Bipartite Perfect Matching is in quasi-NC

Stephen Fenner ${ }^{1}$

${ }^{1}$ Computer Science and Engineering Department
University of South Carolina
fenner@cse.sc.edu
Institute for Advanced Study, Princeton, February 8, 2016

Joint work with Rohit Gurjar and Thomas Thierauf (University of Aalen, Germany).
http://eccc.hpi-web.de/report/2015/177/.

Matching

$G=(V, E)$ is a graph with n nodes and m edges.
Definition
A matching in G is a set $M \subseteq E$ such that each $v \in V$ is incident to at most one $e \in M$.

For a perfect matching (p.m.): substitute "exactly" for "at most" above.

Matching

$G=(V, E)$ is a graph with n nodes and m edges.
Definition
A matching in G is a set $M \subseteq E$ such that each $v \in V$ is incident to at most one $e \in M$.

For a perfect matching (p.m.): substitute "exactly" for "at most" above.

Matching

$G=(V, E)$ is a graph with n nodes and m edges.

Definition

A matching in G is a set $M \subseteq E$ such that each $v \in V$ is incident to at most one $e \in M$.

For a perfect matching (p.m.): substitute "exactly" for "at most" above. The perfect matching decision problem, PM, asks whether a given graph has a p.m.
The search problem, SEARCH-PM, asks for a p.m. in a graph if it exists.

Matching

$G=(V, E)$ is a graph with n nodes and m edges.

Definition

A matching in G is a set $M \subseteq E$ such that each $v \in V$ is incident to at most one $e \in M$.

For a perfect matching (p.m.): substitute "exactly" for "at most" above. The perfect matching decision problem, PM, asks whether a given graph has a p.m.
The search problem, SEARCH-PM, asks for a p.m. in a graph if it exists.
combinatorics and complexity theory.

Matching

$G=(V, E)$ is a graph with n nodes and m edges.

Definition

A matching in G is a set $M \subseteq E$ such that each $v \in V$ is incident to at most one $e \in M$.

For a perfect matching (p.m.): substitute "exactly" for "at most" above. The perfect matching decision problem, PM, asks whether a given graph has a p.m.
The search problem, SEARCH-PM, asks for a p.m. in a graph if it exists. Matchings and perfect matchings have been widely studied in combinatorics and complexity theory.

Previous algorithms for PM and SеARCн-PM

- A polynomial-time algorithm for PM due to Edmonds [Edm65].
- A fast randomized parallel (RNC) algorithm for PM due to Lovász [Lov79] (also Chari, Rohatgi, \& Srinivasan [CRS95]). - An RNC algorithm for SEARCH-PM due to Karp, Upfal, \& Wigderson [KUW86].

Previous algorithms for PM and SеАгсн-РМ

- A polynomial-time algorithm for PM due to Edmonds [Edm65].
- A fast randomized parallel (RNC) algorithm for PM due to Lovász [Lov79] (also Chari, Rohatgi, \& Srinivasan [CRS95]). Wigderson [KUW86].

Previous algorithms for PM and SеАгсн-РМ

- A polynomial-time algorithm for PM due to Edmonds [Edm65].
- A fast randomized parallel (RNC) algorithm for PM due to Lovász [Lov79] (also Chari, Rohatgi, \& Srinivasan [CRS95]).
- An RNC algorithm for SEARCH-PM due to Karp, Upfal, \& Wigderson [KUW86].
- Another RNC algorithm due to Mulmuley, Vazirani, \& Vazirani [MVV87] using the Isolation Lemma.

Previous algorithms for PM and SEARCH-PM

- A polynomial-time algorithm for PM due to Edmonds [Edm65].
- A fast randomized parallel (RNC) algorithm for PM due to Lovász [Lov79] (also Chari, Rohatgi, \& Srinivasan [CRS95]).
- An RNC algorithm for Search-PM due to Karp, Upfal, \& Wigderson [KUW86].
- Another RNC algorithm due to Mulmuley, Vazirani, \& Vazirani [MVV87] using the Isolation Lemma.

NC is the class of problems with uniform polynomial size circuits with

Previous algorithms for PM and SEARCH-PM

- A polynomial-time algorithm for PM due to Edmonds [Edm65].
- A fast randomized parallel (RNC) algorithm for PM due to Lovász [Lov79] (also Chari, Rohatgi, \& Srinivasan [CRS95]).
- An RNC algorithm for SEARCh-PM due to Karp, Upfal, \& Wigderson [KUW86].
- Another RNC algorithm due to Mulmuley, Vazirani, \& Vazirani [MVV87] using the Isolation Lemma.

NC is the class of problems with uniform polynomial size circuits with polylogarithmic depth.
size was known.

Previous algorithms for PM and SEARCH-PM

- A polynomial-time algorithm for PM due to Edmonds [Edm65].
- A fast randomized parallel (RNC) algorithm for PM due to Lovász [Lov79] (also Chari, Rohatgi, \& Srinivasan [CRS95]).
- An RNC algorithm for Search-PM due to Karp, Upfal, \& Wigderson [KUW86].
- Another RNC algorithm due to Mulmuley, Vazirani, \& Vazirani [MVV87] using the Isolation Lemma.

NC is the class of problems with uniform polynomial size circuits with polylogarithmic depth.
For polylog-depth circuits solving PM, nothing better than exponential size was known.

Is there a fast parallel nonrandomized (NC) algorithm for PM ?

Previous algorithms for PM and Search-PM

- A polynomial-time algorithm for PM due to Edmonds [Edm65].
- A fast randomized parallel (RNC) algorithm for PM due to Lovász [Lov79] (also Chari, Rohatgi, \& Srinivasan [CRS95]).
- An RNC algorithm for SEARCh-PM due to Karp, Upfal, \& Wigderson [KUW86].
- Another RNC algorithm due to Mulmuley, Vazirani, \& Vazirani [MVV87] using the Isolation Lemma.

NC is the class of problems with uniform polynomial size circuits with polylogarithmic depth.
For polylog-depth circuits solving PM, nothing better than exponential size was known.

Open

Is there a fast parallel nonrandomized (NC) algorithm for PM ?

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- K K,3-free graphs(Vazirani [Vaz89]), That is, PM and SEARCH-PM on bipartite graphs have uniform circuits random bits.

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- $K_{3,3}$-free graphs(Vazirani [Vaz89]),

Sharan \& Wigderson [SW96])

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- $K_{3,3}$-free graphs(Vazirani [Vaz89]),
- graphs having polynomially many p.m.'s (Grigoriev \& Karpinski [GK87], also Agrawal, Hoang, \& Thierauf [AHT07])

Sharan \& Wigderson [SW96])

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- $K_{3,3}$-free graphs(Vazirani [Vaz89]),
- graphs having polynomially many p.m.'s (Grigoriev \& Karpinski [GK87], also Agrawal, Hoang, \& Thierauf [AHT07])
- bipartite d-regular graphs (Lev, Pippenger, \& Valiant [LPV81], also Sharan \& Wigderson [SW96])

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- $K_{3,3}$-free graphs(Vazirani [Vaz89]),
- graphs having polynomially many p.m.'s (Grigoriev \& Karpinski [GK87], also Agrawal, Hoang, \& Thierauf [AHT07])
- bipartite d-regular graphs (Lev, Pippenger, \& Valiant [LPV81], also Sharan \& Wigderson [SW96])
- strongly chordal graphs (Dahlhaus \& Karpinski [DK98]).
\& Vinodchandran [TV12])

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- $K_{3,3}$-free graphs(Vazirani [Vaz89]),
- graphs having polynomially many p.m.'s (Grigoriev \& Karpinski [GK87], also Agrawal, Hoang, \& Thierauf [AHT07])
- bipartite d-regular graphs (Lev, Pippenger, \& Valiant [LPV81], also Sharan \& Wigderson [SW96])
- strongly chordal graphs (Dahlhaus \& Karpinski [DK98]).
- planar biparite graphs (Datta, Kulkarni, \& Roy [DKR10] and Tewari \& Vinodchandran [TV12])

Bipartite PM and SEARCh-PM are in quasi-NC.
That is, PM and SEARCH-PM on bipartite graphs have uniform circuits
of depith O($\left.\log ^{2} n\right)$ and size 2
random bits.

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- $K_{3,3}$-free graphs(Vazirani [Vaz89]),
- graphs having polynomially many p.m.'s (Grigoriev \& Karpinski [GK87], also Agrawal, Hoang, \& Thierauf [AHT07])
- bipartite d-regular graphs (Lev, Pippenger, \& Valiant [LPV81], also Sharan \& Wigderson [SW96])
- strongly chordal graphs (Dahlhaus \& Karpinski [DK98]).
- planar biparite graphs (Datta, Kulkarni, \& Roy [DKR10] and Tewari \& Vinodchandran [TV12])

Our Work

Bipartite PM and SEARCH-PM are in quasi-NC.

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- $K_{3,3}$-free graphs(Vazirani [Vaz89]),
- graphs having polynomially many p.m.'s (Grigoriev \& Karpinski [GK87], also Agrawal, Hoang, \& Thierauf [AHT07])
- bipartite d-regular graphs (Lev, Pippenger, \& Valiant [LPV81], also Sharan \& Wigderson [SW96])
- strongly chordal graphs (Dahlhaus \& Karpinski [DK98]).
- planar biparite graphs (Datta, Kulkarni, \& Roy [DKR10] and Tewari \& Vinodchandran [TV12])

Our Work

Bipartite PM and SEARCH-PM are in quasi-NC.
That is, PM and SEARCH-PM on bipartite graphs have uniform circuits of depth $O\left(\log ^{2} n\right)$ and size $2^{O\left(\log ^{2} n\right)}$.

Deterministic parallel algorithms

There are NC algorithms for certain types of graphs:

- $K_{3,3}$-free graphs(Vazirani [Vaz89]),
- graphs having polynomially many p.m.'s (Grigoriev \& Karpinski [GK87], also Agrawal, Hoang, \& Thierauf [AHT07])
- bipartite d-regular graphs (Lev, Pippenger, \& Valiant [LPV81], also Sharan \& Wigderson [SW96])
- strongly chordal graphs (Dahlhaus \& Karpinski [DK98]).
- planar biparite graphs (Datta, Kulkarni, \& Roy [DKR10] and Tewari \& Vinodchandran [TV12])

Our Work

Bipartite PM and SEARCH-PM are in quasi-NC.
That is, PM and SEARCH-PM on bipartite graphs have uniform circuits of depth $O\left(\log ^{2} n\right)$ and size $2^{O\left(\log ^{2} n\right)}$.
We also give an RNC^{2} algorithm for bipartite PM using $O\left(\log ^{2} n\right)$ random bits.

Bipartite perfect matching in RNC

G bipartite with bipartition $L=\left\{u_{1}, \ldots, u_{n / 2}\right\}$ and $R=\left\{v_{1}, \ldots, v_{n / 2}\right\}$.

 Given a weight function $w: E \rightarrow \mathbb{Z}^{+}$, we extend w to sets of edges: for
Bipartite perfect matching in RNC

G bipartite with bipartition $L=\left\{u_{1}, \ldots, u_{n / 2}\right\}$ and $R=\left\{v_{1}, \ldots, v_{n / 2}\right\}$. Given a weight function $w: E \rightarrow \mathbb{Z}^{+}$, we extend w to sets of edges: for $S \subseteq E$, define $w(S):=\sum_{e \in S} w(e)$. Define the $n / 2 \times n / 2$ matrix $A_{w}=\left[a_{i, j}\right]$ as

Bipartite perfect matching in RNC

G bipartite with bipartition $L=\left\{u_{1}, \ldots, u_{n / 2}\right\}$ and $R=\left\{v_{1}, \ldots, v_{n / 2}\right\}$. Given a weight function $w: E \rightarrow \mathbb{Z}^{+}$, we extend w to sets of edges: for $S \subseteq E$, define $w(S):=\sum_{e \in S} w(e)$.
Define the $n / 2 \times n / 2$ matrix $A_{w}=\left[a_{i, j}\right]$ as

Bipartite perfect matching in RNC

G bipartite with bipartition $L=\left\{u_{1}, \ldots, u_{n / 2}\right\}$ and $R=\left\{v_{1}, \ldots, v_{n / 2}\right\}$. Given a weight function $w: E \rightarrow \mathbb{Z}^{+}$, we extend w to sets of edges: for $S \subseteq E$, define $w(S):=\sum_{e \in S} w(e)$.
Define the $n / 2 \times n / 2$ matrix $A_{w}=\left[a_{i, j}\right]$ as

$$
a_{i j}= \begin{cases}2^{w(e)} & \text { if } e=\left(u_{i}, v_{j}\right) \in E \\ 0 & \text { if }\left(u_{i}, v_{j}\right) \notin E\end{cases}
$$

Then

Bipartite perfect matching in RNC

G bipartite with bipartition $L=\left\{u_{1}, \ldots, u_{n / 2}\right\}$ and $R=\left\{v_{1}, \ldots, v_{n / 2}\right\}$.
Given a weight function $w: E \rightarrow \mathbb{Z}^{+}$, we extend w to sets of edges: for $S \subseteq E$, define $w(S):=\sum_{e \in S} w(e)$.
Define the $n / 2 \times n / 2$ matrix $A_{w}=\left[a_{i, j}\right]$ as

$$
a_{i j}= \begin{cases}2^{w(e)} & \text { if } e=\left(u_{i}, v_{j}\right) \in E \\ 0 & \text { if }\left(u_{i}, v_{j}\right) \notin E\end{cases}
$$

Then

$$
\operatorname{det}\left(A_{w}\right)=\sum_{M \text { a p.m. of } G} \operatorname{sgn}(M) 2^{w(M)} .
$$

If G has no p.m., then $\operatorname{det}\left(A_{w}\right)=0$ for any w. cancellations.

Bipartite perfect matching in RNC

G bipartite with bipartition $L=\left\{u_{1}, \ldots, u_{n / 2}\right\}$ and $R=\left\{v_{1}, \ldots, v_{n / 2}\right\}$.
Given a weight function $w: E \rightarrow \mathbb{Z}^{+}$, we extend w to sets of edges: for $S \subseteq E$, define $w(S):=\sum_{e \in S} w(e)$.
Define the $n / 2 \times n / 2$ matrix $A_{w}=\left[a_{i, j}\right]$ as

$$
a_{i j}= \begin{cases}2^{w(e)} & \text { if } e=\left(u_{i}, v_{j}\right) \in E \\ 0 & \text { if }\left(u_{i}, v_{j}\right) \notin E\end{cases}
$$

Then

$$
\operatorname{det}\left(A_{w}\right)=\sum_{M \text { a p.m. of } G} \operatorname{sgn}(M) 2^{w(M)} .
$$

If G has no $p . m$. , then $\operatorname{det}\left(A_{w}\right)=0$ for any w.

Bipartite perfect matching in RNC

G bipartite with bipartition $L=\left\{u_{1}, \ldots, u_{n / 2}\right\}$ and $R=\left\{v_{1}, \ldots, v_{n / 2}\right\}$. Given a weight function $w: E \rightarrow \mathbb{Z}^{+}$, we extend w to sets of edges: for $S \subseteq E$, define $w(S):=\sum_{e \in S} w(e)$.
Define the $n / 2 \times n / 2$ matrix $A_{w}=\left[a_{i, j}\right]$ as

$$
a_{i j}= \begin{cases}2^{w(e)} & \text { if } e=\left(u_{i}, v_{j}\right) \in E \\ 0 & \text { if }\left(u_{i}, v_{j}\right) \notin E\end{cases}
$$

Then

$$
\operatorname{det}\left(A_{w}\right)=\sum_{M \text { a p.m. of } G} \operatorname{sgn}(M) 2^{w(M)} .
$$

If G has no p.m., then $\operatorname{det}\left(A_{w}\right)=0$ for any w. If G does have a p.m., then $\operatorname{det}\left(A_{w}\right)$ may still be 0 because of cancellations.

Definition

A weight function w is isolating if G has a unique minimum weight p.m. with respect to w.

If w is isolating, then $\operatorname{det}\left(A_{w}\right) \neq 0$, because the minimum weight term in $\operatorname{det}\left(A_{w}\right)$ does not cancel with other terms, which are strictly higher powers of 2 .

Definition

A weight function w is isolating if G has a unique minimum weight p.m. with respect to w.

If w is isolating, then $\operatorname{det}\left(A_{w}\right) \neq 0$, because the minimum weight term in $\operatorname{det}\left(A_{w}\right)$ does not cancel with other terms, which are strictly higher powers of 2.

Definition

A weight function w is isolating if G has a unique minimum weight p.m. with respect to w.

If w is isolating, then $\operatorname{det}\left(A_{w}\right) \neq 0$, because the minimum weight term in $\operatorname{det}\left(A_{w}\right)$ does not cancel with other terms, which are strictly higher powers of 2.

Lemma (Isolation Lemma [MVV87])

Let $w(e)$ chosen uniformly at random from $\{1, \ldots, 2 m\}$ for each edge e independently. Then w is isolating with probability $\geq 1 / 2$.

\square

Definition

A weight function w is isolating if G has a unique minimum weight p.m. with respect to w.

If w is isolating, then $\operatorname{det}\left(A_{w}\right) \neq 0$, because the minimum weight term in $\operatorname{det}\left(A_{w}\right)$ does not cancel with other terms, which are strictly higher powers of 2.

Lemma (Isolation Lemma [MVV87])

Let $w(e)$ chosen uniformly at random from $\{1, \ldots, 2 m\}$ for each edge e independently. Then w is isolating with probability $\geq 1 / 2$.

If w is isolating, then computing $\operatorname{det}\left(A_{w}\right)$ gives the correct answer. This can be done in NC^{2} (Berkowitz [Ber84]).

We want to derandomize this lemma!

$$
\text { Let } E=\left\{e_{0}, \ldots, e_{m-1}\right\} \text {, and define } w\left(e_{i}\right)=2^{i} \text { for all } i<m \text {. }
$$

w is clearly isolating,

For some t we choose later, define the set of weight functions

We want to derandomize this lemma!

Let $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$, and define $w\left(e_{i}\right)=2^{i}$ for all $i<m$.
w is clearly isolating,
but we cannot compute $\operatorname{det}\left(A_{w}\right)$ efficiently, because the matrix entries

For some t we choose later, define the set of weight functions

We want to derandomize this lemma!

Let $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$, and define $w\left(e_{i}\right)=2^{i}$ for all $i<m$. w is clearly isolating, ...
but we cannot compute $\operatorname{det}\left(A_{w}\right)$ efficiently, because the matrix entries are too big.
Instead, we reduce the weights modulo small numbers j

For some t we choose later, define the set of weight functions

We want to derandomize this lemma!

Let $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$, and define $w\left(e_{i}\right)=2^{i}$ for all $i<m$.
w is clearly isolating, ...
but we cannot compute $\operatorname{det}\left(A_{w}\right)$ efficiently, because the matrix entries are too big.
Instead, we reduce the weights modulo small numbers j :

Fix an integer $j>1$. Define the weight function $w_{\bmod j}$ as

For some t we choose later, define the set of weight functions

We want to derandomize this lemma!

Let $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$, and define $w\left(e_{i}\right)=2^{i}$ for all $i<m$.
w is clearly isolating, ...
but we cannot compute $\operatorname{det}\left(A_{w}\right)$ efficiently, because the matrix entries are too big.
Instead, we reduce the weights modulo small numbers j :
Definition
Fix an integer $j>1$. Define the weight function $w_{\bmod j}$ as
$w_{\bmod j}(e):=w^{\prime}(e) \bmod j$
for all $e \in E$.
For some t we choose later, define the set of weight functions

$$
W_{t}:=\left\{w_{\bmod j} \mid 2 \leq j \leq t\right\}
$$

We want to derandomize this lemma!

Let $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$, and define $w\left(e_{i}\right)=2^{i}$ for all $i<m$.
w is clearly isolating, ...
but we cannot compute $\operatorname{det}\left(A_{w}\right)$ efficiently, because the matrix entries are too big.
Instead, we reduce the weights modulo small numbers j :

Definition

Fix an integer $j>1$. Define the weight function $w_{\bmod j}$ as

$$
w_{\bmod j}(e):=w(e) \bmod j
$$

for all $e \in E$.
For some t we choose later, define the set of weight functions
\square

We want to derandomize this lemma!

Let $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$, and define $w\left(e_{i}\right)=2^{i}$ for all $i<m$.
w is clearly isolating, ...
but we cannot compute $\operatorname{det}\left(A_{w}\right)$ efficiently, because the matrix entries are too big.
Instead, we reduce the weights modulo small numbers j :

Definition

Fix an integer $j>1$. Define the weight function $w_{\bmod j}$ as

$$
w_{\bmod j}(e):=w(e) \bmod j
$$

for all $e \in E$.
For some t we choose later, define the set of weight functions

$$
W_{t}:=\left\{w_{\bmod j} \mid 2 \leq j \leq t\right\}
$$

Circulation

Let $C=\left\langle e_{1}, \ldots, e_{p}\right\rangle$ be a cycle of G with edges given in cyclic order. (p is even because G is bipartite.)

Circulation

Let $C=\left\langle e_{1}, \ldots, e_{p}\right\rangle$ be a cycle of G with edges given in cyclic order. (p is even because G is bipartite.)

Circulation

Let $C=\left\langle e_{1}, \ldots, e_{p}\right\rangle$ be a cycle of G with edges given in cyclic order. (p is even because G is bipartite.)

Definition
Given a weight function w, the circulation of C with respect to w is

Circulation

Let $C=\left\langle e_{1}, \ldots, e_{p}\right\rangle$ be a cycle of G with edges given in cyclic order. (p is even because G is bipartite.)

Definition

Given a weight function w, the circulation of C with respect to w is

$$
c_{w}(C):=\left|\sum_{i=1}^{p}(-1)^{i} w\left(e_{i}\right)\right| .
$$

Given w, suppose $M_{1} \neq M_{2}$ are min weight p.m.'s of G.

Circulation

Let $C=\left\langle e_{1}, \ldots, e_{p}\right\rangle$ be a cycle of G with edges given in cyclic order. (p is even because G is bipartite.)

Definition

Given a weight function w, the circulation of C with respect to w is

$$
c_{w}(C):=\left|\sum_{i=1}^{p}(-1)^{i} w\left(e_{i}\right)\right| .
$$

Given w, suppose $M_{1} \neq M_{2}$ are min weight p.m.'s of G.
Then M_{1} and M_{2} differ on disjoint cycles with zero circulation:

Circulation

Let $C=\left\langle e_{1}, \ldots, e_{p}\right\rangle$ be a cycle of G with edges given in cyclic order. (p is even because G is bipartite.)

Definition

Given a weight function w, the circulation of C with respect to w is

$$
c_{w}(C):=\left|\sum_{i=1}^{p}(-1)^{i} w\left(e_{i}\right)\right| .
$$

Given w, suppose $M_{1} \neq M_{2}$ are min weight p.m.'s of G. Then M_{1} and M_{2} differ on disjoint cycles with zero circulation:

Circulation

Let $C=\left\langle e_{1}, \ldots, e_{p}\right\rangle$ be a cycle of G with edges given in cyclic order. (p is even because G is bipartite.)

Definition

Given a weight function w, the circulation of C with respect to w is

$$
c_{w}(C):=\left|\sum_{i=1}^{p}(-1)^{i} w\left(e_{i}\right)\right| .
$$

Given w, suppose $M_{1} \neq M_{2}$ are min weight p.m.'s of G. Then M_{1} and M_{2} differ on disjoint cycles with zero circulation:

Circulation

Let $C=\left\langle e_{1}, \ldots, e_{p}\right\rangle$ be a cycle of G with edges given in cyclic order. (p is even because G is bipartite.)

Definition

Given a weight function w, the circulation of C with respect to w is

$$
c_{w}(C):=\left|\sum_{i=1}^{p}(-1)^{i} w\left(e_{i}\right)\right| .
$$

Given w, suppose $M_{1} \neq M_{2}$ are min weight p.m.'s of G. Then M_{1} and M_{2} differ on disjoint cycles with zero circulation:

Forcing nonzero circulation

We would like to choose a weight function from W_{t} that gives nonzero circulation to as many cycles as possible. We cannot do this for all cycles at once, so we work in stages, starting with short cycles.

Forcing nonzero circulation

We would like to choose a weight function from W_{t} that gives nonzero circulation to as many cycles as possible.
We cannot do this for all cycles at once, so we work in stages, starting with short cycles.

Forcing nonzero circulation

We would like to choose a weight function from W_{t} that gives nonzero circulation to as many cycles as possible. We cannot do this for all cycles at once, so we work in stages, starting with short cycles.

Forcing nonzero circulation

We would like to choose a weight function from W_{t} that gives nonzero circulation to as many cycles as possible. We cannot do this for all cycles at once, so we work in stages, starting with short cycles.

Lemma ([CRS95])

Let s be a positive integer, and let $t=n^{2} s$. Then for any set of s many cycles $\left\{C_{1}, \ldots, C_{s}\right\}$ there exists a weight function $w \in W_{t}$ that gives nonzero circulation to all of C_{1}, \ldots, C_{s}.

Forcing nonzero circulation

We would like to choose a weight function from W_{t} that gives nonzero circulation to as many cycles as possible. We cannot do this for all cycles at once, so we work in stages, starting with short cycles.

Lemma ([CRS95])

Let s be a positive integer, and let $t=n^{2} s$. Then for any set of s many cycles $\left\{C_{1}, \ldots, C_{s}\right\}$ there exists a weight function $w \in W_{t}$ that gives nonzero circulation to all of C_{1}, \ldots, C_{s}.

We will apply this lemma with $s:=n^{4}$.
only $6 \log n$ bits.

Forcing nonzero circulation

We would like to choose a weight function from W_{t} that gives nonzero circulation to as many cycles as possible. We cannot do this for all cycles at once, so we work in stages, starting with short cycles.

Lemma ([CRS95])

Let s be a positive integer, and let $t=n^{2} s$. Then for any set of s many cycles $\left\{C_{1}, \ldots, C_{s}\right\}$ there exists a weight function $w \in W_{t}$ that gives nonzero circulation to all of C_{1}, \ldots, C_{s}.

We will apply this lemma with $s:=n^{4}$.
Each weight of w is taken modulo some $j \leq t=n^{2} s=n^{6}$, so needs only $6 \log n$ bits.

The derived graph

Suppose G has a p.m., and w is a weight function on G.

The derived graph

Suppose G has a p.m., and w is a weight function on G.

Definition

The derived graph of G with respect to w is the subgraph $G^{(w)}:=\left(V, E^{\prime}\right)$, where E^{\prime} is the union of all w-min weight p.m.'s of G.

The derived graph

Suppose G has a p.m., and w is a weight function on G.

Definition

The derived graph of G with respect to w is the subgraph $G^{(w)}:=\left(V, E^{\prime}\right)$, where E^{\prime} is the union of all w-min weight p.m.'s of G.

Key Lemma
 All cycles in $G^{(w)}$ have zero circulation with respect to w.

We proved this lemma using linear algebra.

The derived graph

Suppose G has a p.m., and w is a weight function on G.

Definition

The derived graph of G with respect to w is the subgraph $G^{(w)}:=\left(V, E^{\prime}\right)$, where E^{\prime} is the union of all w-min weight p.m.'s of G.

Key Lemma
 All cycles in $G^{(w)}$ have zero circulation with respect to w.

We proved this lemma using linear algebra.
\square Wigderson (reported in Goldwasser \& Grossman [GG15])

The derived graph

Suppose G has a p.m., and w is a weight function on G.

Definition

The derived graph of G with respect to w is the subgraph $G^{(w)}:=\left(V, E^{\prime}\right)$, where E^{\prime} is the union of all w-min weight p.m.'s of G.

Key Lemma

All cycles in $G^{(w)}$ have zero circulation with respect to w.
We proved this lemma using linear algebra.
Later, an alternate combinatorial proof was found by Rao, Shpilka, \& Wigderson (reported in Goldwasser \& Grossman [GG15]).

All p.m.'s in $G^{(w)}$ are min weight p.m.'s of G.

The derived graph

Suppose G has a p.m., and w is a weight function on G.

Definition

The derived graph of G with respect to w is the subgraph $G^{(w)}:=\left(V, E^{\prime}\right)$, where E^{\prime} is the union of all w-min weight p.m.'s of G.

Key Lemma

All cycles in $G^{(w)}$ have zero circulation with respect to w.
We proved this lemma using linear algebra.
Later, an alternate combinatorial proof was found by Rao, Shpilka, \& Wigderson (reported in Goldwasser \& Grossman [GG15]).

Corollary
All p.m.'s in $G^{(w)}$ are min weight p.m.'s of G.

Removing short cycles from $G^{(w)}$

In steps, we remove cycles from derived graphs whose lengths are increasing powers of 2.
The next lemma says there are not too many of these.

Removing short cycles from $G^{(w)}$

In steps, we remove cycles from derived graphs whose lengths are increasing powers of 2.
The next lemma says there are not too many of these.
Lemma
Let G be a graph with no cycles of length $\leq r$ for some even r. Then G
has $\leq n^{4}$ cycles of length $\leq 2 r$.

Removing short cycles from $G^{(w)}$

In steps, we remove cycles from derived graphs whose lengths are increasing powers of 2.
The next lemma says there are not too many of these.
Lemma
Let G be a graph with no cycles of length $\leq r$ for some even r. Then G has $\leq n^{4}$ cycles of length $\leq 2 r$.

We can give all these cycles nonzero circulation by some weight function $w \in W_{t}$, where $t=n^{6}$.

Removing short cycles from $G^{(w)}$

In steps, we remove cycles from derived graphs whose lengths are increasing powers of 2.
The next lemma says there are not too many of these.
Lemma
Let G be a graph with no cycles of length $\leq r$ for some even r. Then G has $\leq n^{4}$ cycles of length $\leq 2 r$.

We can give all these cycles nonzero circulation by some weight function $w \in W_{t}$, where $t=n^{6}$.
So these cycles cannot exist in the derived graph with respect to w.

Removing short cycles from $G^{(w)}$

In steps, we remove cycles from derived graphs whose lengths are increasing powers of 2.
The next lemma says there are not too many of these.
Lemma
Let G be a graph with no cycles of length $\leq r$ for some even r. Then G has $\leq n^{4}$ cycles of length $\leq 2 r$.

We can give all these cycles nonzero circulation by some weight function $w \in W_{t}$, where $t=n^{6}$.
So these cycles cannot exist in the derived graph with respect to w.

Proof

- Given a cycle C of length $\leq 2 r$, choose four vertices $u_{0}, u_{1}, u_{2}, u_{3}$ on the cycle
- such that the distance between adjacent vertices is $\leq r / 2$.
- This is the only such cycle given $\left(u_{0}, \ldots, u_{3}\right)$. If there is another such cycle C^{\prime}, then

Proof

- Given a cycle C of length $\leq 2 r$, choose four vertices $u_{0}, u_{1}, u_{2}, u_{3}$ on the cycle
- such that the distance between adjacent vertices is $\leq r / 2$.
- This is the only such cycle given $\left(u_{0}, \ldots, u_{3}\right)$. If there is another such cycle C^{\prime}, then

Proof

- Given a cycle C of length $\leq 2 r$, choose four vertices $u_{0}, u_{1}, u_{2}, u_{3}$ on the cycle
- such that the distance between adjacent vertices is $\leq r / 2$.
- This is the only such cycle given $\left(u_{0}, \ldots, u_{3}\right)$. If there is another such cycle C^{\prime}, then
- C^{\prime} forms a cycle with C of length $\leq r$. Contradiction.

Proof

- Given a cycle C of length $\leq 2 r$, choose four vertices $u_{0}, u_{1}, u_{2}, u_{3}$ on the cycle
- such that the distance between adjacent vertices is $\leq r / 2$.
- This is the only such cycle given $\left(u_{0}, \ldots, u_{3}\right)$. If there is another such cycle C^{\prime}, then
- C^{\prime} forms a cycle with C of length $\leq r$. Contradiction.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.
- Let $G_{1}:=G^{\left(w_{1}\right)} . G_{1}$ has a p.m. and no cycles of length ≤ 4.
- Choose $w_{2} \in W_{t}$ such that all cycles in G_{1} of length ≤ 8 have nonzero circulation.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.
- Let $G_{1}:=G^{\left(w_{1}\right)} . G_{1}$ has a p.m. and no cycles of length ≤ 4.
- Choose $w_{2} \in W_{t}$ such that all cycles in G_{1} of length ≤ 8 have nonzero circulation.
- Let $G_{2}:=G_{1}^{\left(W_{2}\right)}$. G_{2} has a p.m. and no cycles of length ≤ 8.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.
- Let $G_{1}:=G^{\left(w_{1}\right)} . G_{1}$ has a p.m. and no cycles of length ≤ 4.
- Choose $w_{2} \in W_{t}$ such that all cycles in G_{1} of length ≤ 8 have nonzero circulation.
- Let $G_{2}:=G_{1}^{\left(w_{2}\right)} . G_{2}$ has a p.m. and no cycles of length ≤ 8.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.
- Let $G_{1}:=G^{\left(w_{1}\right)} . G_{1}$ has a p.m. and no cycles of length ≤ 4.
- Choose $w_{2} \in W_{t}$ such that all cycles in G_{1} of length ≤ 8 have nonzero circulation.
- Let $G_{2}:=G_{1}^{\left(w_{2}\right)} . G_{2}$ has a p.m. and no cycles of length ≤ 8.
- Choose $w_{i} \in W_{t}$ such that all cycles in G_{i-1} of length $\leq 2^{i+1}$ have nonzero circulation.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.
- Let $G_{1}:=G^{\left(w_{1}\right)} . G_{1}$ has a p.m. and no cycles of length ≤ 4.
- Choose $w_{2} \in W_{t}$ such that all cycles in G_{1} of length ≤ 8 have nonzero circulation.
- Let $G_{2}:=G_{1}^{\left(w_{2}\right)} . G_{2}$ has a p.m. and no cycles of length ≤ 8.
- Choose $w_{i} \in W_{t}$ such that all cycles in G_{i-1} of length $\leq 2^{i+1}$ have nonzero circulation.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.
- Let $G_{1}:=G^{\left(w_{1}\right)} . G_{1}$ has a p.m. and no cycles of length ≤ 4.
- Choose $w_{2} \in W_{t}$ such that all cycles in G_{1} of length ≤ 8 have nonzero circulation.
- Let $G_{2}:=G_{1}^{\left(w_{2}\right)} . G_{2}$ has a p.m. and no cycles of length ≤ 8.
- Choose $w_{i} \in W_{t}$ such that all cycles in G_{i-1} of length $\leq 2^{i+1}$ have nonzero circulation.
- Let $G_{i}:=G_{i-1}^{\left(w_{i}\right)}$. G_{i} has a p.m. and no cycles of length $\leq 2^{i+1}$.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.
- Let $G_{1}:=G^{\left(w_{1}\right)} . G_{1}$ has a p.m. and no cycles of length ≤ 4.
- Choose $w_{2} \in W_{t}$ such that all cycles in G_{1} of length ≤ 8 have nonzero circulation.
- Let $G_{2}:=G_{1}^{\left(w_{2}\right)} . G_{2}$ has a p.m. and no cycles of length ≤ 8.
- Choose $w_{i} \in W_{t}$ such that all cycles in G_{i-1} of length $\leq 2^{i+1}$ have nonzero circulation.
- Let $G_{i}:=G_{i-1}^{\left(w_{i}\right)}$. G_{i} has a p.m. and no cycles of length $\leq 2^{i+1}$.

Proceed for $k:=\lceil\log n\rceil-1$ rounds to obtain G_{k}, which is a p.m.

The sequence of derived graphs

Start with $G_{0}:=G$, a bipartite graph with a p.m.

- Choose $w_{1} \in W_{t}$ such that all cycles in G_{0} of length ≤ 4 have nonzero circulation.
- Let $G_{1}:=G^{\left(w_{1}\right)} . G_{1}$ has a p.m. and no cycles of length ≤ 4.
- Choose $w_{2} \in W_{t}$ such that all cycles in G_{1} of length ≤ 8 have nonzero circulation.
- Let $G_{2}:=G_{1}^{\left(w_{2}\right)} . G_{2}$ has a p.m. and no cycles of length ≤ 8.
- Choose $w_{i} \in W_{t}$ such that all cycles in G_{i-1} of length $\leq 2^{i+1}$ have nonzero circulation.
- Let $G_{i}:=G_{i-1}^{\left(w_{i}\right)}$. G_{i} has a p.m. and no cycles of length $\leq 2^{i+1}$.

Proceed for $k:=\lceil\log n\rceil-1$ rounds to obtain G_{k}, which is a p.m.

An isolating weight function for G

We must glue the weight functions w_{1}, \ldots, w_{k} together into a single

 weight function.Let B be a strict bound on any edge weight from w_{1}, \ldots, w_{k} (we may take $B:=n^{6}$).

An isolating weight function for G

We must glue the weight functions w_{1}, \ldots, w_{k} together into a single weight function.
Let B be a strict bound on any edge weight from w_{1}, \ldots, w_{k} (we may
take $B:=n^{6}$).
For every $e \in E$, define

An isolating weight function for G

We must glue the weight functions w_{1}, \ldots, w_{k} together into a single weight function.
Let B be a strict bound on any edge weight from w_{1}, \ldots, w_{k} (we may take $B:=n^{6}$).
For every $e \in E$, define
$w(e)=B^{k-1} w_{1}(e)+B^{k-2} w_{2}(e)+\cdots+B^{0} w_{k}(e)$.

If G has a p.m., then w is isolating for G.

An isolating weight function for G

We must glue the weight functions w_{1}, \ldots, w_{k} together into a single weight function.
Let B be a strict bound on any edge weight from w_{1}, \ldots, w_{k} (we may take $B:=n^{6}$).
For every $e \in E$, define

$$
w(e)=B^{k-1} w_{1}(e)+B^{k-2} w_{2}(e)+\cdots+B^{0} w_{k}(e)
$$

An isolating weight function for G

We must glue the weight functions w_{1}, \ldots, w_{k} together into a single weight function.
Let B be a strict bound on any edge weight from w_{1}, \ldots, w_{k} (we may take $B:=n^{6}$).
For every $e \in E$, define

$$
w(e)=B^{k-1} w_{1}(e)+B^{k-2} w_{2}(e)+\cdots+B^{0} w_{k}(e)
$$

Lemma

If G has a p.m., then w is isolating for G.

Proof

> - Notice that the edge sets of the G_{i} form a descending chain, ending in a p.m. M of G (the edge set of G_{k}).
> - Let $M^{\prime} \neq M$ be some other p.m. of G.

Proof

- Notice that the edge sets of the G_{i} form a descending chain, ending in a p.m. M of G (the edge set of G_{k}).
- Let $M^{\prime} \neq M$ be some other p.m. of G.

Proof

- Notice that the edge sets of the G_{i} form a descending chain, ending in a p.m. M of G (the edge set of G_{k}).
- Let $M^{\prime} \neq M$ be some other p.m. of G.
- There must be some stage $i<k$ where M and M^{\prime} are both in G_{i} but M^{\prime} is not in G_{i+1}.
- Since M and M^{\prime} are in G_{1}, \ldots, G_{j}, they both have the same minimum weight with respect to w_{1}, \ldots, w_{i}

Proof

- Notice that the edge sets of the G_{i} form a descending chain, ending in a p.m. M of G (the edge set of G_{k}).
- Let $M^{\prime} \neq M$ be some other p.m. of G.
- There must be some stage $i<k$ where M and M^{\prime} are both in G_{i} but M^{\prime} is not in G_{i+1}.
- Since M and M^{\prime} are in G_{1}, \ldots, G_{i}, they both have the same minimum weight with respect to w_{1}, \ldots, w_{i}.
- But since M^{\prime} is not in G_{i+1} (but M is), it must be that

Proof

- Notice that the edge sets of the G_{i} form a descending chain, ending in a p.m. M of G (the edge set of G_{k}).
- Let $M^{\prime} \neq M$ be some other p.m. of G.
- There must be some stage $i<k$ where M and M^{\prime} are both in G_{i} but M^{\prime} is not in G_{i+1}.
- Since M and M^{\prime} are in G_{1}, \ldots, G_{i}, they both have the same minimum weight with respect to w_{1}, \ldots, w_{i}.
- But since M^{\prime} is not in G_{i+1} (but M is), it must be that $w_{i+1}\left(M^{\prime}\right)>w_{i+1}(M)$.
- This implies $w\left(M^{\prime}\right)>w(M)$, and so w is isolating.

Proof

- Notice that the edge sets of the G_{i} form a descending chain, ending in a p.m. M of G (the edge set of G_{k}).
- Let $M^{\prime} \neq M$ be some other p.m. of G.
- There must be some stage $i<k$ where M and M^{\prime} are both in G_{i} but M^{\prime} is not in G_{i+1}.
- Since M and M^{\prime} are in G_{1}, \ldots, G_{i}, they both have the same minimum weight with respect to w_{1}, \ldots, w_{i}.
- But since M^{\prime} is not in G_{i+1} (but M is), it must be that $w_{i+1}\left(M^{\prime}\right)>w_{i+1}(M)$.
- This implies $w\left(M^{\prime}\right)>w(M)$, and so w is isolating.

Proof

- Notice that the edge sets of the G_{i} form a descending chain, ending in a p.m. M of G (the edge set of G_{k}).
- Let $M^{\prime} \neq M$ be some other p.m. of G.
- There must be some stage $i<k$ where M and M^{\prime} are both in G_{i} but M^{\prime} is not in G_{i+1}.
- Since M and M^{\prime} are in G_{1}, \ldots, G_{i}, they both have the same minimum weight with respect to w_{1}, \ldots, w_{i}.
- But since M^{\prime} is not in G_{i+1} (but M is), it must be that $w_{i+1}\left(M^{\prime}\right)>w_{i+1}(M)$.
- This implies $w\left(M^{\prime}\right)>w(M)$, and so w is isolating.

The algorithm

We do not know which w_{1}, \ldots, w_{k} work, so we try them all in parallel. - Compute w as above. (One of these choices of w must be

The algorithm

We do not know which w_{1}, \ldots, w_{k} work, so we try them all in parallel. For all $w_{1}, \ldots, w_{k} \in W_{n^{6}}$ in parallel:

- Compute w as above. (One of these choices of w must be isolating.)
- Compute $\operatorname{det}\left(A_{w}\right)$ as in the RNC algorithm of [MVV87].

The algorithm

We do not know which w_{1}, \ldots, w_{k} work, so we try them all in parallel. For all $w_{1}, \ldots, w_{k} \in W_{n^{6}}$ in parallel:

- Compute w as above. (One of these choices of w must be isolating.)
- Compute $\operatorname{det}\left(A_{w}\right)$ as in the RNC algorithm of [MVV87]. - If we ever find a nonzero determinant, answer "yes."

The algorithm

We do not know which w_{1}, \ldots, w_{k} work, so we try them all in parallel. For all $w_{1}, \ldots, w_{k} \in W_{n^{6}}$ in parallel:

- Compute w as above. (One of these choices of w must be isolating.)
- Compute $\operatorname{det}\left(A_{w}\right)$ as in the RNC algorithm of [MVV87].
- If we ever find a nonzero determinant, answer "yes."
- Else, answer "no."

The algorithm

We do not know which w_{1}, \ldots, w_{k} work, so we try them all in parallel. For all $w_{1}, \ldots, w_{k} \in W_{n^{6}}$ in parallel:

- Compute w as above. (One of these choices of w must be isolating.)
- Compute $\operatorname{det}\left(A_{w}\right)$ as in the RNC algorithm of [MVV87].
- If we ever find a nonzero determinant, answer "yes."
- Else, answer "no."

Each w_{i} takes $6 \log n$ bits to store, so w takes $O\left(\log ^{2} n\right)$ bits.

The algorithm

We do not know which w_{1}, \ldots, w_{k} work, so we try them all in parallel. For all $w_{1}, \ldots, w_{k} \in W_{n^{6}}$ in parallel:

- Compute w as above. (One of these choices of w must be isolating.)
- Compute $\operatorname{det}\left(A_{w}\right)$ as in the RNC algorithm of [MVV87].
- If we ever find a nonzero determinant, answer "yes."
- Else, answer "no."

Each w_{i} takes $6 \log n$ bits to store, so w takes $O\left(\log ^{2} n\right)$ bits.

The algorithm

We do not know which w_{1}, \ldots, w_{k} work, so we try them all in parallel. For all $w_{1}, \ldots, w_{k} \in W_{n^{6}}$ in parallel:

- Compute w as above. (One of these choices of w must be isolating.)
- Compute $\operatorname{det}\left(A_{w}\right)$ as in the RNC algorithm of [MVV87].
- If we ever find a nonzero determinant, answer "yes."
- Else, answer "no."

Each w_{i} takes $6 \log n$ bits to store, so w takes $O\left(\log ^{2} n\right)$ bits.

The algorithm

We do not know which w_{1}, \ldots, w_{k} work, so we try them all in parallel. For all $w_{1}, \ldots, w_{k} \in W_{n^{6}}$ in parallel:

- Compute w as above. (One of these choices of w must be isolating.)
- Compute $\operatorname{det}\left(A_{w}\right)$ as in the RNC algorithm of [MVV87].
- If we ever find a nonzero determinant, answer "yes."
- Else, answer "no."

Each w_{i} takes $6 \log n$ bits to store, so w takes $O\left(\log ^{2} n\right)$ bits. Processing them all in parallel can be done with circuits of size $2^{O\left(\log ^{2} n\right)}$ and depth $O\left(\log ^{2} n\right)$.

Proving the Key Lemma: The perfect matching polytope

Let \mathbb{R}^{E} be the m-dimensional real vector space with standard basis labeled by the edges of G.
Then any set $S \subseteq E$ of edges naturally corresponds to its characteristic vector $\left(s_{e}\right)_{e \in E}$, where, for each edge $e \in E$,

Proving the Key Lemma: The perfect matching polytope

Let \mathbb{R}^{E} be the m-dimensional real vector space with standard basis labeled by the edges of G.
Then any set $S \subseteq E$ of edges naturally corresponds to its characteristic vector $\left(s_{e}\right)_{e \in E}$, where, for each edge $e \in E$,

Proving the Key Lemma: The perfect matching polytope

Let \mathbb{R}^{E} be the m-dimensional real vector space with standard basis labeled by the edges of G.
Then any set $S \subseteq E$ of edges naturally corresponds to its characteristic vector $\left(s_{e}\right)_{e \in E}$, where, for each edge $e \in E$,

$$
s_{e}= \begin{cases}1 & \text { if } e \in S \\ 0 & \text { if } e \notin S\end{cases}
$$

The perfect matching polytope $\operatorname{PM}(G)$ is the convex hull of all the perfect matchings of G.

Proving the Key Lemma: The perfect matching polytope

Let \mathbb{R}^{E} be the m-dimensional real vector space with standard basis labeled by the edges of G.
Then any set $S \subseteq E$ of edges naturally corresponds to its characteristic vector $\left(s_{e}\right)_{e \in E}$, where, for each edge $e \in E$,

$$
s_{e}= \begin{cases}1 & \text { if } e \in S \\ 0 & \text { if } e \notin S\end{cases}
$$

Definition

The perfect matching polytope $\operatorname{PM}(G)$ is the convex hull of all the perfect matchings of G.

Lemma ([LP86])

If G is bipartite, then a vector $\vec{x}=\left(x_{e}\right)_{e}$ is in $\mathrm{PM}(G)$ if and only if

$$
\begin{aligned}
x_{e} & \geq 0, \\
\sum_{e^{\prime} \in \delta(v)} x_{e^{\prime}} & =1,
\end{aligned}
$$

for all $e \in E$ and $v \in V$, where $\delta(v)$ is the set of edges incident to v.

The \Rightarrow direction is clear for any graph (not necessarily bipartite). The converse does not hold for general graphs.

 We can extend any weight function w to \mathbb{R}^{m} by linearity
Lemma ([LP86])

If G is bipartite, then a vector $\vec{x}=\left(x_{e}\right)_{e}$ is in $\mathrm{PM}(G)$ if and only if

$$
\begin{aligned}
x_{e} & \geq 0, \\
\sum_{e^{\prime} \in \delta(v)} x_{e^{\prime}} & =1,
\end{aligned}
$$

for all $e \in E$ and $v \in V$, where $\delta(v)$ is the set of edges incident to v.
The \Rightarrow direction is clear for any graph (not necessarily bipartite). The converse does not hold for general graphs.

We can extend any weight function w to \mathbb{R}^{m} by linearity

Lemma ([LP86])

If G is bipartite, then a vector $\vec{x}=\left(x_{e}\right)_{e}$ is in $\mathrm{PM}(G)$ if and only if

$$
\begin{aligned}
x_{e} & \geq 0, \\
\sum_{e^{\prime} \in \delta(v)} x_{e^{\prime}} & =1,
\end{aligned}
$$

for all $e \in E$ and $v \in V$, where $\delta(v)$ is the set of edges incident to v.
The \Rightarrow direction is clear for any graph (not necessarily bipartite). The converse does not hold for general graphs. We can extend any weight function w to \mathbb{R}^{m} by linearity:

$$
w(\vec{x})=\sum_{e \in E} w(e) x_{e} .
$$

Key Lemma (cont.)

Let $\vec{x}_{1}, \ldots, \vec{x}_{t} \in \mathrm{PM}(G)$ be vectors corresponding to all the p.m.'s of G with the same minimum weight q.

Key Lemma (cont.)

Let $\vec{x}_{1}, \ldots, \vec{x}_{t} \in \mathrm{PM}(G)$ be vectors corresponding to all the p.m.'s of G with the same minimum weight q. Set

$$
\vec{x}=\left(x_{e}\right)_{e}=\frac{\vec{x}_{1}+\cdots+\vec{x}_{t}}{t}
$$

Then $\vec{x} \in P M(M)$, and $w(\vec{x})=q$.
Also, every entry of \vec{x} in the derived graph G^{\prime} satisfies $x_{e} \geq \frac{1}{t}$.

Key Lemma (cont.)

Let $\vec{x}_{1}, \ldots, \vec{x}_{t} \in \mathrm{PM}(G)$ be vectors corresponding to all the p.m.'s of G with the same minimum weight q.
Set

$$
\vec{x}=\left(x_{e}\right)_{e}=\frac{\vec{x}_{1}+\cdots+\vec{x}_{t}}{t}
$$

Then $\vec{x} \in \mathrm{PM}(M)$, and $w(\vec{x})=q$.
Also, every entry of \vec{x} in the derived graph G^{\prime} satisfies $x_{e} \geq \frac{1}{t}$.

Key Lemma (cont.)

Let $\vec{x}_{1}, \ldots, \vec{x}_{t} \in \mathrm{PM}(G)$ be vectors corresponding to all the p.m.'s of G with the same minimum weight q.
Set

$$
\vec{x}=\left(x_{e}\right)_{e}=\frac{\vec{x}_{1}+\cdots+\vec{x}_{t}}{t}
$$

Then $\vec{x} \in \operatorname{PM}(M)$, and $w(\vec{x})=q$. Also, every entry of \vec{x} in the derived graph G^{\prime} satisfies $x_{e} \geq \frac{1}{t}$.

- Suppose some cycle C in the derived graph G^{\prime} has nonzero circulation. W.l.o.g., the blue edges outweigh the red edges. the blue edges and adding $\frac{1}{t}$ to the red edges. - Then $\vec{y} \in \operatorname{PM}(G)$. Moreover,

- Suppose some cycle C in the derived graph G^{\prime} has nonzero circulation. W.l.o.g., the blue edges outweigh the red edges.
- Let $\vec{y}=\left(y_{e}\right)_{e}$ be the vector obtained from \vec{x} by subtracting $\frac{1}{t}$ from the blue edges and adding $\frac{1}{t}$ to the red edges.

- Suppose some cycle C in the derived graph G^{\prime} has nonzero circulation. W.l.o.g., the blue edges outweigh the red edges.
- Let $\vec{y}=\left(y_{e}\right)_{e}$ be the vector obtained from \vec{x} by subtracting $\frac{1}{t}$ from the blue edges and adding $\frac{1}{t}$ to the red edges.
- Then $\vec{y} \in \operatorname{PM}(G)$. Moreover,

$$
w(\vec{y})=w(\vec{x})-\frac{c_{w}(C)}{t}<q
$$

- But then there must be a p.m. of G with weight $<q$. Contradiction.

- Suppose some cycle C in the derived graph G^{\prime} has nonzero circulation. W.l.o.g., the blue edges outweigh the red edges.
- Let $\vec{y}=\left(y_{e}\right)_{e}$ be the vector obtained from \vec{x} by subtracting $\frac{1}{t}$ from the blue edges and adding $\frac{1}{t}$ to the red edges.
- Then $\vec{y} \in \operatorname{PM}(G)$. Moreover,

$$
w(\vec{y})=w(\vec{x})-\frac{c_{w}(C)}{t}<q .
$$

- But then there must be a p.m. of G with weight $<q$. Contradiction.

The RNC algorithm

Recall $w \bmod j\left(e_{i}\right)=2^{i} \bmod j$ for each edge $e_{i} \in E$ and $2 \leq j \leq t$. Instead of trying all of these weight functions, we let j be a random

 prime.
The RNC algorithm

> Recall $w \bmod j\left(e_{i}\right)=2^{i} \bmod j$ for each edge $e_{i} \in E$ and $2 \leq j \leq t$. Instead of trying all of these weight functions, we let j be a random prime.
Any set of s many cycles has nonzero circulation with high probability

The RNC algorithm

Recall $w_{\bmod j}\left(e_{i}\right)=2^{i} \bmod j$ for each edge $e_{i} \in E$ and $2 \leq j \leq t$. Instead of trying all of these weight functions, we let j be a random prime.

The RNC algorithm

Recall $w_{\bmod j}\left(e_{i}\right)=2^{i} \bmod j$ for each edge $e_{i} \in E$ and $2 \leq j \leq t$. Instead of trying all of these weight functions, we let j be a random prime.
Any set of s many cycles has nonzero circulation with high probability

The RNC algorithm

Recall $w \bmod j\left(e_{i}\right)=2^{i} \bmod j$ for each edge $e_{i} \in E$ and $2 \leq j \leq t$. Instead of trying all of these weight functions, we let j be a random prime.
Any set of s many cycles has nonzero circulation with high probability Doing this k times gives random w_{1}, \ldots, w_{k}.

Other results

The following are all in quasi-NC:

- bipartite weighted PM with quasi-polynomially bounded integer weights
- maximum bipartite matching
- cycle cover with polynomially bounded integer weights
- subtree isomorphism
- max flow with polynomially bounded integer capacities
- constructing a depth-first search tree

Acknowledgments

I would like to thank Ran Raz and the rest of the IAS faculty for inviting me to give this talk.
We would also like to thank Manindra Agrawal and Nitin Saxena for the encouragement and very helpful discussions. We thank Arpita Korwar for discussions on some techniques used for our RNC algorithm.

Acknowledgments

I would like to thank Ran Raz and the rest of the IAS faculty for inviting me to give this talk.
We would also like to thank Manindra Agrawal and Nitin Saxena for the encouragement and very helpful discussions.
We thank Arpita Korwar for discussions on some techniques used for
our RNC algorithm.

Acknowledgments

I would like to thank Ran Raz and the rest of the IAS faculty for inviting me to give this talk.
We would also like to thank Manindra Agrawal and Nitin Saxena for the encouragement and very helpful discussions.
We thank Arpita Korwar for discussions on some techniques used for our RNC algorithm.

References

䍰 Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf. The polynomially bounded perfect matching problem is in NC^{2}. In 24th International Symposium on Theoretical Aspects of Computer Science (STACS), volume 4393 of Lecture Notes in Computer Science, pages 489-499. Springer Berlin Heidelberg, 2007.

围 Stuart J. Berkowitz.
On computing the determinant in small parallel time using a small number of processors.
Information Processing Letters, 18(3):147-150, 1984.
[i- Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan.
Randomness-optimal unique element isolation with applications to perfect matching and related problems.
SIAM Journal on Computing, 24(5):1036-1050, 1995.
E-i Elias Dahlhaus and Marek Karpinski.
Matching and multidimensional matching in chordal and strongly

