Resilient Functions

Eshan Chattopadhyay IAS

Area of Research: Theoretical Computer Science, Combinatorics

Collective Coin-Flipping

An Adversarial Model

Malicious Coalition of players $Q \in [n]$:

 Adaptively sends bits AFTER seeing coin flips of other players.

Majority works better...

q malicious players

X: # of heads in (n-q) random coin flips

 $Pr[X \in [n/2 - q, n/2 + q]] = O(q/\sqrt{n})$

Influence of Sets

 Influence of Q: Probability output of f can be changed by Q after the 'good players' flip their coins

Pr[f(X) is NOT constant] = Influence of Q on f

Resilient Functions

f: $\{0,1\}^n \rightarrow \{0,1\}$

 $\begin{array}{l} (q,\epsilon) \text{-resilient function: } \forall \ Q \ \subset \ [n], \ |Q| = q, \\ \\ \text{Influence of } Q \ \text{on } f \ \text{ is at most } \epsilon. \end{array}$

Assume $\mathbf{E}[f] = 1/2$.

Example: MAJORITY is (n^{0.49},ε)-resilient.

PARITY is NOT (1, ε)-resilient, any $\varepsilon < 1$.

Limits on resilience

t(n, ε)= max{q :∃ a (q, ε)-resilient function f: {0,1}ⁿ→{0,1}, **E**[f]=1/2}

Rest of the talk: Upper and Lower Bounds on $t(n, \epsilon)$

- Key to understanding limits of coin-flipping games
- Basic Question about Boolean functions

Upper Bound on t(n, ϵ)

- Kahn-Kalai-Linial '88: ∃ a coordinate with influence (log n)/n.
 - Edge Isoperimetry \rightarrow 3 coordinate with influence 1/n
- Induction gives O(n/log n) coordinates with influence Ω(1).

$t(n, 0.1) \le n / \log n$

Lower Bound on t(n, ϵ)

- $t(n, 0, 1) = \Omega(\sqrt{n})$
- $t(n,0.1) = \Omega(n^{0.63})$

Majority

Recursive Majority [Ben-Or Linial 88]

Lower Bound on $t(n, \epsilon)$

- Ajtai-Linial 1990: There exists a (n/log²n)-resilient function that is almost balanced.
 - Probabilistic construction

$t(n, 0.1) \ge n / \log^2 n$

Explicit resilient functions

Recall: Resilient functions imply coin flipping protocols.

Reference	Resilience
Majority	√n
Recursive Majority [BenOr-Linial 85]	n ^{0.63}
[Meka, C-Zuckerman 16]	n ^{0.99}
[Meka 16]	n/log²n

[C-Zuckerman 16], [Meka 16] : Based on derandomizing Ajtai-Linial

A bit more about the construction in [C-Zuckerman 16]

Bits are sampled from t-wise independent distribution Bits arbitrarily depend on bits

C is monotone and can be computed fast in parallel.

An Application: Explicit Ramsey graphs [C-Zuckerman 16]

Bipartite K-Ramsey graph: Bipartite graph with NO complete or empty K×K sub-graph.

Explicit Ramsey graphs

Ramsey (1928): Does not exist (log N)/2-Ramsey graphs

Erdos (1947): 3 2log N-Ramsey graphs

Erdos: Explicit Constructions?

Explicit Ramsey Graphs

 $(N=2^{n}, K=2^{k})$

Reference	K	Bipartite
Erdös 47 (existential)	≥ 2 log N	Yes
Hadamard Matrix	\sqrt{N}	Yes
Frankl-Wilson81, Naor92, Alon98, Grolmusz00, Ba Gopalan06	2 Ω($\sqrt{(\log N \log \log N)}$)	No
Pudlak-Rödl 04	$\sqrt{N/2^{\sqrt{\log N}}}$	Yes
Barak-Kindler-Shaltiel- Sudakov-Wigderson 10	N۵	Yes
Barak-Rao-Shaltiel -Wigderson 12	(log N) ^{2√log log N}	Yes

Explicit Ramsey graphs

Corollary of [C-Zuckerman 16]: Explicit (log N)^{poly(log log N)}-Ramsey graph

• Independent work [Cohen 16] achieves similar parameters.

General Coin-Flipping Games

- Internal Nodes: Labeled by players
- Leaves: Labeled by 0 or 1 (output of the protocol)

General Coin-Flipping Games

- Well studied Model [BN 85, Saks 89, AN 90, BopN93, RZ98, RSZ99,F99]
- Protocols can handle (1/2- E)n sized adversaries.

Open Directions

- Close the gap: $n / \log^2 n \le t(n, 0.1) \le n / \log n$
- Resilience of functions on larger domains.
 - f: [0,1]ⁿ→{0,1}
 - Known: $n/log^2 n \le t(n,0.1) < n/2$
- More applications.

Thanks!

Questions?