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However X(" is a singular algebraic variety when dim X > 2.
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First candidate

The quotient stack/orbifold
[X?/ &nl,

which is a smooth Deligne-Mumford stack and tautologically best.

What is the reasonable cohomology theory for orbifolds ? \

Chen-Ruan’s orbifold cohomology theory : the classical part of the
quantum orbifold cohomology ring.
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Orbifold cohomology : global quotient case

M : a projective complex manifold with an action of a finite group G.
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Orbifold cohomology : global quotient case

M : a projective complex manifold with an action of a finite group G.
Define an auxiliary ring H*(M, G) as follows :
» As a G-graded vector space

H*(M, G) = @gecH 2288 ().

> The stringy product * : for u € H(M&) and v € H(M"),
uk v =iy (U pren U V| psn U Crop(Fg.p)) € H(MEN),

where F, j is some ‘obstruction’ vector bundle on M&:.

» Natural G-action : for g,h € G and x € M8, h-x:= hx € Mheh ™
This action preserves the G-grading and the stringy product x.

Definition

Chen-Ruan'’s orbifold cohomology ring of [M/G] is its invariant subring.

“ (IM/G]) := H*(M, G)C.

orb
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Second candidate

From now on, X = S is a smooth projective surface. In this case, we have
the Hilbert scheme of subschemes of length non S :

skl .= Hilb"(S),

which is obviously birational to S(™.

Facts (miracle!)

> (Fogarty) SI" is a smooth.
» The Hilbert-Chow morphism 7 : SI"l — S(") is crepant.

Crepant=no discrepancy : 7*(Kg()) = Kgin.-
Therefore SI"l is a minimal (best!) resolution of singularities of S(").

How to compute H* (SI", Q) ?
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[S"/ &, vs. SI7)

Let S always be a smooth projective surface.
(Ruan) String theory : as ‘best’ smooth models of S("), [S"/&,] and SU]
are equally good!

Theorem
> (Géttsche) H, ([S"/ &4]) ~ H*(SI") as graded vector spaces.
» (Lehn-Sorger, Fantechi-Géttsche) When Ks = 0,

Ho ([S"/ &0l) = H*(S!™)

as graded Q-algebras.

Remark : for S with Ks # 0, we have the more general result (Li-Qin) :
H ([S"/ &n]) = HE(SIM),

where the RHS incorporates the quantum corrections coming from the
Gromov-Witten invariants for curve classes contracted by the

Hilbert-Chow morphism 7.
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Holomorphic symplectic varieties

Goal : generalize Fantechi-Gottsche-Lehn-Sorger theorem in various
directions.

Note that for surface S with Ks = 0, S is holomorphic symplectic in the
following sense :

Definition

A smooth projective variety X is called irreducible holomorphic symplectic
(or hyperkahler), if

> 7T1(X) =1;
» H2%(X) = C - n with  a holomorphic symplectic 2-form.

Examples :
» Sl with S a K3 surface:
» K,n(A) : generalized Kummer variety associated to an abelian surface
A;
» Fano varieties of lines of cubic fourfolds.
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Hyperkahler crepant resolution conjecture (Ruan)

Conjecture (global quotient version)

Let M be a holomorphic symplectic variety with a symplectic action of a
finite group G. Let X be a crepant (=symplectic) resolution of M/G.
Then we have an isomorphism of graded algebras :

Hom([M/G]) = H*(X).
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Hyperkahler crepant resolution conjecture (Ruan)

Conjecture (global quotient version)

Let M be a holomorphic symplectic variety with a symplectic action of a
finite group G. Let X be a crepant (=symplectic) resolution of M/G.
Then we have an isomorphism of graded algebras :

Hom([M/G]) = H*(X).

My goal :
@ Formulate a motivic version of this conjecture;
@ Try to prove it (maybe in some cases), hence Ruan’s conjecture (in
some cases).
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Conjecture : motivic version for global quotient

As before, let M be a holomorphic symplectic variety with a symplectic
action of a finite group G.
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Conjecture : motivic version for global quotient

As before, let M be a holomorphic symplectic variety with a symplectic
action of a finite group G. We can define its orbifold motive b,,,([M/G])
in the category of Chow motives CHM.

If X is a crepant resolution of M/G. We have an isomorphism of algebra
objects in the category CHM :

hor([M/ G]) = H(X).

Why believe it ?
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Supporting evidences

» Its Hodge realization for SI"] with S a K3 surface is the theorem of
Fantechi-Gottsche-Lehn-Sorger.

» De Cataldo and Migliorini established an additive isomorphism

bors([M/G]) = (X).

» It fits good with Beauville's conjecture of multiplicative splitting of
Bloch-Beilinson type of the Chow ring of holomorphic symplectic
varieties.

» (TO BE VERIFIED! ) I think | can treat the case of SI"l with S a K3
surface in a rather indirect way.
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