Resilient Functions

Eshan Chattopadhyay IAS

Area of Research: Theoretical Computer Science, Combinatorics

Collective Coin-Flipping

An Adversarial Model

Malicious Coalition of players Q c [n]:

- Adaptively sends bits
 AFTER seeing coin flips of other players.
- PARITY FAILS!

Majority works better...

q malicious players

X: # of heads in (n-q) random coin flips

 $Pr[X \in [n/2 - q, n/2 + q]] = O(q/\sqrt{n})$

Influence of Sets

 Influence of Q: Probability output of f can be changed by Q after the 'good players' flip their coins

More formally...

```
f: {0,1}n→{0,1}
Q ⊂ [n]

X:

Bits in Q: unfixed
Bits sampled uniformly
```

Pr[f(X) is NOT constant] = Influence of Q on f

Resilient Functions

```
f: \{0,1\}^n \rightarrow \{0,1\}
```

(q,ε)-resilient function: $\forall Q \in [n], |Q| = q$, Influence of Q on f is at most ε.

Assume $\mathbf{E}[f]=1/2$.

Example: MAJORITY is (n^{0.49},ε)-resilient.

PARITY is NOT (1, ε)-resilient, any ε < 1.

Limits on resilience

```
t(n,\varepsilon)=\max\{q:\exists a (q,\varepsilon)-resilient function f: \{0,1\}^n \rightarrow \{0,1\}, \mathbf{E}[f]=1/2\}
```

Rest of the talk: Upper and Lower Bounds on t(n,ε)

- Key to understanding limits of coin-flipping games
- Basic Question about Boolean functions

Upper Bound on t(n, \varepsilon)

- Kahn-Kalai-Linial '88: ∃ a coordinate with influence (log n)/n.
 - Edge Isoperimetry → ∃ coordinate with influence 1/n
- Induction gives $O(n/\log n)$ coordinates with influence $\Omega(1)$.

$$t(n,0.1) \le n / log n$$

Lower Bound on t(n, \varepsilon)

• $t(n,0.1) = \Omega(\sqrt{n})$

Majority

• $t(n,0.1) = \Omega(n^{0.63})$

Recursive Majority [Ben-Or Linial 88]

Lower Bound on t(n, \varepsilon)

- Ajtai-Linial 1990: There exists a (n/log²n)-resilient function that is almost balanced.
 - Probabilistic construction

$$t(n,0.1) \ge n / log^2 n$$

Explicit resilient functions

 Recall: Resilient functions imply coin flipping protocols.

Reference	Resilience
Majority	√n
Recursive Majority [BenOr-Linial 85]	$n^{0.63}$
[Meka, C-Zuckerman 16]	n ^{0.99}
[Meka 16]	n/log ² n

[C-Zuckerman 16], [Meka 16]: Based on derandomizing Ajtai-Linial

A bit more about the construction in [C-Zuckerman 16]

- Bits are sampled from t-wise independent distribution
- Bits arbitrarily depend on bits

C is monotone and can be computed fast in parallel.

An Application: Explicit Ramsey graphs [C-Zuckerman 16]

Bipartite K-Ramsey graph: Bipartite graph with NO complete or empty K×K sub-graph.

Explicit Ramsey graphs

Ramsey (1928): Does not exist (log N)/2-Ramsey graphs

Erdos (1947): 3 2log N-Ramsey graphs

Erdos: Explicit Constructions?

$(N=2^n, K=2^k)$

Explicit Ramsey Graphs

Reference	K	Bipartite
Erdös 47 (existential)	≥ 2 log N	Yes
Hadamard Matrix	\sqrt{N}	Yes
Frankl-Wilson81, Naor92, Alon98, Grolmusz00, Ba Gopalan06	$2Ω(√(\log N \log \log N))$	No
Pudlak-Rödl 04	$\sqrt{N/2^{\sqrt{\log N}}}$	Yes

Barak-Kindler-Shaltiel- $$N^\delta$$ Yes

Barak-Rao-Shaltiel -Wigderson 12 $(\log N)^{2^{\sqrt{\log \log N}}}$ Yes

Explicit Ramsey graphs

Corollary of [C-Zuckerman 16]: Explicit (log N)poly(log log N)-Ramsey graph

Independent work [Cohen 16] achieves similar parameters.

General Coin-Flipping Games

- Internal Nodes: Labeled by players
- Leaves: Labeled by 0 or 1 (output of the protocol)

General Coin-Flipping Games

- Well studied Model [BN 85, Saks 89, AN 90, BopN93, RZ98, RSZ99,F99]
- Protocols can handle (1/2- ε)n sized adversaries.

Open Directions

- Close the gap: $n / log^2 n \le t(n,0.1) \le n / log n$
- Resilience of functions on larger domains.
 - $f: [0,1]^n \rightarrow \{0,1\}$
 - Known: $n/log^2 n \le t(n,0.1) < n/2$
- More applications.

Thanks!

Questions?