
Resilient Functions

Eshan Chattopadhyay 
IAS

Area of Research:  Theoretical Computer Science, Combinatorics



Collective Coin-Flipping

Player 1 Player n

f: {0,1}n→{0,1}

b: unbiased Bit



An Adversarial Model

f

b

Malicious Coalition of  players  
Q  ⊂ [n]: 

• Adaptively sends bits 
AFTER seeing coin flips of 
other players. 

• PARITY FAILS!



Majority works better…

X: # of heads in (n-q) random coin flips

Pr[X ∈[n/2 - q,n/2+q]]= O(q/√n)

q malicious players



Influence of Sets

• Influence of Q:  Probability output of f can be 
changed by Q after the ‘good players’ flip  
their coins



More formally…
f: {0,1}n→{0,1}

Pr[ f(X) is NOT constant] = Influence of Q on f 

X:

Bits in  Q: unfixed
Bits sampled uniformly

Q ⊂ [n]



Resilient Functions

 (q,ε)-resilient function: ∀ Q ⊂ [n], |Q| =q, 
Influence of Q on f  is at most ε.

f: {0,1}n→{0,1}

Example:  MAJORITY is (n0.49,ε)-resilient.

 PARITY is NOT (1,  ε)-resilient, any ε <1.

Assume 𝐄[f]=1/2.



t(n,ε)= max{q :∃ a (q,ε)-resilient function  
          f: {0,1}n→{0,1}, 𝐄[f]=1/2}

• Key to understanding limits of coin-flipping games  

• Basic Question about Boolean functions

Limits on resilience

Rest of the talk: Upper and Lower Bounds on t(n,ε)



Upper Bound on t(n,ε)
• Kahn-Kalai-Linial ’88:  ∃ a coordinate with influence 

(log n)/n. 

• Edge Isoperimetry→ ∃ coordinate with influence 1/n 

• Induction gives O(n/log n) coordinates with influence 
Ω(1).

t(n,0.1) ≤ n / log n



Lower Bound on t(n,ε)
• t(n,0.1) = Ω(√n)              Majority 

• t(n,0.1) = Ω(n0.63)            Recursive Majority  
                                         [Ben-Or Linial 88] 



Lower Bound on t(n,ε)

• Ajtai-Linial 1990: There exists a (n/log2n)-resilient 
function that is almost balanced. 

• Probabilistic construction

t(n,0.1) ≥ n / log2 n



Explicit resilient functions

• Recall: Resilient functions imply coin flipping 
protocols. 

Reference Resilience
Majority √n

Recursive Majority [BenOr-Linial 85] n0.63

[Meka, C-Zuckerman 16] n0.99

[Meka 16] n/log2n

[C-Zuckerman 16], [Meka 16] : Based on derandomizing Ajtai-Linial



A bit more about the construction in 
[C-Zuckerman 16]

C is monotone and can be computed fast in parallel.



An Application: Explicit Ramsey graphs 
[C-Zuckerman 16]

N N

K
KX

Y

 Bipartite K-Ramsey graph: Bipartite graph with NO             
complete or  empty K×K sub-graph.



Explicit Ramsey graphs

Ramsey (1928): Does not exist (log N)/2-Ramsey graphs 

Erdos (1947): ∃ 2log N-Ramsey graphs 

Erdos: Explicit Constructions?

N N

K
KX

Y



Explicit Ramsey Graphs
    (N=2n,   K=2k)

Reference K Bipartite

Erdös 47 (existential) ≥ 2 log N Yes

Hadamard Matrix √N Yes

Frankl-Wilson81, Naor92, 
Alon98, Grolmusz00, Ba 

Gopalan06
2Ω(√(log N log log N)) No

Pudlak-Rödl 04 √N/2√log N Yes

Barak-Kindler-Shaltiel-
Sudakov-Wigderson 10 Nδ Yes

Barak-Rao-Shaltiel 
-Wigderson 12 (log N)2√log log N Yes



Explicit Ramsey graphs

Corollary of [C-Zuckerman 16]:  Explicit (log N)poly(log log N)-Ramsey graph 

• Independent work [Cohen 16] achieves similar parameters.

N N

K
KX

Y



General Coin-Flipping 
Games

• Internal Nodes: Labeled by players  

• Leaves: Labeled by 0 or 1 (output of the protocol)



General Coin-Flipping 
Games

• Well studied Model [BN 85, Saks 89, AN 90, BopN93, RZ98,  
RSZ99,F99]  

• Protocols can handle (1/2- ℇ)n sized adversaries.



Open Directions

• Close the gap:  n / log2 n ≤ t(n,0.1) ≤ n / log n 

• Resilience of functions on larger domains. 
• f: [0,1]n→{0,1} 

• Known:  n/log2 n ≤ t(n,0.1) < n / 2 

• More applications.



Thanks! 

Questions?


