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Notations

The flow mapX(t, y):

It maps the material pointy ∈ Ω0 at

time t = 0 to the space position

x = X(t, y) ∈ Ωt at timet. (t, y) will

be called Lagrangian coordinate,

while (t, x) Euler
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Notations

The flow mapX(t, y) generates a velocity fieldv,
which, at timet and spatial positionx, is given by:

v(t, x) =
∂X(t, y)

∂t

∣∣∣
y=X−1(t,x)

.

Alternatively, one may also think that a given velocity
field v(t, x) generates the flow map by solving:

dX(t, y)

dt
= v(t, x)

∣∣∣
x=X(t,y)

, X(0, y) = y.
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Notations

For perfect fluid flows, the dynamics is determined by
the following Lagrangian functional, which is related
to the associated the kinetic energy:

L(X;T,Ω) =
1

2

∫ T

0

∫

Ω

|v(t,X(t, y))|2dydt.

It is known that the first variation ofL(X), under the
incompressibility constraint, gives the well-known
Euler equation.
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Notations

Motion of elastic materials is also determined by their
elastic energies. Define thedeformation gradient
F (t, x) by:

F
(
t,X(t, y)

)
=

∂X(t, y)

∂y
. (1)

Incompressibility means volume-preserving. In
mathematics, that is

det F ≡ 1 (2)

since
∫

U dy ≡
∫

X(t,U) dX for any domainU .
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Notations

Consider the most basic storage energy functionals

Ŵ (X(t, x)) = W
(
F (t, x)

)

For isotropic materials,W depends onF only in
terms of the invariants ofF⊤F . In 2D, those are trace
and determinant.
Perfect fluids:W = W (det F⊤F ).

Hookean elastic caseW = 1
2 |F |2.
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Incompressible Elasticity

The Lagrangian function in this case is

L(X;T,Ω) =

∫ T

0

∫

Ω

1

2
|Xt(t, y)|2

− 1

2
|F (t,X(t, y))|2 + p(t, y)(det F − 1)dydt.

Herep(t, y) is a Lagrangian multiplier which is
responsible for the incompressibility, which is
equivalent to

∇ · v = 0.
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Incompressible Elasticity

E-L equation:

Xtt − ∆yX + F−T∇yp = 0.

The incompressibility constraint:

det∇X = 1.
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Key Question

Key Question: To solve the flow mapX(t, ·), or
equivalently, to solve the above incompressible elastic
system.

We will formulate it in Euler coordinate: quasi-linear
wave type equation. Current interests center around
small-data global regularity.
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Vector Fields

Suppose thatX, p is a critical point ofL. If we define

X̃(t, y) = Q(s)X(t, Q⊤(s)y), p̃(t, y) = p(...),

where

Q(s) = esA, A =

(
0 −1

1 0

)
,

ThenX̃, p̃ is also critical point ofL. This invariance
group gives that

(
∂ΩX

∂y
)⊤(∂2

t −∆y)X+(
∂X

∂y
)⊤(∂2

t −∆y)ΩX+∇yΩp = 0.
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Vector Fields

Similarly, one can derive that

(
∂S̃X

∂y
)⊤(∂2

t −∆y)X+(
∂X

∂y
)⊤(∂2

t −∆y)S̃X+∇ySp = 0.

where
S = t∂t + r∂r, S̃ = S − 1.

and
ΩX = ∂θX + AX, Ωp = ∂θp.

Unfortunately, there is no Lorentz invariance.
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Incom-Elasticity in Euler Chart

Incompressible Elasticity in Euler coordinate:




vt + v · ∇v + ∇p = ∇ ·
(
FF T

)
,

Ft + v · ∇F = ∇vF,

∇ · v = 0.

Make use of the dispersive nature by studying small

(G, v) = (F − I, v).
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Connection to Other System
√

Add ∆v =⇒ Viscoelasticity
√

Ignore elastic force=⇒ Euler or Navier-Stokes
√

By ∇ · F⊤ = 0, one may assume that
F = (∇⊥φ)⊤. Then





vt + v · ∇v + ∇p̃ = −∇ · (∇φ ⊗∇φ),

φt + v · ∇φ = 0,

∇ · v = 0.

MHD: φ is a scalar.
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Main Difficulties

Linearization:

vtt − ∆v = 0, Gtt − ∆G = ∇× (∇× G).

If ∇× (∇× G) can be treated as a forcing

term, then the main part of the linearized

system is of wave type. Fortunately, this is

true because (thesis of L.)

∇× G = Q(G,∇G).
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Main Difficulties

So the key points for global or long

time existence are
√

dimension, which determines the

time decay rate
√

null structure of nonlinearies,

which gives nonresonance along

the light cone
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Main Difficulties

In general, energy estimate gives (quadratic non)

dEs(t)

dt
. ‖Ds−2v‖L∞Es(t).

Decay type estimate gives

‖Ds−2v(t, ·)‖L∞ .

√
Es

(1 + t)α
.

√

α > 1: subcritical
√

α = 1: critical
√

α < 1: supercritical
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Main Difficulties in 2D

Let S = t∂t + r∂r be the scaling operator,

Ωij = xi∂j − xj∂i rotation and

Lj = Ω0j = t∂j + xj∂t Lorentz.

Theorem 1 (Klainerman). Weighted

inequality:

|u(t, x)| .

∑
|α|≤[n2 ]+1 ‖Γαu(t, ·)‖L2

x

(1 + t + |x|)n−1
2

(
1 +

∣∣t − |x|
∣∣)1

2

.
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Main Difficulties in 2D

Hence,
√

n ≥ 4 subcritical: Global well-posedness

(WP)
√

n = 3 critical: Global WP under null

condition, by Klainerman (86),

Christodoulou (86).
√

n = 2 supercritical: Global WP under

double null conditions, Alinhac (01)
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Main Difficulties in 2D

The elastic system is much more

involved.
√

Two different propagation speeds
√

Null structure is hard to use.

Incompressible Elasticity in 2D – p. 20/44



Main Difficulties in 2D

Progress in 3D
√

3D compressible case: Sideris

(97, 00), Agemi (00)
√

3D incompressible case: Sideris

and Thomases (05, 06, 07)
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Main Difficulties in 2D

Open questions:
√

Wave systems with different

speeds, 2D
√

Compressible Elasticity, 2D
√

Incompressible Elasticity, 2D
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Main Result

Our main theorem is:
Theorem 2 (L., Sideris and Zhou, 12). For
sufficiently small initial data, the 2D
incompressible elasticity is almost global
well-posed.
Herealmost global means that if the norm of the
initial data is ofǫ-order, then the lifespan of the
solution is at leastexp(C0/ǫ) for someC0 > 0.
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Viscoelasticity

With a viscous term∆u in momentum equation:
√

2D: Lin-Liu-Zhang (05), L. Zhou (05)
√

3D: L.-Liu-Zhou (08)
√

2D small strain: L.-Liu-Zhou (08), L. (10, 13)
√

Survey: Lin (12)
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Main Difficulties in 2D

In 2D elasticity, the difficulties
√

dimension 2, the time decay rate1√
1+t

is

supercritical
√

structure of nonlinearies
√

nonlocal nature
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Vector Fields in Euler

Motivated by the invariance property of this equation
in Lagrangian coordinate, we have




∂tΓ
αv −∇ · ΓαG

= −∇Γαp +
∑

β+γ=α Γβv · ∇Γγv + ∇ · (ΓγGΓβGT ) , fα,

∂tG −∇ · ΓαG

=
∑

β+γ=α ∇ΓβvΓγG − Γγv · ∇ΓβG , gα,

∇ · Γαv = 0.

HereΓ be any of

{∂t, ∂1, ∂2,Ω, S}.
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Proof

The modified rotation operator:

Ωf =





∂θf, f scalar,

∂θf + Af, f vector,

∂θf + [A, f ], f matrix.

We often use the decomposition:

∇ = ω∂r + r−1ω⊥∂θ.
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Proof

Based on the structures, we have:

∇ · ΓαG⊤ = 0

and
∇⊥ · ΓαG = hα,

where

(hα)i =
∑

β+γ=α

[
ΓβGm1∂mΓγGi2 − ΓβGm2∂mΓγGi1

]
.
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Proof

Define the generalized energy by

Ek(t) =
∑

|α|≤k

‖Γα(v,G)‖2
L2. (2)

We also define the weighted energy norm

Xk(t) =
∑

|α|≤k−1

‖ < t − r > ∇Γα(v,G)‖L2. (3)
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Proof

Structures:
√

Due to the incompressibility

∇ · v = 0 = ∇ · F T , the following

are good unknowns near the light

coner = t:

v · ω, GTω (ω = x/r).

Incompressible Elasticity in 2D – p. 30/44



Proof

Structures:
√

By identity (L.-Liu-Zhou, 08)

∂jGik − ∂kGij = Gmk∂mGij − Gmj∂mGik,

the following is a good unknown

near the light coner = t:

Gω⊥.
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Proof

Structures: An extra intrinsic good

unknown is

v + Gω

This can be seen via Alinhac’s ghost

weight method, which was the first

time to be applied for nonlocal

problem. Incompressible Elasticity in 2D – p. 32/44



Proof

The pressure satisfies null condition.
Lemma 3 (Estimate of pressure). We have

‖∇Γαp‖L2 . ‖fα‖L2

‖∇Γαp‖L2 .
∑

β + γ = α

|β| ≤ |γ|

‖∂jΓ
βviΓ

γvj − ∂jΓ
βGikΓ

γGjk‖L2,

for all |α| ≤ k − 1.
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Proof

Lemma 4 (Structures). Define




Lk =
∑

|α|≤k

[
|Γαv| + |ΓαG|

]
,

Nk =
∑

|α|≤k−1

[
t
(
|fα| + |gα|

+|∇Γαp|
)

+ (t + r)|hα|
]
.

Then for all |α| ≤ k − 1 (First two B-T-L),

r|∂rΓ
αv · ω| . Lk

r|∂rΓ
αG⊤ω| . Lk

r|∂rΓ
αGω⊥| . Lk + Nk.
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Proof

Lemma 5 (Better Decay of Good Unknowns near
Light Cone). For |α| ≤ k − 2, we have

‖rΓαv · ω‖L∞ + ‖rΓαG⊤ω‖L∞ . E
1/2
|α|+2.

Proof. Sobolev imbedding on sphere +
incompressibility.
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Proof

Lemma 6 (Structures). Recall that




Lk =
∑

|α|≤k

[
|Γαv| + |ΓαG|

]
,

Nk =
∑

|α|≤k−1

[
t
(
|fα| + |gα|

+|∇Γαp|
)

+ (t + r)|hα|
]
.

For all |α| ≤ k − 1,

(t ± r)|∇Γαv ±∇ · ΓαG ⊗ ω| . Lk + Nk.
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Proof

Take a look at the proof which seems not transparent:
UsingS = t∂t + r∂r and the equation:

t∇Γαv + r∂rΓ
αG = SΓαG − tgα

t∇ · ΓαG + r∂rΓ
αv = SΓαv − tfα + t∇Γαp.

This is rearranged as follows:

t∇Γαv + r∇ · ΓαG ⊗ ω = r[∇ · ΓαG ⊗ ω − ∂rΓ
αG]

+ SΓαG − tgα

t∇ · ΓαG ⊗ ω + r∇Γαv = r[∇Γαv − ∂rΓ
αv ⊗ ω]

+ [SΓαv − tfα + t∇Γαp] ⊗ ω.
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Proof

Lemma 7 (Estimate of Nonlinearities Using
Weighted Energy). We have

‖Nk(t)‖L2 . Ek(t) + Ek(t)
1/2Xk(t)

1/2.

Proof. Away from the light cone, using weighted
energy. Near the light cone, using the better
estimate for good unknowns.
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Proof

Lemma 8 (Estimate of Weighted Energy). If

Ek(t) ≪ 1, then Xk(t) . Ek(t)
1/2.

Proof: By structures, the main contribution ofXk(t)
2

is Ek and
∑

|α|≤k−1

[‖(t − r)∇Γαv‖2
L2 + ‖(t − r)∇ · ΓαG‖2

L2.
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Proof

Then usestructuresand the decomposition:

∇Γαv = 1
2 [∇Γαv + ∇ · ΓαG ⊗ ω]

+1
2[∇Γαv −∇ · ΓαG ⊗ ω] (-4)

and

∇ · ΓαG = 1
2 [∇Γαv + ∇ · ΓαG ⊗ ω]ω

−1
2[∇Γαv −∇ · ΓαG ⊗ ω]ω,
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Proof

Lemma 9 (Further Better Decay of Good
Unknowns near Light Cone). Let k ≥ 4, Ek ≪ 1,
ω = x/|x|. Then we have

‖r(∂rΓ
αv + ∂rΓ

αGω)‖L2 + ‖r∂rΓ
αGω⊥‖L2 . E

1/2
|α|+1,

‖r(Γαv + ΓαGω)‖L∞ + ‖rΓαGω⊥‖L∞ . E
1/2
|α|+1.

Proof. Using the equations and structures.

Remark 10. This is as good as linear wave
equations.
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Proof

Now we are ready to derive a critical energy estimate
near the light cone, based on a very delicate estimate
on pressure and nonlinearities, and the application of
a ghost weight method by Alinhac.
The critical energy estimate away from the light cone
is due to the Klainerman-Sideris’s weightedL2 energy
estimate.
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Proof

The final estimate:

Ẽ ′
k(t) ≤ C0(1 + t)−1Ẽk(t)

3/2, 0 ≤ t < T.

HereEk ∼ Ẽk. This implies thatEk(t)

remains bounded by2ǫ2 on a time interval of

orderT ∼ exp(C0/ǫ).
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��
Thank you very much!!

� � ' 5 !!

Incompressible Elasticity in 2D – p. 44/44


	Contents
	Notations
	Notations
	Notations
	Notations
	Notations
	Incompressible Elasticity
	Incompressible Elasticity
	Key Question
	Vector Fields
	Vector Fields
	Incom-Elasticity in Euler Chart
	Connection to Other System
	Main Difficulties
	Main Difficulties
	Main Difficulties
	Main Difficulties in 2D
	Main Difficulties in 2D
	Main Difficulties in 2D
	Main Difficulties in 2D
	Main Difficulties in 2D
	Main Result
	Viscoelasticity
	Main Difficulties in 2D
	Vector Fields in Euler
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	ÖÂÐ»

