Algebraic cycles on holomorphic symplectic varieties

Lie Fu

Université Lyon 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let X be any complex projective manifold and $n \in \mathbb{N}$. Define the *symmetric product*

$$X^{(n)} := X^n / \mathfrak{S}_n.$$

Proposition

The cohomology ring

$$H^*(X^{(n)},\mathbb{Q})\simeq \operatorname{Sym}^n(H^*(X,\mathbb{Q})):=(H^*(X,\mathbb{Q})^{\otimes n})^{\mathfrak{S}_n}.$$

However $X^{(n)}$ is a *singular* algebraic variety when dim $X \ge 2$.

Questions

What are the 'best' smooth models for X⁽ⁿ⁾ ? What are their cohomology rings ?

(日) (周) (三) (三)

Let X be any complex projective manifold and $n \in \mathbb{N}$. Define the *symmetric product*

$$X^{(n)} := X^n / \mathfrak{S}_n.$$

Proposition

The cohomology ring

$$H^*(X^{(n)},\mathbb{Q})\simeq \operatorname{Sym}^n(H^*(X,\mathbb{Q})):= (H^*(X,\mathbb{Q})^{\otimes n})^{\mathfrak{S}_n}$$

However $X^{(n)}$ is a *singular* algebraic variety when dim $X \ge 2$.

Questions

What are the 'best' smooth models for X⁽ⁿ⁾ ? What are their cohomology rings ?

(B)

Let X be any complex projective manifold and $n \in \mathbb{N}$. Define the *symmetric product*

$$X^{(n)} := X^n / \mathfrak{S}_n.$$

Proposition

The cohomology ring

$$H^*(X^{(n)},\mathbb{Q})\simeq \operatorname{Sym}^n(H^*(X,\mathbb{Q})):= (H^*(X,\mathbb{Q})^{\otimes n})^{\mathfrak{S}_n}$$

However $X^{(n)}$ is a *singular* algebraic variety when dim $X \ge 2$.

Questions

What are the 'best' smooth models for X⁽ⁿ⁾ ? What are their cohomology rings ?

Let X be any complex projective manifold and $n \in \mathbb{N}$. Define the *symmetric product*

$$X^{(n)} := X^n / \mathfrak{S}_n.$$

Proposition

The cohomology ring

$$H^*(X^{(n)},\mathbb{Q})\simeq \operatorname{Sym}^n(H^*(X,\mathbb{Q})):= (H^*(X,\mathbb{Q})^{\otimes n})^{\mathfrak{S}_n}$$

However $X^{(n)}$ is a *singular* algebraic variety when dim $X \ge 2$.

Questions

What are the 'best' smooth models for $X^{(n)}$?

What are their cohomology rings?

A B A A B A

Image: A matrix

Let X be any complex projective manifold and $n \in \mathbb{N}$. Define the *symmetric product*

$$X^{(n)} := X^n / \mathfrak{S}_n.$$

Proposition

The cohomology ring

$$H^*(X^{(n)},\mathbb{Q})\simeq \operatorname{Sym}^n(H^*(X,\mathbb{Q})):= (H^*(X,\mathbb{Q})^{\otimes n})^{\mathfrak{S}_n}$$

However $X^{(n)}$ is a *singular* algebraic variety when dim $X \ge 2$.

Questions

What are the 'best' smooth models for $X^{(n)}$? What are their cohomology rings?

A B F A B F

Image: Image:

 $[X^n/\mathfrak{S}_n],$

which is a smooth Deligne-Mumford stack and tautologically best.

Question

What is the reasonable cohomology theory for orbifolds?

Answer

Chen-Ruan's orbifold cohomology theory : the classical part of the quantum orbifold cohomology ring.

- E > - E >

 $[X^n/\mathfrak{S}_n],$

which is a smooth Deligne-Mumford stack and tautologically best.

Question

What is the reasonable cohomology theory for orbifolds?

Answer

Chen-Ruan's orbifold cohomology theory : the classical part of the quantum orbifold cohomology ring.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

 $[X^n/\mathfrak{S}_n],$

which is a smooth Deligne-Mumford stack and tautologically best.

Question

What is the reasonable cohomology theory for orbifolds?

Answer

Chen-Ruan's orbifold cohomology theory : the classical part of the quantum orbifold cohomology ring.

伺 ト イヨト イヨト

 $[X^n/\mathfrak{S}_n],$

which is a *smooth* Deligne-Mumford stack and tautologically best.

Question

What is the reasonable cohomology theory for orbifolds?

Answer

Chen-Ruan's orbifold cohomology theory : the classical part of the quantum orbifold cohomology ring.

M: a projective complex manifold with an action of a finite group G. Define an auxiliary ring $H^*(M, G)$ as follows :

► As a *G*-graded vector space

 $H^*(M,G) := \bigoplus_{g \in G} H^{*-2\operatorname{age}(g)}(M^g).$

▶ The stringy product *: for $u \in H(M^g)$ and $v \in H(M^h)$, $u * v := i_* (u|_{M^{g,h}} \cup v|_{M^{g,h}} \cup c_{top}(F_{g,h})) \in H(M^{gh})$,

where $F_{g,h}$ is some 'obstruction' vector bundle on $M^{g,h}$.

Natural G-action : for g, h ∈ G and x ∈ M^g, h · x := hx ∈ M^{hgh⁻¹} This action preserves the G-grading and the stringy product *.

Definition

Chen-Ruan's orbifold cohomology ring of [M/G] is its invariant subring

M: a projective complex manifold with an action of a finite group G. Define an auxiliary ring $H^*(M, G)$ as follows :

As a G-graded vector space

$$H^*(M,G) := \bigoplus_{g \in G} H^{*-2\operatorname{age}(g)}(M^g).$$

• The stringy product *: for $u \in H(M^g)$ and $v \in H(M^h)$,

 $u * v := i_* \left(u |_{M^{g,h}} \cup v |_{M^{g,h}} \cup c_{top}(F_{g,h}) \right) \in H(M^{gh}),$

where $F_{g,h}$ is some 'obstruction' vector bundle on $M^{g,h}$.

Natural G-action : for g, h ∈ G and x ∈ M^g, h · x := hx ∈ M^{hgh⁻¹}. This action preserves the G-grading and the stringy product *.

Definition

Chen-Ruan's orbifold cohomology ring of [M/G] is its invariant subring

M: a projective complex manifold with an action of a finite group G. Define an auxiliary ring $H^*(M, G)$ as follows :

As a G-graded vector space

$$H^*(M,G) := \oplus_{g \in G} H^{*-2\operatorname{age}(g)}(M^g).$$

► The stringy product *: for $u \in H(M^g)$ and $v \in H(M^h)$,

 $u * v := i_* \left(u |_{M^{g,h}} \cup v |_{M^{g,h}} \cup c_{top}(F_{g,h}) \right) \in H(M^{gh}),$

where $F_{g,h}$ is some 'obstruction' vector bundle on $M^{g,h}$.

Natural G-action : for g, h ∈ G and x ∈ M^g, h ⋅ x := hx ∈ M^{hgh⁻¹} This action preserves the G-grading and the stringy product *.

Definition

Chen-Ruan's orbifold cohomology ring of [M/G] is its invariant subring.

M: a projective complex manifold with an action of a finite group G. Define an auxiliary ring $H^*(M, G)$ as follows :

As a G-graded vector space

$$H^*(M,G) := \oplus_{g \in G} H^{*-2\operatorname{age}(g)}(M^g).$$

• The stringy product *: for $u \in H(M^g)$ and $v \in H(M^h)$,

$$u * v := i_* \left(u |_{M^{g,h}} \cup v |_{M^{g,h}} \cup c_{top}(F_{g,h}) \right) \in H(M^{gh}),$$

where $F_{g,h}$ is some 'obstruction' vector bundle on $M^{g,h}$.

Natural G-action : for g, h ∈ G and x ∈ M^g, h ⋅ x := hx ∈ M^{hgh⁻¹}. This action preserves the G-grading and the stringy product *.

Definition

Chen-Ruan's orbifold cohomology ring of [M/G] is its invariant subring.

M: a projective complex manifold with an action of a finite group G. Define an auxiliary ring $H^*(M, G)$ as follows :

As a G-graded vector space

$$H^*(M,G) := \oplus_{g \in G} H^{*-2\operatorname{age}(g)}(M^g).$$

• The stringy product *: for $u \in H(M^g)$ and $v \in H(M^h)$,

$$u * v := i_* \left(u|_{M^{g,h}} \cup v|_{M^{g,h}} \cup c_{top}(F_{g,h}) \right) \in H(M^{gh}),$$

where $F_{g,h}$ is some 'obstruction' vector bundle on $M^{g,h}$.

Natural G-action : for g, h ∈ G and x ∈ M^g, h ⋅ x := hx ∈ M^{hgh⁻¹}. This action preserves the G-grading and the stringy product *.

Definition

Chen-Ruan's orbifold cohomology ring of [M/G] is its invariant subring.

$$H^*_{orb}\left([M/G]\right) := H^*(M,G)^G.$$

M: a projective complex manifold with an action of a finite group G. Define an auxiliary ring $H^*(M, G)$ as follows :

► As a *G*-graded vector space

$$H^*(M,G) := \oplus_{g \in G} H^{*-2\operatorname{age}(g)}(M^g).$$

• The stringy product *: for $u \in H(M^g)$ and $v \in H(M^h)$,

$$u * v := i_* \left(u|_{M^{g,h}} \cup v|_{M^{g,h}} \cup c_{top}(F_{g,h}) \right) \in H(M^{gh}),$$

where $F_{g,h}$ is some 'obstruction' vector bundle on $M^{g,h}$.

Natural G-action : for g, h ∈ G and x ∈ M^g, h ⋅ x := hx ∈ M^{hgh⁻¹}. This action preserves the G-grading and the stringy product *.

Definition

Chen-Ruan's orbifold cohomology ring of [M/G] is its invariant subring.

$$H^*_{orb}([M/G]) := H^*(M,G)^G.$$

From now on, X = S is a smooth projective surface. In this case, we have the Hilbert scheme of subschemes of length n on S:

 $S^{[n]} := \operatorname{Hilb}^n(S),$

which is obviously birational to $S^{(n)}$.

Facts (miracle!)

- (Fogarty) $S^{[n]}$ is a smooth.
- The Hilbert-Chow morphism $\tau : S^{[n]} \to S^{(n)}$ is *crepant*.

Crepant=no discrepancy : $\tau^*(K_{S^{(n)}}) = K_{S^{[n]}}$. Therefore $S^{[n]}$ is a minimal (best!) resolution of singularities of S^{Q}

Question

How to compute $H^*\left(S^{[n]},\mathbb{Q}
ight)$?

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

From now on, X = S is a smooth projective surface. In this case, we have the Hilbert scheme of subschemes of length n on S:

 $S^{[n]} := \operatorname{Hilb}^n(S),$

which is obviously birational to $S^{(n)}$.

Facts (miracle!)

• (Fogarty) $S^{[n]}$ is a smooth.

• The Hilbert-Chow morphism $\tau : S^{[n]} \to S^{(n)}$ is crepant.

Crepant=no discrepancy : $\tau^*(K_{S^{(n)}}) = K_{S^{[n]}}$. Therefore $S^{[n]}$ is a minimal (best!) resolution of singularities of $S^{(n)}$

Question

How to compute $H^*\left(S^{[n]},\mathbb{Q}
ight)$?

From now on, X = S is a smooth projective surface. In this case, we have the Hilbert scheme of subschemes of length n on S:

 $S^{[n]} := \operatorname{Hilb}^n(S),$

which is obviously birational to $S^{(n)}$.

Facts (miracle!)

• (Fogarty) $S^{[n]}$ is a smooth.

• The Hilbert-Chow morphism $\tau : S^{[n]} \to S^{(n)}$ is crepant.

Crepant=no discrepancy : $\tau^*(K_{S(n)}) = K_{S[n]}$. Therefore $S^{[n]}$ is a minimal (best!) resolution of singularities of $S^{(n)}$.

Question

How to compute $H^*\left(S^{[n]},\mathbb{Q}
ight)$?

From now on, X = S is a smooth projective surface. In this case, we have the Hilbert scheme of subschemes of length n on S:

 $S^{[n]} := \operatorname{Hilb}^n(S),$

which is obviously birational to $S^{(n)}$.

Facts (miracle!)

- (Fogarty) $S^{[n]}$ is a smooth.
- The Hilbert-Chow morphism $\tau: S^{[n]} \to S^{(n)}$ is crepant.

Crepant=no discrepancy : $\tau^*(K_{S^{(n)}}) = K_{S^{[n]}}$. Therefore $S^{[n]}$ is a minimal (best!) resolution of singularities of $S^{(n)}$.

Question

How to compute $H^*(S^{[n]}, \mathbb{Q})$?

イロン イロン イヨン イヨン 三日

From now on, X = S is a smooth projective surface. In this case, we have the Hilbert scheme of subschemes of length n on S:

 $S^{[n]} := \operatorname{Hilb}^n(S),$

which is obviously birational to $S^{(n)}$.

Facts (miracle!)

- (Fogarty) $S^{[n]}$ is a smooth.
- The Hilbert-Chow morphism $\tau : S^{[n]} \to S^{(n)}$ is crepant.

Crepant=no discrepancy : $\tau^*(\mathcal{K}_{S^{(n)}}) = \mathcal{K}_{S^{[n]}}$. Therefore $S^{[n]}$ is a minimal (best!) resolution of singularities of $S^{(n)}$

Question

How to compute $H^*\left(S^{[n]},\mathbb{Q}
ight)?$

From now on, X = S is a smooth projective surface. In this case, we have the Hilbert scheme of subschemes of length n on S:

 $S^{[n]} := \operatorname{Hilb}^n(S),$

which is obviously birational to $S^{(n)}$.

Facts (miracle!)

- (Fogarty) $S^{[n]}$ is a smooth.
- The Hilbert-Chow morphism $\tau: S^{[n]} \to S^{(n)}$ is crepant.

Crepant=no discrepancy : $\tau^*(K_{S^{(n)}}) = K_{S^{[n]}}$. Therefore $S^{[n]}$ is a minimal (best!) resolution of singularities of $S^{(n)}$.

Question

How to compute $H^{st}\left(S^{\left[n
ight]},\mathbb{Q}
ight)$?

イロン 不通 と 不良 と 不良 と 一度

From now on, X = S is a smooth projective surface. In this case, we have the Hilbert scheme of subschemes of length n on S:

 $S^{[n]} := \operatorname{Hilb}^n(S),$

which is obviously birational to $S^{(n)}$.

Facts (miracle!)

- (Fogarty) $S^{[n]}$ is a smooth.
- The Hilbert-Chow morphism $\tau : S^{[n]} \to S^{(n)}$ is crepant.

Crepant=no discrepancy : $\tau^*(K_{S^{(n)}}) = K_{S^{[n]}}$. Therefore $S^{[n]}$ is a minimal (best!) resolution of singularities of $S^{(n)}$.

Question

How to compute $H^*(S^{[n]}, \mathbb{Q})$?

Let S always be a smooth projective surface.

(Ruan) String theory : as 'best' smooth models of $S^{(n)}$, $[S^n/\mathfrak{S}_n]$ and $S^{[n]}$ are equally good !

Theorem

- (Göttsche) $H^*_{orb}([S^n/\mathfrak{S}_n]) \simeq H^*(S^{[n]})$ as graded vector spaces.
- (Lehn-Sorger, Fantechi-Göttsche) When $K_S = 0$,

 $H^*_{orb}\left(\left[S^n/\mathfrak{S}_n\right]\right)\simeq H^*(S^{[n]})$

as graded Q-algebras.

Remark : for *S* with $K_S \neq 0$, we have the more general result (Li-Qin) : $H^*_{orb}\left([S^n/\mathfrak{S}_n]\right) \simeq H^*_{\tau}(S^{[n]}),$

where the RHS incorporates the *quantum corrections* coming from the Gromov-Witten invariants for curve classes contracted by the

イロン イ団と イヨン イヨン

Let S always be a smooth projective surface.

(Ruan) String theory : as 'best' smooth models of $S^{(n)}$, $[S^n/\mathfrak{S}_n]$ and $S^{[n]}$ are equally good !

Theorem

- (Göttsche) $H^*_{orb}([S^n/\mathfrak{S}_n]) \simeq H^*(S^{[n]})$ as graded vector spaces.
- ▶ (Lehn-Sorger, Fantechi-Göttsche) When K_S = 0,

 $H^*_{orb}\left(\left[S^n/\mathfrak{S}_n\right]\right)\simeq H^*(S^{[n]})$

as graded Q-algebras.

Remark : for S with $K_S \neq 0$, we have the more general result (Li-Qin) : $H^*_{orb}\left([S^n/\mathfrak{S}_n]\right) \simeq H^*_{\tau}(S^{[n]}),$

where the RHS incorporates the *quantum corrections* coming from the Gromov-Witten invariants for curve classes contracted by the Hilbert-Chow morphism τ .

Let S always be a smooth projective surface. (Ruan) String theory : as 'best' smooth models of $S^{(n)}$, $[S^n / \mathfrak{S}_n]$ and $S^{[n]}$ are equally good !

Theorem

• (Göttsche) $H^*_{orb}([S^n/\mathfrak{S}_n]) \simeq H^*(S^{[n]})$ as graded vector spaces.

• (Lehn-Sorger, Fantechi-Göttsche) When $K_S = 0$,

 $H^*_{orb}\left(\left[S^n/\mathfrak{S}_n\right]\right)\simeq H^*(S^{[n]})$

as graded Q-algebras.

Remark : for S with $K_S \neq 0$, we have the more general result (Li-Qin) : $H^*_{orb}\left([S^n/\mathfrak{S}_n]\right) \simeq H^*_{\tau}(S^{[n]}),$

where the RHS incorporates the *quantum corrections* coming from the Gromov-Witten invariants for curve classes contracted by the Hilbert-Chow morphism τ .

Let S always be a smooth projective surface. (Ruan) String theory : as 'best' smooth models of $S^{(n)}$, $[S^n / \mathfrak{S}_n]$ and $S^{[n]}$

are equally good !

Theorem

- (Göttsche) $H^*_{orb}([S^n/\mathfrak{S}_n]) \simeq H^*(S^{[n]})$ as graded vector spaces.
- (Lehn-Sorger, Fantechi-Göttsche) When $K_S = 0$,

 $H^*_{orb}\left([S^n/\mathfrak{S}_n]\right)\simeq H^*(S^{[n]})$

as graded \mathbb{Q} -algebras.

Remark : for *S* with $K_S \neq 0$, we have the more general result (Li-Qin) : $H^*_{orb}\left([S^n/\mathfrak{S}_n]\right) \simeq H^*_{\tau}(S^{[n]}),$

where the RHS incorporates the *quantum corrections* coming from the Gromov-Witten invariants for curve classes contracted by the Hilbert-Chow morphism τ .

Let *S* always be a smooth projective surface. (Ruan) String theory : as 'best' smooth models of $S^{(n)}$, $[S^n/\mathfrak{S}_n]$ and $S^{[n]}$ are equally good !

Theorem

- (Göttsche) $H^*_{orb}([S^n/\mathfrak{S}_n]) \simeq H^*(S^{[n]})$ as graded vector spaces.
- ▶ (Lehn-Sorger, Fantechi-Göttsche) When K_S = 0,

$$H^*_{orb}\left(\left[S^n/\mathfrak{S}_n\right]\right)\simeq H^*(S^{[n]})$$

as graded Q-algebras.

Remark : for S with $K_S \neq 0$, we have the more general result (Li-Qin) : $H^*_{orb}\left([S^n/\mathfrak{S}_n]\right) \simeq H^*_{\tau}(S^{[n]}),$

where the RHS incorporates the *quantum corrections* coming from the Gromov-Witten invariants for curve classes contracted by the Hilbert-Chow morphism τ .

Lie Fu (Université Lyon 1)

$\label{eq:Goal} \textbf{Goal}: \texttt{generalize Fantechi-G\"ottsche-Lehn-Sorger theorem in various} \\ \texttt{directions}.$

Note that for surface S with $K_S = 0$, $S^{[n]}$ is holomorphic symplectic in the following sense :

Definition

A smooth projective variety *X* is called *irreducible holomorphic symplectic* (or *hyperkähler*), if

- $\pi_1(X) = 1;$
- $H^{2,0}(X) = \mathbb{C} \cdot \eta$ with η a holomorphic symplectic 2-form.

Examples :

- S^[n] with S a K3 surface;
- K_n(A) : generalized Kummer variety associated to an abelian surface A;
- Fano varieties of lines of cubic fourfolds.

イロト イヨト イヨト

Goal : generalize Fantechi-Göttsche-Lehn-Sorger theorem in various directions.

Note that for surface S with $K_S = 0$, $S^{[n]}$ is holomorphic symplectic in the following sense :

Definition

A smooth projective variety *X* is called *irreducible holomorphic symplectic* (or *hyperkähler*), if

- $\pi_1(X) = 1;$
- $H^{2,0}(X) = \mathbb{C} \cdot \eta$ with η a holomorphic symplectic 2-form.

Examples :

- S^[n] with S a K3 surface;
- K_n(A) : generalized Kummer variety associated to an abelian surface A;
- Fano varieties of lines of cubic fourfolds.

イロト イ理ト イヨト イヨトー

 $\label{eq:Goal} \textbf{Goal}: \texttt{generalize Fantechi-G\"ottsche-Lehn-Sorger theorem in various} \\ \texttt{directions}.$

Note that for surface S with $K_S = 0$, $S^{[n]}$ is holomorphic symplectic in the following sense :

Definition

A smooth projective variety X is called *irreducible holomorphic symplectic* (or *hyperkähler*), if

- $\pi_1(X) = 1;$
 - $H^{2,0}(X) = \mathbb{C} \cdot \eta$ with η a holomorphic symplectic 2-form.

Examples :

- $S^{[n]}$ with S a K3 surface;
- K_n(A) : generalized Kummer variety associated to an abelian surface A;
- Fano varieties of lines of cubic fourfolds.

(日) (周) (三) (三)

Goal : generalize Fantechi-Göttsche-Lehn-Sorger theorem in various directions.

Note that for surface S with $K_S = 0$, $S^{[n]}$ is holomorphic symplectic in the following sense :

Definition

A smooth projective variety X is called *irreducible holomorphic symplectic* (or *hyperkähler*), if

- $\pi_1(X) = 1;$
- $H^{2,0}(X) = \mathbb{C} \cdot \eta$ with η a holomorphic symplectic 2-form.

Examples :

- $S^{[n]}$ with S a K3 surface;
- K_n(A) : generalized Kummer variety associated to an abelian surface A;
- Fano varieties of lines of cubic fourfolds.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goal : generalize Fantechi-Göttsche-Lehn-Sorger theorem in various directions.

Note that for surface S with $K_S = 0$, $S^{[n]}$ is holomorphic symplectic in the following sense :

Definition

A smooth projective variety X is called *irreducible holomorphic symplectic* (or *hyperkähler*), if

•
$$\pi_1(X) = 1;$$

• $H^{2,0}(X) = \mathbb{C} \cdot \eta$ with η a holomorphic symplectic 2-form.

Examples :

- $S^{[n]}$ with S a K3 surface;
- K_n(A) : generalized Kummer variety associated to an abelian surface A;
- Fano varieties of lines of cubic fourfolds.

・ロト ・聞ト ・ヨト ・ヨト

Goal : generalize Fantechi-Göttsche-Lehn-Sorger theorem in various directions.

Note that for surface S with $K_S = 0$, $S^{[n]}$ is holomorphic symplectic in the following sense :

Definition

A smooth projective variety X is called *irreducible holomorphic symplectic* (or *hyperkähler*), if

•
$$\pi_1(X) = 1;$$

• $H^{2,0}(X) = \mathbb{C} \cdot \eta$ with η a holomorphic symplectic 2-form.

Examples :

- ► *S*^[*n*] with *S* a K3 surface;
- K_n(A) : generalized Kummer variety associated to an abelian surface A;
- Fano varieties of lines of cubic fourfolds.

Goal : generalize Fantechi-Göttsche-Lehn-Sorger theorem in various directions.

Note that for surface S with $K_S = 0$, $S^{[n]}$ is holomorphic symplectic in the following sense :

Definition

A smooth projective variety X is called *irreducible holomorphic symplectic* (or *hyperkähler*), if

•
$$\pi_1(X) = 1;$$

• $H^{2,0}(X) = \mathbb{C} \cdot \eta$ with η a holomorphic symplectic 2-form.

Examples :

- ► *S*^[*n*] with *S* a K3 surface;
- K_n(A) : generalized Kummer variety associated to an abelian surface A;
- Fano varieties of lines of cubic fourfolds.

Goal : generalize Fantechi-Göttsche-Lehn-Sorger theorem in various directions.

Note that for surface S with $K_S = 0$, $S^{[n]}$ is holomorphic symplectic in the following sense :

Definition

A smooth projective variety X is called *irreducible holomorphic symplectic* (or *hyperkähler*), if

•
$$\pi_1(X) = 1;$$

• $H^{2,0}(X) = \mathbb{C} \cdot \eta$ with η a holomorphic symplectic 2-form.

Examples :

- ► *S*^[*n*] with *S* a K3 surface;
- K_n(A) : generalized Kummer variety associated to an abelian surface A;
- Fano varieties of lines of cubic fourfolds.

Conjecture (global quotient version)

Let *M* be a holomorphic symplectic variety with a *symplectic* action of a finite group *G*. Let *X* be a crepant (=symplectic) resolution of M/G. Then we have an isomorphism of graded *algebras* :

 $H^*_{orb}([M/G]) \simeq H^*(X).$

My goal :

- I Formulate a motivic version of this conjecture;
- Try to prove it (maybe in some cases), hence Ruan's conjecture (in some cases).

・ 何 ト ・ ヨ ト ・ ヨ ト

Conjecture (global quotient version)

Let *M* be a holomorphic symplectic variety with a *symplectic* action of a finite group *G*. Let *X* be a crepant (=symplectic) resolution of M/G. Then we have an isomorphism of graded *algebras* :

 $H^*_{orb}([M/G]) \simeq H^*(X).$

My goal :

- Formulate a motivic version of this conjecture;
- Try to prove it (maybe in some cases), hence Ruan's conjecture (in some cases).

Conjecture (global quotient version)

Let *M* be a holomorphic symplectic variety with a *symplectic* action of a finite group *G*. Let *X* be a crepant (=symplectic) resolution of M/G. Then we have an isomorphism of graded *algebras* :

 $H^*_{orb}([M/G]) \simeq H^*(X).$

My goal :

- I Formulate a motivic version of this conjecture;
- Try to prove it (maybe in some cases), hence Ruan's conjecture (in some cases).

Conjecture

If X is a crepant resolution of M/G. We have an isomorphism of algebra objects in the category CHM :

 $\mathfrak{h}_{orb}([M/G])\simeq\mathfrak{h}(X).$

Why believe it?

Conjecture

If X is a crepant resolution of M/G. We have an isomorphism of algebra objects in the category CHM :

 $\mathfrak{h}_{orb}([M/G])\simeq\mathfrak{h}(X).$

Why believe it?

- 4 個 ト - 4 三 ト - 4 三 ト

Conjecture

If X is a crepant resolution of M/G. We have an isomorphism of algebra objects in the category CHM :

 $\mathfrak{h}_{orb}([M/G]) \simeq \mathfrak{h}(X).$

Why believe it?

Conjecture

If X is a crepant resolution of M/G. We have an isomorphism of algebra objects in the category CHM :

 $\mathfrak{h}_{orb}([M/G]) \simeq \mathfrak{h}(X).$

Why believe it?

- Its Hodge realization for S^[n] with S a K3 surface is the theorem of Fantechi-Göttsche-Lehn-Sorger.
- De Cataldo and Migliorini established an additive isomorphism

- It fits good with Beauville's conjecture of multiplicative splitting of Bloch-Beilinson type of the Chow ring of holomorphic symplectic varieties.
- (TO BE VERIFIED!) I think I can treat the case of S^[n] with S a K3 surface in a rather indirect way.

Its Hodge realization for S^[n] with S a K3 surface is the theorem of Fantechi-Göttsche-Lehn-Sorger.

De Cataldo and Migliorini established an additive isomorphism

 $\mathfrak{h}_{orb}([M/G]) \simeq \mathfrak{h}(X).$

- It fits good with Beauville's conjecture of multiplicative splitting of Bloch-Beilinson type of the Chow ring of holomorphic symplectic varieties.
- (TO BE VERIFIED!) I think I can treat the case of S^[n] with S a K3 surface in a rather indirect way.

- Its Hodge realization for S^[n] with S a K3 surface is the theorem of Fantechi-Göttsche-Lehn-Sorger.
- De Cataldo and Migliorini established an additive isomorphism

- It fits good with Beauville's conjecture of multiplicative splitting of Bloch-Beilinson type of the Chow ring of holomorphic symplectic varieties.
- (TO BE VERIFIED!) I think I can treat the case of S^[n] with S a K3 surface in a rather indirect way.

- Its Hodge realization for S^[n] with S a K3 surface is the theorem of Fantechi-Göttsche-Lehn-Sorger.
- De Cataldo and Migliorini established an additive isomorphism

- It fits good with Beauville's conjecture of multiplicative splitting of Bloch-Beilinson type of the Chow ring of holomorphic symplectic varieties.
- (TO BE VERIFIED!) I think I can treat the case of S^[n] with S a K3 surface in a rather indirect way.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

- Its Hodge realization for S^[n] with S a K3 surface is the theorem of Fantechi-Göttsche-Lehn-Sorger.
- De Cataldo and Migliorini established an additive isomorphism

- It fits good with Beauville's conjecture of multiplicative splitting of Bloch-Beilinson type of the Chow ring of holomorphic symplectic varieties.
- (TO BE VERIFIED!) I think I can treat the case of S^[n] with S a K3 surface in a rather indirect way.