Growth of Sobolev norms for the cubic NLS near 1D quasi-periodic solutions

Marcel Guardia (Universitat Politècnica de Catalunya)
Zaher Hani (GeorgiaTech)
Emanuele Haus (Universitá di Napoli)
Alberto Maspero (SISSA – Trieste)
Michela Procesi (Universitá di Roma 3)

The defocusing cubic NLS

Consider the equation

$$-iu_t + \Delta u = |u|^2 u$$

where $x \in \mathbb{T}^2 = \mathbb{R}^2/(2\pi\mathbb{Z})^2$, $t \in \mathbb{R}$ and $u : \mathbb{R} \times \mathbb{T}^2 \to \mathbb{C}$.

- NLS defines a complete flow in $H^s(\mathbb{T}^2)$, $s \ge 1$.
- Conserved quantities: the Hamiltonian and the mass

$$E[u] = \int_{\mathbb{T}^2} \left(\frac{1}{2} |\nabla u|^2 + \frac{1}{4} |u|^4\right) \frac{dx}{(2\pi)^2} dx$$
$$\mathcal{M}[u] = \int_{\mathbb{T}^2} |u|^2 dx.$$

Two very related problems

• Transfer of energy (weak turbulence).

• Lyapunov instability of invariant objects of the dynamical system.

Transfer of energy

• Fourier series of *u*,

$$u(x,t) = \sum_{n \in \mathbb{Z}^2} a_n(t)e^{inx}.$$

- Can we have transfer of energy to high modes as $t \to +\infty$?
- We measure it with the growth of s-Sobolev norms (s > 1)

$$||u(t)||_{H^{s}(\mathbb{T}^{2})} := ||u(t,\cdot)||_{H^{s}(\mathbb{T}^{2})} := \left(\sum_{n\in\mathbb{Z}^{2}}\langle n\rangle^{2s}|a_{n}(t)|^{2}\right)^{1/2},$$

where $\langle n \rangle = (1 + |n|^2)^{1/2}$.

• Thanks to mass and energy conservation,

$$||u(t)||_{H^1(\mathbb{T}^2)} \le C||u(0)||_{H^1(\mathbb{T}^2)}$$
 for all $t \ge 0$.

• Simultaneous forward and backward cascade.

(ロ) (団) (目) (目) (目) (目) (円)

The *I*-team result

$$-iu_t + \Delta u = |u|^2 u$$

• Kuksin (1997): growth of Sobolev norms starting from an already large initial data.

Theorem (Colliander, Keel, Staffilani, Takaoka, Tao (2010))

Fix $s>1,~K\gg 1$ and $\delta\ll 1.$ Then there exists a global solution u of NLS on \mathbb{T}^2 and T satisfying that

$$||u(0)||_{H^s} \le \delta, \qquad ||u(T)||_{H^s} \ge K.$$

• The result also applies to $s \in (0,1)$.

More results

- M. G. and V. Kaloshin: $T \sim e^{\left(\frac{K}{\delta}\right)^{\beta}}$ for some $\beta > 1$.
- E. Haus and M. Procesi generalized the I-team result to the quintic NLS

$$-iu_t + \Delta u = |u|^4 u$$

- M. G, E. Haus and M. Procesi generalization to any other odd power.
- Bourgain conjecture: Take s > 1. There exists a solution such that

$$\|u(t)\|_{H^s} \to +\infty$$
 as $t \to +\infty$.

- Z. Hani, B. Pausader, N. Tzvetkov, N. Visciglia proved unbounded growth for the cubic NLS in $\mathbb{R} \times \mathbb{T}^2$.
- It remains open in all compact manifolds.

Dynamical systems point of view

$$-iu_t + \Delta u = |u|^2 u$$

- u = 0 is an elliptic critical point: linearly stable in any H^s topology
- It is Lyapunov stable or unstable? It depends on the topology.
- Stability in L^2 and H^1 topology.
- I-team result \equiv Instability in the H^s topology.

Instability of others invariant objects?

 What about the stability/instability of other invariant objects of the cubic NLS?

For which time ranges?

• Can we attain Sobolev norm explosion starting arbitrarily close to an invariant object?

Hani approach towards the proof of Bourgain conjecture

Bourgain conjecture: There exists a solution such that

$$\|u(t)\|_{H^s} \to +\infty$$
 as $t \to +\infty$.

- Long-time strong instability: Let $(X, \|\cdot\|)$ be a Banach space and Φ^t a flow on it. We say Φ^t exhibits long-time strong instability near $u \in X$ if for every $\delta \in (0,1)$ and K>1, there exists $u^* \in B_\delta(u)$ such that $\sup_{t>0} |\Phi^t(u^*)| > K$.
- Assume there exists $\mathcal{D} \subset \mathcal{F} \subset X$ with
 - ullet \mathcal{F} closed in X
 - \mathcal{D} dense in \mathcal{F} .
 - ullet All u in ${\mathcal D}$ has long-time strong instability within ${\mathcal F}$
- Then, there exists $u^* \in F$ such that $||u^*(t)||_{H^s} \to \infty$ as $t \to +\infty$.

Instability of plane waves

- Plane waves (periodic orbits): $u(t,x) = Ae^{i(mx-\omega t)}$ with $\omega = m^2 + A^2$.
- Stability result (Faou, Gauckler and Lubich 2013): Fix N>1. There exists $s_0>0$ such that "many" plane waves are stable in H^s with $s\geq s_0$ and times $t\sim \delta^{-N}$ and arbitrary N where $\delta=\|u_0(x)-Ae^{imx}\|_{H^s}$.
- Many: For any m and a full measure set of A
- Instability result (Hani 2011): Fix $s \in (0,1)$, $K \gg 1$ and $\delta \ll 1$. Then there exists a global solution u of NLS on \mathbb{T}^2 and T satisfying that

$$||u(0) - Ae^{imx}||_{H^s} \le \delta, \qquad ||u(T)||_{H^s} \ge K.$$

• Remark: Instabilities are only proven for $s \in (0,1)$.

M. Guardia

Transfer of energy close to invariant tori

- Goal: Transfer of energy close to invariant (quasiperiodic) tori.
- We look at the "simplest" tori: 1D tori (finite gap solutions).
- 1D Cubic NLS $i\partial_t q = -\partial_{xx} q + |q|^2 q$, $x \in \mathbb{T}$, is integrable.
- It admits global Birkhoff coordinates:

$$\Phi: L^{2}(\mathbb{T}) \longrightarrow \ell^{2} \times \ell^{2}$$

$$q \longmapsto (z_{m}, \overline{z}_{m})_{m \in \mathbb{Z}},$$

such that 1D cubic NLS becomes $i\dot{z}_m = \alpha_m(I)z_m$ where $I_m = |z_m|^2$ are the actions.

- It has twist.
- All solutions are periodic/quasi-periodic/almost-periodic.

1D invariant tori

• Consider one of the d-dimensional quasiperiodic tori: Choose $\mathcal{S}_0 = (\mathtt{m}_1, \dots \mathtt{m}_\mathtt{d}) \subset \mathbb{Z} \text{ and a vector } \mathit{I}_\mathtt{m} = (\mathit{I}_\mathtt{m}_1, \dots, \mathit{I}_\mathtt{m}_\mathtt{d}) \in \mathbb{R}_+^\mathtt{d} \text{ and define}$ $\mathtt{T}^\mathtt{d} = \{(z_m)_{m \in \mathbb{Z}} : |z_{\mathtt{m}_i}|^2 = \mathit{I}_{\mathtt{m}_i}, i = 1, \dots, \mathtt{d}, \ z_m = 0 \text{ if } m \not \in \mathcal{S}_0\}.$

- Consider them as invariant objects for the 2D equation.
- For what time scales this torus is Lyapunov stable/unstable?
- Are there orbits in its neighborhood transfering energy (H^s norm explosion)?
- We will need to impose some (many) conditions on the torus (on S_0 and I_m).

Stability of the finite gaps solution

Theorem (A. Maspero – M. Procesi)

Fix $s \geq 1$. For a generic choice of support sites \mathcal{S}_0 there exists ε_0 , T, K such that for all $\varepsilon \in (0, \varepsilon_0)$, there exists a Cantor set $\mathcal{I} \subset (0, \varepsilon)^d$ such that the following holds true for any torus $T^d = T^d(\mathcal{S}_0, I_m)$ with $I_m \in \mathcal{I}$:

Fix any $\delta \ll 1$. Then, any solution of cubic defocusing NLS u(t) such that

$$\operatorname{dist}_{H^s}\left(u(0),\Phi^{-1}(\mathtt{T}^\mathtt{d})\right) \leq \delta$$

satisfies

$$\operatorname{dist}_{H^s}\left(u(t),\Phi^{-1}(\mathtt{T}^{\operatorname{d}})\right)\leq K\delta$$
 for all $|t|\leq T/\delta^2$.

• These tori are Diophantine (and satisfy certain Melnikov conditions).

Some comments

• The same result is true for $s \in (0,1)$.

• Generic choice of S_0 : The modes in S_0 cannot satisfy a finite number of relations (amount of relations only depending on d).

• The set of "good" actions $\mathcal{I}\subset (0,\varepsilon)^d$ has relative measure as close as 1/2 as desired.

Main result

- Consider the same tori $T^d = T^d(\mathcal{S}_0, I_m)$.
- (Maybe ε_0 may change)

Theorem (M.G.- Z. Hani - E. Haus - A. Maspero - M. Procesi)

Fix $s \in (0,1)$ and $T^d = T^d(\mathcal{S}_0,I_m)$ as before. Then, for any $\delta \ll 1$ and $K \gg 1$ there exists an orbit of cubic defocusing NLS and a time T such that

- $\operatorname{dist}_{H^s}\left(u(0), \Phi^{-1}(\mathbf{T}^d)\right) \leq \delta$
- $||u(T)||_{H^s} \ge K$.
- $|T| \lesssim e^{\left(\frac{K}{\delta}\right)^{\beta}}$ for some $\beta > 1$.

Comments and questions

- First instability result on quasiperiodic (Diophantine) tori in Hamiltonian PDEs.
- Transversal instability: these tori are stable as solutions of 1D NLS but there are 2D solutions arbitrarily close to the torus which attain huge Sobolev norms.
- Same result is valid for NLS on \mathbb{T}^N with $N \geq 2$.
- $s \in (0,1)$ implies that the obtained solution has very small mass but very large energy.
- Questions:
 - Why the torus needs to be small?
 - Why S_0 generic?
 - Why not s > 1?
 - Why not full asymptotic measure?

Why the torus needs to be small? Why S_0 generic?

- To understand the normal behavior at the torus: we reduce the linearized equation to constant coefficients.
- We only know how to do the reduction for small tori (linearized equation is close to constant coefficients \rightarrow KAM scheme).
- To perform the reduction we need a generic choice of modes to avoid some resonances.
- Transversal instability "should be true" for non-small tori

Why $s \in (0,1)$?

- The tori we consider are Diophantine (satisfy several Melnikov conditions).
- Unstable orbits drift along resonances which are "far" from the tori.
- The bigger the s, the closer we have to be to the tori.
- For s > 1, we cannot use these resonances.
- In doing Birkhoff normal form around the torus we can kill more terms in H^s , s > 1, topology than for $s \in (0,1)$.

Why not full asymptotic measure?

- Even for a generic choice of modes, one encounters unavoidable resonances in reducing the linearized equation around the torus.
- Roughly speaking, for half measure in $(0, \varepsilon)^d$ the matrix becomes hyperbolic and for the other half the matrix stays elliptic.
- To carry on our process, we need the matrix to be elliptic.
- Even if this hyperbolicity should be "good" for instabilities, not clear how to use it to achieve growth of Sobolev norms (only involves Fourier modes in a vertical strip in \mathbb{Z}^2).

Sketch of the proof: Analysis of the linearization

- Express 1D NLS in Birkhoff coordinates
- Asymptotic estimates for the 1D eigenvalues of the linearization around the torus as $|m| \to \infty$.
- Procesi-Maspero: Reduce the linearization of 2D NLS around T^d to constant coefficients (KAM scheme, second order Melnikov conditions).
- Asymptotic estimates for the 2D eigenvalues of the linearization around the torus: For $n \in \mathbb{Z}$,

$$\Omega_n = i \left(n_1^2 + n_2^2 + \frac{\mathcal{O}(\varepsilon^2)}{\langle n_1 \rangle^2} + \frac{\mathcal{O}(\varepsilon^2)}{\langle n_1 \rangle^2 + \langle n_2 \rangle^2} \right)$$

for $n_2 \neq 0$ and $|n_1| \geq M_0$,

• Eigenvalues are very close to resonance for $|n_1| \gg 1$.

◆ロ > ◆昼 > ◆ き > ◆き > き の < ○</p>

Sketch of the proof: Birkhoff normal form

- Third order Melnikov conditions hold for a positive measure set.
- Birkhoff normal form to eliminate completely the quadratic terms in the equation.
- Proof that certain fourth order Melnikov conditions hold for a positive measure set.
- Partial Birkhoff normal form to eliminate cubic non-resonant terms.
- Note that all these changes cannot be done in H^s (it will be large at the end)
- We do them in ℓ^1 .
- Use the I-team approach: Use cubic resonant terms to achieve instabilities.

The I-team approach for solutions close to u=0

$$-iu_t + \Delta u = |u|^2 u$$

 Cubic NLS as an ode (of infinite dimension) for the Fourier coefficients of u:

$$-i\dot{a}_n = |n|^2 a_n + \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} a_{n_1} \overline{a_{n_2}} a_{n_3}, \qquad n \in \mathbb{Z}^2.$$

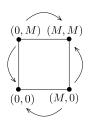
- Drift through resonances.
- Resonant monomial

$$n_1 - n_2 + n_3 - n = 0$$
 and $|n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2 = 0$

• Non-degenerate resonances form a rectangle in \mathbb{Z}^2 .

M. Guardia Growth of Sobolev norms 22 / 30

Growth of Sobolev norms in a rectangle



- Take a solution on this rectangle with $M\gg 1$ such that
 - $a_{(M,0)}(0) = a_{(0,M)}(0) = 1$, $a_{(0,0)}(0) = a_{(M,M)}(0) = 0$
 - $a_{(M,0)}(T) = a_{(0,M)}(T) = 0,$ $a_{(0,0)}(T) = a_{(M,M)}(T) = 1$
- Growth of Sobolev norms

$$\frac{\|u(T)\|_{H^s}^2}{\|u(0)\|_{H^s}^2} \sim \frac{|(0,0)|^{2s} + |(M,M)|^{2s}}{|(M,0)|^{2s} + |(0,M)|^{2s}} = \frac{(\sqrt{2}M)^{2s}}{M^{2s} + M^{2s}} \sim 2^{s-1}$$

- We "pump" mass from (M,0) and (0,M) to (0,0) and (M,M).
- We "pump" the Sobolev norm to (M, M).

◆ロト ◆問 ▶ ◆ 恵 ト ◆ 恵 ・ か Q (で)

Traveling through rectangles

- One needs to concatenate many rectangles to attain a bigger growth.
- Number of concatenations: $N \sim \log(K/\delta) \gg 1$.
- At each step, the Sobolev norm is pushed to half of the modes (the ones further out)
- We need many modes to be able to push Sobolev norm through the N "generations".
- They consider a finite set of modes $\Lambda = \Lambda_1 \cup ... \cup \Lambda_N \subset \mathbb{Z}^2$ of large size $|\Lambda_i| = 2^{N-1}$, $N \sim \log(K/\delta)$.

Traveling through rectangles

$$\Lambda = \Lambda_1 \cup \ldots \cup \Lambda_N \subset \mathbb{Z}^2, \qquad |\Lambda_j| = 2^{N-1}, \qquad N \sim \log(K/\delta)$$

- They choose carefully Λ such that the modes interact in a very particular way.
- Each rectangle has modes only in two consecutive generations.
- Each mode in generation Λ_j pumps energy from a rectangle involving modes in Λ_{i-1} to a rectangle involving modes in Λ_{i+1} .

The I-team approach for the cubic case

• After further reductions: finite dimensional (toy) model

$$\dot{b}_{j}=-ib_{j}^{2}\overline{b}_{j}+2i\overline{b}_{j}\left(b_{j-1}^{2}+b_{j+1}^{2}
ight),\;j=1,\ldots N.$$

which approximates well certain solutions of NLS.

- Each b_j represents the 2^{N-1} modes in Λ_j .
- \bullet It can be seen as a Hamiltonian system on a lattice $\mathbb Z$ with nearest neighbor interactions.

Dynamics of the cubic toy model

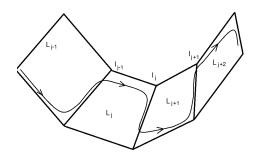
$$\dot{b}_{j}=-ib_{j}^{2}\overline{b}_{j}+2i\overline{b}_{j}\left(b_{j-1}^{2}+b_{j+1}^{2}\right),\;j=0,\ldots N,$$

• Each 4-dimensional plane

$$L_j = \{b_1 = \cdots = b_{j-1} = b_{j+2} = \cdots = b_N = 0\}$$

is invariant and corresponds to two generations interacting

- Namely, interactions through rectangles.
- In L_j , $\mathbb{T}_j = \{b_j \neq 0, b_{j+1} = 0\}$ and $\mathbb{T}_{j+1} = \{b_j = 0, b_{j+1} \neq 0\}$ are (partially hyperbolic) periodic orbits.
- They are connected through a heteroclinic orbit



- I-team: To travel close to L_j from \mathbb{T}_j to \mathbb{T}_{j+1} , they shadow this heteroclinic.
- M. G. V. Kaloshin: Shadowing with time estimates.
- Delshams-Simon study the shadowing with Shilnikov techniques.
- Conclusion: Orbits which are localized first at b_1 and after some time at b_N .

The I-team approach for solutions close a torus

$$-i\dot{a}_n = |n|^2 a_n + \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} a_{n_1} \overline{a_{n_2}} a_{n_3}, \qquad n \in \mathbb{Z}^2.$$

- After normal form we have an eq. "similar" to the original NLS.
- Problems:
 - Eigenvalues Ω_n are not to $|n|^2$, but close to it for modes in Λ .
 - We drift along almost-resonances.
 - This creates extra error terms which blow up for large times.
 - Coefficients of the cubic monomials are different in each monomial:
 They come from the interaction between the torus and the modes in the monomial.

The I-team approach for solutions close a torus

$$-i\dot{a}_n = |n|^2 a_n + \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} a_{n_1} \overline{a_{n_2}} a_{n_3}, \qquad n \in \mathbb{Z}^2.$$

- Goal: Choose $\Lambda \subset \mathbb{Z}^2$ to "minimize" this interaction.
- For a well chosen $\Lambda \subset N\mathbb{Z} \times N\mathbb{Z}$, the coefficients of the associated monomials are

$$1 + \mathcal{O}(N^{-1})$$

thanks to: Smoothing properties of the reducibility change of coordinates + Combinatorial analysis of the Birkhoff NF changes of coordinates.

- Treating the extra terms as errors, one can carry the I-team approach.
- Toy model leads to growth of Sobolev norms after incorporating the errors and undoing all the changes of coordinates.