Incompressible Elasticity in 2D Zhen(震) Lei(雷)

Fudan University Joint with Thomas C. Sideris and Yi Zhou

✓ Incompressible Elasticity
 ✓ The Key Question and Its Difficulties
 ★ some previous progress
 ✓ Almost Global Well-posedness of Small Solutions in 2D

The flow map X(t, y): It maps the material point $y \in \Omega_0$ at time t = 0 to the space position $x = X(t, y) \in \Omega_t$ at time t. (t, y) will be called Lagrangian coordinate, while (t, x) Euler

The flow map X(t, y) generates a velocity field v, which, at time t and spatial position x, is given by:

$$v(t,x) = \frac{\partial X(t,y)}{\partial t}\Big|_{y=X^{-1}(t,x)}$$

Alternatively, one may also think that a given velocity field v(t, x) generates the flow map by solving:

$$\frac{dX(t,y)}{dt} = v(t,x)\Big|_{x=X(t,y)}, \quad X(0,y) = y.$$

For perfect fluid flows, the dynamics is determined by the following Lagrangian functional, which is related to the associated the kinetic energy:

$$\mathcal{L}(X;T,\Omega) = \frac{1}{2} \int_0^T \int_\Omega |v(t,X(t,y))|^2 dy dt.$$

It is known that the first variation of $\mathcal{L}(X)$, under the incompressibility constraint, gives the well-known Euler equation.

Motion of elastic materials is also determined by their *elastic energies*. Define the deformation gradient F(t, x) by:

$$F(t, X(t, y)) = \frac{\partial X(t, y)}{\partial y}.$$

Incompressibility means volume-preserving. In mathematics, that is

$$\det F \equiv 1 \tag{2}$$

since $\int_U dy \equiv \int_{X(t,U)} dX$ for any domain U.

(1)

Consider the most basic storage energy functionals

$$\widehat{W}(X(t,x)) = W(F(t,x))$$

For isotropic materials, W depends on F only in terms of the invariants of $F^{\top}F$. In 2D, those are trace and determinant.

Perfect fluids: $W = W(\det F^{\top}F)$.

Hookean elastic case $W = \frac{1}{2}|F|^2$.

Incompressible Elasticity

The Lagrangian function in this case is

$$\mathcal{L}(X;T,\Omega) = \int_0^T \int_\Omega \frac{1}{2} |X_t(t,y)|^2 - \frac{1}{2} |F(t,X(t,y))|^2 + p(t,y) (\det F - 1) dy dt.$$

Here p(t, y) is a Lagrangian multiplier which is responsible for the incompressibility, which is equivalent to

$$\nabla \cdot v = 0.$$

Incompressible Elasticity

E-L equation:

$$X_{tt} - \Delta_y X + F^{-T} \nabla_y p = 0.$$

The incompressibility constraint:

 $\det \nabla X = 1.$

Key Question

Key Question: To solve the flow map $X(t, \cdot)$, or equivalently, to solve the above incompressible elastic system.

We will formulate it in Euler coordinate: quasi-linear wave type equation. Current interests center around small-data global regularity.

Vector Fields

Suppose that X, p is a critical point of \mathcal{L} . If we define $\widetilde{X}(t, y) = Q(s)X(t, Q^{\top}(s)y), \quad \widetilde{p}(t, y) = p(...),$

where

$$Q(s) = e^{sA}, \quad A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

Then X, \tilde{p} is also critical point of \mathcal{L} . This invariance group gives that

$$\left(\frac{\partial\Omega X}{\partial y}\right)^{\top} \left(\partial_t^2 - \Delta_y\right) X + \left(\frac{\partial X}{\partial y}\right)^{\top} \left(\partial_t^2 - \Delta_y\right) \Omega X + \nabla_y \Omega p = 0.$$

Vector Fields

Similarly, one can derive that

$$(\frac{\partial \widetilde{S}X}{\partial y})^{\top}(\partial_t^2 - \Delta_y)X + (\frac{\partial X}{\partial y})^{\top}(\partial_t^2 - \Delta_y)\widetilde{S}X + \nabla_y Sp = 0.$$

where

$$S = t\partial_t + r\partial_r, \quad \widetilde{S} = S - 1.$$

and

$$\Omega X = \partial_{\theta} X + A X, \quad \Omega p = \partial_{\theta} p.$$

Unfortunately, there is no Lorentz invariance.

Incom-Elasticity in Euler Chart

Incompressible Elasticity in Euler coordinate:

$$\begin{cases} v_t + v \cdot \nabla v + \nabla p = \nabla \cdot (FF^T), \\ F_t + v \cdot \nabla F = \nabla vF, \\ \nabla \cdot v = 0. \end{cases}$$

Make use of the dispersive nature by studying small

$$(G, v) = (F - I, v).$$

Connection to Other System

 \checkmark Add $\Delta v \Longrightarrow$ Viscoelasticity

 \checkmark Ignore elastic force \implies Euler or Navier-Stokes

✓ By $\nabla \cdot F^{\top} = 0$, one may assume that $F = (\nabla^{\perp} \phi)^{\top}$. Then

$$\begin{cases} v_t + v \cdot \nabla v + \nabla \widetilde{p} = -\nabla \cdot (\nabla \phi \otimes \nabla \phi), \\ \phi_t + v \cdot \nabla \phi = 0, \\ \nabla \cdot v = 0. \end{cases}$$

MHD: ϕ is a scalar.

Main Difficulties

Linearization:

 $v_{tt} - \Delta v = 0, \quad G_{tt} - \Delta G = \nabla \times (\nabla \times G).$

If $\nabla \times (\nabla \times G)$ can be treated as a forcing term, then the main part of the linearized system is of wave type. Fortunately, this is true because (thesis of L.)

$$\nabla \times G = Q(G, \nabla G).$$

Main Difficulties

So the key points for global or long time existence are

 \checkmark dimension, which determines the time decay rate

null structure of nonlinearies,
 which gives nonresonance along
 the light cone

Main Difficulties

In general, energy estimate gives (quadratic non)

$$\frac{dE_s(t)}{dt} \lesssim \|D^{s-2}v\|_{L^{\infty}} E_s(t).$$

Decay type estimate gives

$$\|D^{s-2}v(t,\cdot)\|_{L^{\infty}} \lesssim \frac{\sqrt{E_s}}{(1+t)^{\alpha}}.$$

 $\checkmark \alpha > 1: \text{ subcritical}$ $\checkmark \alpha = 1: \text{ critical}$ $\checkmark \alpha < 1: \text{ supercritical}$

Let $S = t\partial_t + r\partial_r$ be the scaling operator, $\Omega_{ij} = x_i\partial_j - x_j\partial_i$ rotation and $L_j = \Omega_{0j} = t\partial_j + x_j\partial_t$ Lorentz. **Theorem 1** (Klainerman). Weighted inequality:

$$|u(t,x)| \lesssim \frac{\sum_{|\alpha| \le [\frac{n}{2}]+1} \|\Gamma^{\alpha} u(t,\cdot)\|_{L^{2}_{x}}}{(1+t+|x|)^{\frac{n-1}{2}} (1+|t-|x||)^{\frac{1}{2}}}.$$

Hence,

- √ $n \ge 4$ subcritical: Global well-posedness (WP)
- n = 3 critical: Global WP under null
 condition, by Klainerman (86),
 Christodoulou (86).
- \checkmark n = 2 supercritical: Global WP under double null conditions, Alinhac (01)

The elastic system is much more involved.

 \checkmark Two different propagation speeds \checkmark Null structure is hard to use.

Progress in 3D

✓ 3D compressible case: Sideris(97, 00), Agemi (00)

✓ 3D incompressible case: Sideris and Thomases (05, 06, 07)

Open questions:

✓ Wave systems with different speeds, 2D

 \checkmark Compressible Elasticity, 2D

 \checkmark Incompressible Elasticity, 2D

Main Result

Our main theorem is:

Theorem 2 (L., Sideris and Zhou, 12). For sufficiently small initial data, the 2D incompressible elasticity is almost global well-posed.

Here *almost global* means that if the norm of the initial data is of ϵ -order, then the lifespan of the solution is at least $\exp(C_0/\epsilon)$ for some $C_0 > 0$.

Viscoelasticity

With a viscous term ∆u in momentum equation:
✓ 2D: Lin-Liu-Zhang (05), L. Zhou (05)
✓ 3D: L.-Liu-Zhou (08)
✓ 2D small strain: L.-Liu-Zhou (08), L. (10, 13)
✓ Survey: Lin (12)

In 2D elasticity, the difficulties

 \checkmark dimension 2, the time decay rate $\frac{1}{\sqrt{1+t}}$ is supercritical

 \checkmark structure of nonlinearies

 \checkmark nonlocal nature

Vector Fields in Euler

Motivated by the invariance property of this equation in Lagrangian coordinate, we have

$$\begin{aligned} \partial_t \Gamma^{\alpha} v &- \nabla \cdot \Gamma^{\alpha} G \\ &= -\nabla \Gamma^{\alpha} p + \sum_{\beta + \gamma = \alpha} \Gamma^{\beta} v \cdot \nabla \Gamma^{\gamma} v + \nabla \cdot (\Gamma^{\gamma} G \Gamma^{\beta} G^T) \triangleq f_{\alpha}, \\ \partial_t G &- \nabla \cdot \Gamma^{\alpha} G \\ &= \sum_{\beta + \gamma = \alpha} \nabla \Gamma^{\beta} v \Gamma^{\gamma} G - \Gamma^{\gamma} v \cdot \nabla \Gamma^{\beta} G \triangleq g_{\alpha}, \\ \nabla \cdot \Gamma^{\alpha} v &= 0. \end{aligned}$$

Here Γ be any of

 $\{\partial_t, \partial_1, \partial_2, \Omega, S\}.$

The modified rotation operator:

$$\Omega f = \begin{cases} \partial_{\theta} f, & \text{f scalar,} \\ \partial_{\theta} f + A f, & \text{f vector,} \\ \partial_{\theta} f + [A, f], & \text{f matrix.} \end{cases}$$

We often use the decomposition:

$$\nabla = \omega \partial_r + r^{-1} \omega^{\perp} \partial_{\theta}.$$

Based on the structures, we have:

$$\nabla \cdot \Gamma^{\alpha} G^{\top} = 0$$

and

$$\nabla^{\perp} \cdot \Gamma^{\alpha} G = h_{\alpha},$$

where

$$(h_{\alpha})_{i} = \sum_{\beta+\gamma=\alpha} \left[\Gamma^{\beta} G_{m1} \partial_{m} \Gamma^{\gamma} G_{i2} - \Gamma^{\beta} G_{m2} \partial_{m} \Gamma^{\gamma} G_{i1} \right].$$

Define the generalized energy by

$$E_k(t) = \sum_{|\alpha| \le k} \|\Gamma^{\alpha}(v, G)\|_{L^2}^2.$$

We also define the weighted energy norm

$$X_k(t) = \sum_{|\alpha| \le k-1} \| < t - r > \nabla \Gamma^{\alpha}(v, G) \|_{L^2}.$$
 (3)

(2)

Structures:

✓ Due to the incompressibility $\nabla \cdot v = 0 = \nabla \cdot F^T$, the following are good unknowns near the light cone r = t:

$$v \cdot \omega, \quad G^T \omega \quad (\omega = x/r).$$

Structures:

By identity (L.-Liu-Zhou, 08)

 $\partial_j G_{ik} - \partial_k G_{ij} = G_{mk} \partial_m G_{ij} - G_{mj} \partial_m G_{ik},$

the following is a good unknown near the light cone r = t:

 $G\omega^{\perp}$.

Structures: An extra intrinsic good unknown is

 $v + G\omega$

This can be seen via Alinhac's ghost weight method, which was the first time to be applied for nonlocal problem.

The pressure satisfies null condition. Lemma 3 (Estimate of pressure). We have $\|\nabla\Gamma^{\alpha}p\|_{L^{2}} \lesssim \|f_{\alpha}\|_{L^{2}}$ $\|\nabla\Gamma^{\alpha}p\|_{L^{2}} \lesssim \sum_{\substack{\beta+\gamma=\alpha\\|\beta| \leq |\gamma|}} \|\partial_{j}\Gamma^{\beta}v_{i}\Gamma^{\gamma}v_{j} - \partial_{j}\Gamma^{\beta}G_{ik}\Gamma^{\gamma}G_{jk}\|_{L^{2}},$

for all $|\alpha| \leq k-1$.

Lemma 4 (Structures). Define

$$\begin{cases} L_k = \sum_{|\alpha| \le k} \left[|\Gamma^{\alpha} v| + |\Gamma^{\alpha} G| \right], \\ N_k = \sum_{|\alpha| \le k-1} \left[t \left(|f_{\alpha}| + |g_{\alpha}| + |\nabla \Gamma^{\alpha} p| \right) + (t+r) |h_{\alpha}| \right] \end{cases}$$

Then for all $|\alpha| \leq k - 1$ (First two B-T-L), $r|\partial_r\Gamma^{\alpha}v\cdot\omega| \lesssim L_k$ $r|\partial_r\Gamma^{\alpha}G^{\top}\omega| \lesssim L_k$ $r|\partial_r\Gamma^{\alpha}G\omega^{\perp}| \lesssim L_k + N_k.$

Lemma 5 (Better Decay of Good Unknowns near Light Cone). For $|\alpha| \leq k - 2$, we have

$$\|r\Gamma^{\alpha}v\cdot\omega\|_{L^{\infty}} + \|r\Gamma^{\alpha}G^{\top}\omega\|_{L^{\infty}} \lesssim E_{|\alpha|+2}^{1/2}.$$

Proof. Sobolev imbedding on sphere + incompressibility.

Lemma 6 (Structures). Recall that

$$\begin{cases} L_k = \sum_{|\alpha| \le k} \left[|\Gamma^{\alpha} v| + |\Gamma^{\alpha} G| \right], \\ N_k = \sum_{|\alpha| \le k-1} \left[t \left(|f_{\alpha}| + |g_{\alpha}| + |\nabla \Gamma^{\alpha} p| \right) + (t+r) |h_{\alpha}| \right] \end{cases}$$

For all $|\alpha| \leq k-1$,

 $(t \pm r) |\nabla \Gamma^{\alpha} v \pm \nabla \cdot \Gamma^{\alpha} G \otimes \omega| \lesssim L_k + N_k.$

Take a look at the proof which seems not transparent: Using $S = t\partial_t + r\partial_r$ and the equation:

 $t\nabla\Gamma^{\alpha}v + r\partial_{r}\Gamma^{\alpha}G = S\Gamma^{\alpha}G - tg_{\alpha}$ $t\nabla\cdot\Gamma^{\alpha}G + r\partial_{r}\Gamma^{\alpha}v = S\Gamma^{\alpha}v - tf_{\alpha} + t\nabla\Gamma^{\alpha}p.$

This is rearranged as follows:

$$\begin{split} t\nabla\Gamma^{\alpha}v + r\nabla\cdot\Gamma^{\alpha}G\otimes\omega &= r[\nabla\cdot\Gamma^{\alpha}G\otimes\omega - \partial_{r}\Gamma^{\alpha}G] \\ &+ S\Gamma^{\alpha}G - tg_{\alpha} \\ t\nabla\cdot\Gamma^{\alpha}G\otimes\omega + r\nabla\Gamma^{\alpha}v = r[\nabla\Gamma^{\alpha}v - \partial_{r}\Gamma^{\alpha}v\otimes\omega] \\ &+ [S\Gamma^{\alpha}v - tf_{\alpha} + t\nabla\Gamma^{\alpha}p]\otimes\omega. \end{split}$$

Lemma 7 (Estimate of Nonlinearities Using Weighted Energy). We have

 $||N_k(t)||_{L^2} \lesssim E_k(t) + E_k(t)^{1/2} X_k(t)^{1/2}.$

Proof. Away from the light cone, using weighted energy. Near the light cone, using the better estimate for good unknowns.

Lemma 8 (Estimate of Weighted Energy). If $E_k(t) \ll 1$, then $X_k(t) \leq E_k(t)^{1/2}$. *Proof:* By structures, the main contribution of $X_k(t)^2$ is E_k and

 $\sum_{|\alpha| \le k-1} [\|(t-r)\nabla\Gamma^{\alpha}v\|_{L^2}^2 + \|(t-r)\nabla\cdot\Gamma^{\alpha}G\|_{L^2}^2.$

Then use structures and the decomposition:

$$\nabla\Gamma^{\alpha}v = \frac{1}{2} [\nabla\Gamma^{\alpha}v + \nabla\cdot\Gamma^{\alpha}G\otimes\omega] + \frac{1}{2} [\nabla\Gamma^{\alpha}v - \nabla\cdot\Gamma^{\alpha}G\otimes\omega] \quad (-4)$$

and

$$\nabla \cdot \Gamma^{\alpha} G = \frac{1}{2} [\nabla \Gamma^{\alpha} v + \nabla \cdot \Gamma^{\alpha} G \otimes \omega] \omega$$
$$-\frac{1}{2} [\nabla \Gamma^{\alpha} v - \nabla \cdot \Gamma^{\alpha} G \otimes \omega] \omega,$$

Lemma 9 (Further Better Decay of Good Unknowns near Light Cone). Let $k \ge 4$, $E_k \ll 1$, $\omega = x/|x|$. Then we have

 $\|r(\partial_r \Gamma^{\alpha} v + \partial_r \Gamma^{\alpha} G \omega)\|_{L^2} + \|r\partial_r \Gamma^{\alpha} G \omega^{\perp}\|_{L^2} \lesssim E_{|\alpha|+1}^{1/2},$ $\|r(\Gamma^{\alpha} v + \Gamma^{\alpha} G \omega)\|_{L^{\infty}} + \|r\Gamma^{\alpha} G \omega^{\perp}\|_{L^{\infty}} \lesssim E_{|\alpha|+1}^{1/2}.$

Proof. Using the equations and structures. *Remark* 10. This is as good as linear wave equations.

Now we are ready to derive a critical energy estimate near the light cone, based on a very delicate estimate on pressure and nonlinearities, and the application of a ghost weight method by Alinhac.

The critical energy estimate away from the light cone is due to the Klainerman-Sideris's weighted L^2 energy estimate.

The final estimate:

 $\widetilde{E}'_k(t) \leq C_0(1+t)^{-1}\widetilde{E}_k(t)^{3/2}, \quad 0 \leq t < T.$ Here $E_k \sim \widetilde{E}_k$. This implies that $E_k(t)$ remains bounded by $2\epsilon^2$ on a time interval of order $T \sim \exp(C_0/\epsilon)$.

Thank you very much!!

谢谢关注!!

Incompressible Elasticity in 2D – p. 44/4