
Algebraic cycles on holomorphic symplectic varieties

Lie Fu

Université Lyon 1



Motivation

Let X be any complex projective manifold and n ∈ N. Define the
symmetric product

X (n) := X n/Sn .

Proposition

The cohomology ring

H∗(X (n),Q) ' Symn (H∗(X ,Q)) :=
(
H∗(X ,Q)⊗n

)Sn .

However X (n) is a singular algebraic variety when dimX ≥ 2.

Questions

What are the ‘best’ smooth models for X (n) ?
What are their cohomology rings ?
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First candidate

The quotient stack/orbifold
[X n/Sn],

which is a smooth Deligne-Mumford stack and tautologically best.

Question

What is the reasonable cohomology theory for orbifolds ?

Answer

Chen-Ruan’s orbifold cohomology theory : the classical part of the
quantum orbifold cohomology ring.
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Orbifold cohomology : global quotient case

M : a projective complex manifold with an action of a finite group G .
Define an auxiliary ring H∗(M,G ) as follows :

I As a G -graded vector space

H∗(M,G ) := ⊕g∈GH
∗−2 age(g)(Mg ).

I The stringy product ∗ : for u ∈ H(Mg ) and v ∈ H(Mh),

u ∗ v := i∗ (u|Mg,h ∪ v |Mg,h ∪ ctop(Fg ,h)) ∈ H(Mgh),

where Fg ,h is some ‘obstruction’ vector bundle on Mg ,h.

I Natural G -action : for g , h ∈ G and x ∈ Mg , h · x := hx ∈ Mhgh−1
.

This action preserves the G -grading and the stringy product ∗.

Definition

Chen-Ruan’s orbifold cohomology ring of [M/G ] is its invariant subring.

H∗orb ([M/G ]) := H∗(M,G )G .
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Second candidate

From now on, X = S is a smooth projective surface. In this case, we have
the Hilbert scheme of subschemes of length n on S :

S [n] := Hilbn(S),

which is obviously birational to S (n).

Facts (miracle !)

I (Fogarty) S [n] is a smooth.

I The Hilbert-Chow morphism τ : S [n] → S (n) is crepant.

Crepant=no discrepancy : τ∗(KS(n)) = KS [n] .
Therefore S [n] is a minimal (best !) resolution of singularities of S (n).

Question

How to compute H∗
(
S [n],Q

)
?
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[Sn/Sn] vs. S [n]

Let S always be a smooth projective surface.
(Ruan) String theory : as ‘best’ smooth models of S (n), [Sn/Sn] and S [n]

are equally good !

Theorem

I (Göttsche) H∗orb ([Sn/Sn]) ' H∗(S [n]) as graded vector spaces.

I (Lehn-Sorger, Fantechi-Göttsche) When KS = 0,

H∗orb ([Sn/Sn]) ' H∗(S [n])

as graded Q-algebras.

Remark : for S with KS 6= 0, we have the more general result (Li-Qin) :

H∗orb ([Sn/Sn]) ' H∗τ (S [n]),

where the RHS incorporates the quantum corrections coming from the
Gromov-Witten invariants for curve classes contracted by the
Hilbert-Chow morphism τ .
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Holomorphic symplectic varieties

Goal : generalize Fantechi-Göttsche-Lehn-Sorger theorem in various
directions.
Note that for surface S with KS = 0, S [n] is holomorphic symplectic in the
following sense :

Definition

A smooth projective variety X is called irreducible holomorphic symplectic
(or hyperkähler), if

I π1(X ) = 1 ;

I H2,0(X ) = C · η with η a holomorphic symplectic 2-form.

Examples :

I S [n] with S a K3 surface ;

I Kn(A) : generalized Kummer variety associated to an abelian surface
A ;

I Fano varieties of lines of cubic fourfolds.
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Holomorphic symplectic varieties
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Hyperkähler crepant resolution conjecture (Ruan)

Conjecture (global quotient version)

Let M be a holomorphic symplectic variety with a symplectic action of a
finite group G . Let X be a crepant (=symplectic) resolution of M/G .
Then we have an isomorphism of graded algebras :

H∗orb([M/G ]) ' H∗(X ).

My goal :

1 Formulate a motivic version of this conjecture ;

2 Try to prove it (maybe in some cases), hence Ruan’s conjecture (in
some cases).
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Conjecture : motivic version for global quotient

As before, let M be a holomorphic symplectic variety with a symplectic
action of a finite group G . We can define its orbifold motive horb([M/G ])
in the category of Chow motives CHM.

Conjecture

If X is a crepant resolution of M/G . We have an isomorphism of algebra
objects in the category CHM :

horb([M/G ]) ' h(X ).

Why believe it ?
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Supporting evidences

I Its Hodge realization for S [n] with S a K3 surface is the theorem of
Fantechi-Göttsche-Lehn-Sorger.

I De Cataldo and Migliorini established an additive isomorphism

horb([M/G ]) ' h(X ).

I It fits good with Beauville’s conjecture of multiplicative splitting of
Bloch-Beilinson type of the Chow ring of holomorphic symplectic
varieties.

I (TO BE VERIFIED ! ) I think I can treat the case of S [n] with S a K3
surface in a rather indirect way.
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Fantechi-Göttsche-Lehn-Sorger.

I De Cataldo and Migliorini established an additive isomorphism

horb([M/G ]) ' h(X ).

I It fits good with Beauville’s conjecture of multiplicative splitting of
Bloch-Beilinson type of the Chow ring of holomorphic symplectic
varieties.

I (TO BE VERIFIED ! ) I think I can treat the case of S [n] with S a K3
surface in a rather indirect way.

Lie Fu (Université Lyon 1) 10 / 10
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