Resilient Functions

Eshan Chattopadhyay IAS

Area of Research: Theoretical Computer Science, Combinatorics

Collective Coin-Flipping

b: unbiased Bit

Player 1
Player n

An Adversarial Model

Malicious Coalition of players

- Adaptively sends bits AFTER seeing coin flips of other players.
- PARITY FAILS!

Majority works better...

q malicious players
X: \# of heads in (n-q) random coin flips

$$
\operatorname{Pr}[X \in[n / 2-q, n / 2+q]]=O(q / / n)
$$

Influence of Sets

- Influence of Q: Probability output of f can be changed by Q after the 'good players' flip their coins

More formally...

Bits in Q: unfixed
\square Bits sampled uniformly
$\operatorname{Pr}[f(X)$ is NOT constant $]=$ Influence of Q on f

Resilient Functions

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

$(\mathrm{q}, \varepsilon)$-resilient function: $\forall \mathrm{Q} \subset[\mathrm{n}],|\mathrm{Q}|=\mathrm{q}$, Influence of Q on f is at most ε.

Assume $\mathbf{E}[f]=1 / 2$.
Example: MAJORITY is ($\mathrm{n}^{0.49}, \varepsilon$)-resilient.
PARITY is $\operatorname{NOT}(1, \varepsilon)$-resilient, any $\varepsilon<1$.

Limits on resilience

$\mathrm{t}(\mathrm{n}, \varepsilon)=\max \{\mathrm{q}: \exists \mathrm{a}(\mathrm{q}, \varepsilon)$-resilient function
$\left.f:\{0,1\}^{n} \rightarrow\{0,1\}, \mathbf{E}[f]=1 / 2\right\}$

Rest of the talk: Upper and Lower Bounds on $\mathrm{t}(\mathrm{n}, \varepsilon)$

- Key to understanding limits of coin-flipping games
- Basic Question about Boolean functions

Upper Bound on $t(n, \varepsilon)$

- Kahn-Kalai-Linial '88: ョ a coordinate with influence $(\log n) / n$.
- Edge Isoperimetry $\rightarrow \exists$ coordinate with influence $1 / n$
- Induction gives $O(n / \log n)$ coordinates with influence $\Omega(1)$.

$$
t(n, 0.1) \leq n / \log n
$$

Lower Bound on $t(n, \varepsilon)$

- $t(n, 0.1)=\Omega(\sqrt{ } n)$
- $t(n, 0.1)=\Omega\left(n^{0.63}\right)$

Majority
Recursive Majority
[Ben-Or Linial 88]

Lower Bound on $t(n, \varepsilon)$

- Ajtai-Linial 1990: There exists a (n/log²n)-resilient function that is almost balanced.
- Probabilistic construction

$$
t(n, 0.1) \geq n / \log ^{2} n
$$

Explicit resilient functions

- Recall: Resilient functions imply coin flipping protocols.

Reference	Resilience
Majority	$\sqrt{ } \mathrm{n}$
Recursive Majority [BenOr-Linial 85]	$\mathrm{n}^{0.63}$
[Meka, C-Zuckerman 16]	$\mathrm{n}^{0.99}$
[Meka 16]	$\mathrm{n} /$ log$^{2} \mathrm{n}$

[C-Zuckerman 16], [Meka 16] : Based on derandomizing Ajtai-Linial

A bit more about the construction in [C-Zuckerman 16]

\mathcal{C}

\square Bits are sampled from t-wise independent distribution
\square Bits arbitrarily depend on \square bits

C is monotone and can be computed fast in parallel.

An Application: Explicit Ramsey graphs [C-Zuckerman 16]

Bipartite K-Ramsey graph: Bipartite graph with NO complete or empty $\mathrm{K} \times \mathrm{K}$ sub-graph.

Explicit Ramsey graphs

Ramsey (1928): Does not exist (log N)/2-Ramsey graphs
Erdos (1947): $\exists 2 \log$ N-Ramsey graphs
Erdos: Explicit Constructions?

Explicit Ramsey Graphs

Reference

Erdös 47 (existential)

Hadamard Matrix

Frankl-Wilson81, Naor92, Alon98, Grolmusz00, Ba Gopalan06

Pudlak-Rödl 04

Barak-Kindler-Shaltiel-Sudakov-Wigderson 10

Barak-Rao-Shaltiel -Wigderson 12
$\geq 2 \log N$
Yes

Yes
$\sqrt{N} / 2^{\sqrt{\log N}}$
Yes

Yes

Yes

Explicit Ramsey graphs

Corollary of [C-Zuckerman 16]: Explicit (log N)poly(log log N)_Ramsey graph

- Independent work [Cohen 16] achieves similar parameters.

General Coin-Flipping Games

- Internal Nodes: Labeled by players
- Leaves: Labeled by 0 or 1 (output of the protocol)

General Coin-Flipping Games

- Well studied Model [BN 85, Saks 89, AN 90, BopN93, RZ98, RSZ99,F99]
- Protocols can handle (1/2- ε)n sized adversaries.

Open Directions

- Close the gap: $n / \log ^{2} n \leq t(n, 0.1) \leq n / \log n$
- Resilience of functions on larger domains.
- $\mathrm{f}:[0,1]^{\mathrm{n}} \rightarrow\{0,1\}$
- Known: $\mathrm{n} / \log ^{2} \mathrm{n} \leq \mathrm{t}(\mathrm{n}, 0.1)<\mathrm{n} / 2$
- More applications.

Thanks!

Questions?

