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v/ Incompressible Elasticity

I v/ The Key Question and Its Difficulties

* SOMme previous progress

v/ Almost Global Well-posedness of Small
Solutions in 2D
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* The flow mapX(t, y):

It maps the material point € (), at
timet¢ = 0 to the space position

X(t,y) € () attimet. (t,y) will
be called Lagrangian coordinate,
while (¢, x) Euler



« The flow mapX (¢, y) generates a velocity field
¢ which, at timet and spatial position, is given by:

v(t,x) = an; )

y=X-1(tz)

Alternatively, one may also think that a given velocity
field v(t, z) generates the flow map by solving:

dX(t,y)
dt
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, X(0,y) =y.

= v(t, x) —x(ty
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For perfect fluid flows, the dynamics is determined by
the following Lagrangian functional, which is related
to the associated the kinetic energy:

L(X;T, Q) //\thty\Qdydt

It is known that the first variation of (X ), under the
iIncompressibility constraint, gives the well-known
Euler equation.
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Motion of elastic materials is also determined by thel
elastic energies. Define thedeformation gradient

F(t, x) by:

0X (t,y)
oy (1)

Incompressibility means volume-preserving. In
mathematics, that is

det F =1 (2)

F(t,X(t,y)) —

since [, dy = [, ;) dX for any domain’.



.+ Consider the most basic storage energy functionals
W(X(t,z)) = W (F(t,z))

. For isotropic materiald}” depends o’ only in

I terms of the invariants of'' F'. In 2D, those are trace
and determinant.

Perfect fluidsW = W (det F'' F).
Hookean elastic casé” = | F|°.
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The Lagrangian function in this case Is

L(X:T,Q) // X, (t,y)|?

— —\F(t X(t,y))|* + p(t,y)(det F — 1)dydt.

Herep(t, y) is a Lagrangian multiplier which is
responsible for the incompressibility, which is
equivalent to

V- -v=0.



Incompressible Elasticity

¥ E & The incompressibility constraint:

N
det VX = 1.
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Key Question: To solve the flow may(t, -), or
equivalently, to solve the above incompressible elast

system.

We will formulate it in Euler coordinate: quasi-linear
wave type equation. Current interests center around

small-data global regularity



'+ Suppose thak, p is a critical point ofL. If we define

X(t,y) =Q(s)X (¢, Q" (s)y), blt,y)=p(..),

Qs) = e, A= (? _01>7

ThenX ,p Is also critical point ofZ. This invariance
group gives that

00X 0X
(o) 07—y X +( o) T(O2—A)QX+V,Qp = 0.
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Similarly, one can derive that

DS X 0X ~
(5 (07 —Ay) X +( o) T(02—A,)SX+V,Sp = 0.
where -~
S:t&g+r6’r, S=5—-1.
and

QX =0y X + AX, Qp = Oyp.
Unfortunately, there is no Lorentz invariance.
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'+ Incompressible Elasticity in Euler coordinate:
nw+v-Vo+Vp=V_ (FFT),
F,4+v-VF =VuF,

V-v=0.

-
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Make use of the dispersive nature by studying small

(G,v) = (F —1,v).
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v/ Add Av = Viscoelasticity
v/ lgnore elastic force=- Euler or Navier-Stokes

v/ By V. F' =0, one may assume that
F=(V+¢)'. Then

v +v-Vo+Vp=-V-(VopR Vo),
¢t +v-Vo =0,
V-v=0.

MHD: ¢ Is a scalar.
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4 Linearization:
Utt—AU—O Gtt—AGZVX(VXG)

If V x (V x G) can be treated as a forcing
term, then the main part of the linearized
system Is of wave type. Fortunately, this is
true because (thesis of L.)

VxG=QG,VaG).



B

" C¢ U

EC ¢

: S0 the key points for global or long
time existence are

4/ dimension, which determines the
time decay rate

v/ hull structure of nonlinearies,
which gives nonresonance along
the light cone



+ In general, energy estimate gives (quadratic non)

dE, (1)
dt

.
E i Decay type estimate gives

S Dol o Es(2):

_ E
D20 (t, ) g < .
D20t i S

v/ a > 1. subcritical
v/ a = 1: critical
v/ a < 1: supercritical
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Let S = t0; + r0, be the scaling operator,

();; = z;0; — x;0; rotation and
L; = $); = t0; + x;0; Lorentz.
Theorem 1 (Klainerman). Weighted

imequality:

S wienan IToult, ) 2
u(t, z)| < aEbias -

Y

(1+t+|z|)T (1+|t—|x\|)

l\.’)lr—l



+ Hence,

I v/ n > 4 subcritical: Global well-posedness
i (WP)

l E v/ n = 3 critical: Global WP under null
i condition, by Klainerman (86),
Christodoulou (86).

v/ n = 2 supercritical: Global WP under
double null conditions, Alinhac (01)



 The elastic system is much more
I Involved.

v/ Two different propagation speeds

v/ Null structure is hard to use.
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* Progress in 3D

v/ 3D compressible case: Sideris
(97, 00), Agemi (00)

v/ 3D incompressible case: Sideris
and Thomases (05, 06, 07)
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+ Open guestions:

v/ Wave systems with different
speeds, 2D

v/ Compressible Elasticity, 2D
v/ Incompressible Elasticity, 2D
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Our main theorem Is:

Theorem 2 (L., Sideris and Zhou, 12). For

sufficiently small initial data, the 2D
incompressible elasticity 1s almost global
well-posed.

Herealmost global means that if the norm of the
Initial data Is ofe-order, then the lifespan of the
solution is at leastxp(Cy/€) for someC > 0.
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+ With a viscous term\u in momentum equation:
I v/ 2D: Lin-Liu-Zhang (05), L. Zhou (05)

v/ 3D: L.-Liu-Zhou (08)
¢ +/ 2D small strain: L.-Liu-Zhou (08), L. (10, 13)
I v/ Survey: Lin (12)
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In 2D elasticity, the difficulties

v/ dimension 2, the time decay ra&% is
supercritical

v/ structure of nonlinearies

v/ honlocal nature



.+ Motivated by the invariance property of this equation
I In Lagrangian coordinate, we have

@F%} -V -IG
= —VID+ 35,0 70 V0 + V- (T7GTPGT) = fo,

$ 0,G -V - -T*G
= > gyee VIPUI'G —T70 - VIPG £ g,
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\V-Fav:().

Herel be any of
{6757 a17 627 Q) S}



_Jo | rector,
s Opf + A, f], f matrix.

We often use the decomposition:

V = wo, + r twtoy.
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L T V+t-T°G = h,,

(ha)i = ¥ [17Gm0nl"Giz — I G0, I G .

fty=a
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Define the generalized energy by

Et) = 3 10, @)%

o<k
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We also define the weighted energy norm

L T

la|<k—1

B

Xp(t)= > | <t—r>VIW, Gl



¢ Structures

* § 4/ Due to the incompressibility

E i V-v=0=V_F!, the following

i are good unknowns near the light
coner =t

g
I vow, Glw (w=az/r).
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Structures
\/ By identity (L.-Liu-Zhou, 08)

asz'k — aka — GmkamGz‘j — ijamGika

the following Is a good unknown
near the light cone = t¢:

Guw.
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¢ Structures An extra intrinsic good
unknown IS

v+ Gw

This can be seen via Alinhac’s ghost
weight method, which was the first
time to be applied for nonlocal
problem.



The pressure satisfies null condition.
Lemma 3 (Estimate of pressure). We have

VIl S || fallz
VIl S Y 0T 0l — TGl Gyl 12

B+v=a
18] < |
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for all |a| < k —1.

L S



k:

la|<k—1

(8% gOé
+|VI)) + (¢t + 7)|hal].

o%[ Then for all |a| < k — 1 (First two B-T-L),

r

r

r

0 1'% - w| S Ly

0.IG " w
O0.IGuw

S Ly
< L; + Ny.
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£ f I Proof. Sobolev imbedding on sphere +
N incompressibility.
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vk — la|<k—1 Q Ja

+|VI)) + (¢t + 7)|hal].

ol{ For all |a] < k —1,

(t T fr)|VF% +V - I'"G® w| < L+ Ng.
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.+ Take a look at the proof which seems not transparent
4 UsingS = to; + r0, and the equation:

/ tVI'*v +r0,I'°G = STG — tg,
E = tV -I'*G +ro,I'"v = ST"%v — tf, + tVI'%p.

This Is rearranged as follows:

tVI'v +rV - TG w =r|V - TG w — 9,I'*G]
+ STG — tg,

tV -I'"G @ w + rVI'*v = r[VI'% — 0,I'*v ® w]
+ [ST %% — tf, + tVI%| Q@ w.
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Lemma 7 (Estimate of Nonlinearities Using
Weighted Energy). We have

[ Ne(@)llz2 S Bi(t) + Ex(8)2 X5 (8)"2.

Proof. Away from the light cone, using weighted
energy. Near the light cone, using the better
estimate for good unknowns.
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Lemma 8 (Estimate of Weighted Energy). If
Ek(t) < 1, then Xk(t) SJ Ek(t)l/Q.

Proof: By structuresthe main contribution of(;,(¢)*
IS £ and

> It =r)VI|2 + | (t = 1)V - T°G[7..

la|<k—1



= V.-G

1
u 2

VI% +V - TG ® w|w
VI% — V- TG ® w|w,

1
2
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Lemma 9 (Further Better Decay of Good
Unknowns near Light Cone). Let k > 4, F, < 1,
w = x/|x|. Then we have

o o Qo 1/2
[r(9,T% + 8,T°Gw)| 12 + [rd, TGt S B,

o o Qo 1/2
[r(T% + D*Gw) = + 1 T°Gu |l S B2,

Proof. Using the equations and structures.

Remark 10. This is as good as linear wave
equations.
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Now we are ready to derive a critical energy estimate
near the light cone, based on a very delicate estimate
on pressure and nonlinearities, and the application o
a ghost weight method by Alinhac.

The critical energy estimate away from the light cone

is due to the Klainerman-Sideris's weightéd energy
estimate.
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' The final estimate:

N

Ei(t) < Co(l+t)'Ey(t)*?, 0<t<T.

HereEk ~ E).. This implies thatts), (¢)

remains bounded 8e? on a time interval of
orderT ~ exp(Cjy/e).
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