
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Blowing up a concave domain (cont.)

As with the definition of the weight sequence, the regions X and Y
in the previous drawing are affine equivalent to concave toric
domains.

This means we can iterate this procedure.

When we do this, we should choose the δ for the relevant blow up
small enough that no previous spheres are completely removed.

The effect of this is to remove the interior of a slightly larger
concave domain containing Ω, and collapse the boundary of this
domain to a chain of spheres.
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A completely worked example.
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Blowing up a convex domain

We can “blow up” a rational convex domain similarly.

We take the
smallest b > 0 such that Ω is contained in the triangle with
vertices (0, 0), (0, b) and (b, 0), and then choose a small δ.

We intersect Ω with the triangle with vertices (0, 0), (0, b − δ) and
(b − δ, 0); this again gives two regions that are affine equivalent to
concave domains, so we can apply the iterated blow up procedure
from the previous slides after including B(b− δ) into a (CP2, ω) of
the same volume.

This removes the interior of the complement of a similar convex
domainin in B(b − δ), and collapses the boundary to a chain of
spheres.
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...(and continue).
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...(and continue).
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The chains of spheres

Thus, to a rational concave domain Ω1, we can associate a chain
of spheres CΩ1,δ1 in a blowup of CP2.

Similarly, we can associate a
chain of spheres ĈΩ2,δ2 to a convex domain Ω2.

Proposition

Let Ω1 be a rational concave domain and let Ω2 be a rational
convex domain. Let m be the length of the weight expansion for
Ω1, and let n + 1 be the length of the convex weight expansion for
Ω2. If there is a symplectic form ω on CP2#(m + n)CP2 such
that there is a symplectic embedding

CΩ1,δ1 t ĈΩ2,δ2 −→ CP2#(m + n)CP2,

then there is a symplectic embedding XΩ1 −→ int(XΩ2).
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Sketch of rest of proof

Thus, to find the desired symplectic embedding, we just need to
find a symplectic embedding of the appropriate chain of spheres.

Here is a sketch of how to do this:

Step 1: Choose ε > 0 small enough that Xε·Ω1 ⊂ int(XΩ2).

Step 2: Blow up along ε ·Ω1 and Ω2. This gives two chains of
spheres with the right intersection pattern, but the spheres in
Cε·Ω1,δ1 are too small.

Step 3: Correct the area of the spheres by using the inflation
procedure of Lalonde and McDuff.
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A few remarks

The idea of the inflation procedure is to find a connected
J-holomorphic curve in an appropriate homology class with
nonnegative self intersection.

We find this curve by using Taubes’
“Gromov=Seiberg-Witten” result.

This is where we use the existence of the ball packing guaranteed
from the fact that ECH capacities give no obstruction.

To prove the theorem for domains that are not rational, we use an
approximation argument.
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Section 4

The geometric meaning of ECH capacities
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We’ve just seen that the only thing we need to know about ECH
capacities for the proof is that they are sharp for ball packings.

In
fact, the ECH capacities of concave and convex domains are
determined by the ECH capacities of a corresponding collection of
balls.

Theorem (Choi, CG., Frenkel, Hutchings, Ramos)

The ECH capacities of a a concave toric domain XΩ with weight
expansion (a1, a2, . . . , ) are given by

ck(XΩ) = ck(
∐
i

B(ai )).
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A similar result holds for convex domains.

Theorem (Choi, CG.)

The ECH capacities of a convex toric domain XΩ with convex
weight expansion (b; b1, b2, . . .) are given by

ck(XΩ) = cECH(B(b))− cECH(
∐

B(bi ).

Here, − denotes the “sequence subtraction” operation defined by
Hutchings.
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We can view these results as limitations of the strength of ECH
capacities.

ECH capacities can not obstruct an embedding out of a concave
domain unless they can obstruct the corresponding ball packing,
and similarly for embeddings into convex domains.

Luckily, Hutchings has recently found new obstructions coming
from ECH that are stronger than ECH capacities in many
situations.
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