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History and Background
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The Omega Function

Let Ω(n) denote the number of prime factors of n (when counted with multiplicities). For example, Ω(1) = 0,
Ω(p) = 1, Ω(pq) = Ω(p2) = 2, Ω(pe1

1 · · · p
ek
k ) = e1 + . . .+ ek .

The following is a central question in multiplicative number theory:

Question

What is the distribution of the values of Ω(n).

Heuristics:

The distribution of the values of Ω(n)
follows no notable pattern. It appears to
be random.

Knowing Ω(n− 1),Ω(n− 2), . . . ,Ω(n−m)
does not allow us to predict Ω(n).
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Some Classical Results in Multiplicative Number Theory

The study of the distribution of the values of Ω(n) has a long and rich history and is closely related to
fundamental questions about the prime numbers.

The natural density of a set A ⊂ N is defined as d(A) = limN→∞ |{1 6 n 6 N : n ∈ A}|/N.
The following is a well-known equivalent form of the Prime Number Theorem.

Prime Number Theorem (von Mangoldt 1897, Landau 1911)

The sets {n ∈ N : Ω(n) is even} and {n ∈ N : Ω(n) is odd} have natural density 1/2.

Pillai-Selberg Theorem (Pillai 1940, Selberg 1939)

For all m ∈ N and r ∈ {0, . . . ,m − 1} the set {n ∈ N : Ω(n) ≡ r mod m} has natural density 1/m.

A sequence of real numbers (xn)n∈N is said to be uniformly distributed mod 1 if for any continuous
f : [0, 1)→ C we have

lim
N→∞

1

N

N∑
n=1

f ({xn}) =

∫ 1

0

f (x) dx .

Erdős-Delange Theorem (Erdős 1946, Delange 1958)

For all irrational α the sequence Ω(n)α, n ∈ N, is uniformly distributed mod 1.
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A Dynamical Generalization of the Prime Number Theorem
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1st Main Result

Let X be a compact metric space and T : X → X a continuous map. Since

Tm ◦ T n = Tm+n, ∀m, n ∈ N,

the transformation T naturally induces an action of (N,+) on X . We call (X ,T ) an additive topological
dynamical system. Every additive topological dynamical system (X ,T ) possesses at least one T -invariant Borel
probability measure. If (X ,T ) admits only one such measure then the system is called uniquely ergodic.

Theorem A (Bergelson-R. 2020)

Let (X , µ,T ) be uniquely ergodic. Then

lim
N→∞

1

N

N∑
n=1

f
(
TΩ(n)x

)
=

∫
f dµ

for every x ∈ X and f ∈ C(X ).

One can interpret Theorem A as saying that for any uniquely ergodic system (X ,T ) and any point x ∈ X the
orbit TΩ(n)x is uniformly distributed in the space X .
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Applications of Theorem A

Theorem A applied to rotation on two points recovers the Prime Number Theorem.

Proof. Let X = {0, 1} and T : x 7→ x + 1 mod 2.This system is uniquely ergodic, with unique invariant measure µ
given by µ({0}) = µ({1}) = 1/2.Let f : {0, 1} → R be defined as f (0) = 1 and f (1) = 0, and take x = 0.Then

lim
N→∞

1

N

N∑
n=1

f
(
TΩ(n)x

)
= d({n : Ω(n) is even}).

Since
∫
f dµ = 1/2, it follows from Theorem A that d({n : Ω(n) is even}) = 1/2. �

Theorem A applied to rotation on m points recovers the Pillai-Selberg Theorem.

Proof. Let X = {0, 1, . . . ,m − 1} and T : x 7→ x + 1 mod m. Take f = 1{r} and x = 0. Then

lim
N→∞

1

N

N∑
n=1

f
(
TΩ(n)x

)
= d({n : Ω(n) ≡ r mod m}).

It now follows from Theorem A that d({n : Ω(n) ≡ r mod m}) = 1/m. �

Theorem A applied to irrational rotations on the circle recovers the Erdős-Delange Theorem.

Proof. Let X = R/Z and T : x 7→ x + α mod 1. If α is irrational then (X ,T ) is uniquely ergodic. Let x = 0 and,
for h ∈ Z\{0}, let f (x) = e2πihx . By Theorem A,

lim
N→∞

1

N

N∑
n=1

e2πihΩ(n)α = 0, ∀h ∈ Z\{0}.

In view of Weyl’s equidistribution criterion, this is equivalent to the assertion that Ω(n)α, n ∈ N, is uniformly

distributed mod 1. �
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Applications of Theorem A

Theorem (DeKoninck-Katai 2015)

If α is a non-Liouville number then the sequence Ω(n)2α, n ∈ N, is uniformly distributed mod 1?

Theorem A applied to unipotent affine transformations on tori yields the following polynomial extensions of
the Erdős-Delange Theorem, which includes an extension of the DeKoninck-Katai Theorem to all irrational
α as a special case.

Corollary of Theorem A

Let Q(n) = ckn
k + . . .+ c1n + c0. Then Q(Ω(n)), n ∈ N, is uniformly distributed mod 1 if and only if at least

one of the coefficients c1, . . . , ck is irrational.

Theorem A applied to certain constant length substitution systems gives an analogue of a classical result
of Gelfond, providing new insight into the digit expansion of Ω(n) in base q.

Corollary of Theorem A

Let sq(n) denote the sum of digits of n in base q. If m and q − 1 are coprime then for all r ∈ {0, 1, . . . ,m − 1}
the set of n for which sq(Ω(n)) ≡ r mod m has asymptotic density 1/m.

A word about the proof of Theorem A

Our proof of Theorem A is elementary and self-contained. In particular, we don’t use any tools or results from
analytic number theory.
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Multiplicative Systems
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Multiplicative systems

Recall, a additive topological dynamical system is a pair (X ,T ) where X is a compact metric space and T is
continuous transformation on X , which we think of as an (N,+) action:

T n+m = T n ◦ Tm, ∀n,m ∈ N.

A multiplicative topological dynamical system is a pair (Y , S) where Y is a compact metric space and
S = (Sn)n∈N is an action of (N, ·) by continuous maps on Y , i.e.,

Snm = Sn ◦ Sm, ∀n,m ∈ N.

Example

Since Ω has the property that Ω(nm) = Ω(n) + Ω(m) for all n,m ∈ N, it turns any action of (N,+) into an
action of (N, ·):

TΩ(nm) = TΩ(n)+Ω(m) = TΩ(n) ◦ TΩ(m), ∀n,m ∈ N.

Hence for any additive topological dynamical system (X ,T ), the pair (X ,TΩ) is a multiplicative topological
dynamical system, where we use TΩ to denote (TΩ(n))n∈N.

Example

Any completely multiplicative function f : N→ S1 = {z ∈ C : |z | = 1} induces a natural action of (N, ·) on S1

via Sn(z) = f (n)z for all n ∈ N and z ∈ S1.
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2nd Main Theorem

Theorem A (Bergelson-R. 2020)

Let (X , µ,T ) be uniquely ergodic. Then

lim
N→∞

1

N

N∑
n=1

f
(
TΩ(n)x

)
=

∫
f dµ

for all x ∈ X and f ∈ C(X ).

Question: Does Theorem A remain true if (X ,TΩ) is replaced by more general multiplicative systems (Y ,S)?

Definition

We call a multiplicative topological dynamical system (Y , S) finitely generated if {Sp : p prime} is finite.

Theorem B (Bergelson-R. 2020)

Let (Y , ν,S) be finitely generated and strongly uniquely ergodic1. Then

lim
N→∞

1

N

N∑
n=1

g
(
Sny
)

=

∫
g dν

for all y ∈ Y and g ∈ C(Y )
1Slight strengthening of unique ergodicity for multiplicative systems
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Disjointness of additive and multiplicative Systems
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Sarnak’s Liouville disjointness conjecture

Recall that the Liouville function is λ(n) = (−1)Ω(n).

Liouville disjointness conjecture

For any zero entropy additive topological dynamical system (X ,T ) we have

lim
N→∞

1

N

N∑
n=1

f (T nx)λ(n) = 0

for all x ∈ X and f ∈ C(X ),

We have learned from Theorems A and B that a natural generalization of λ(n) are sequences of the form
g(Sny) coming from a multiplicative topological dynamical system (Y , S).

Question

If (X ,T ) is an additive topological dynamical system and (Y ,S) is a multiplicative topological dynamical
system, then what can be said about

lim
N→∞

1

N

N∑
n=1

f (T nx)g(Sny),

where x ∈ X , f ∈ C(X ), y ∈ Y , and g ∈ C(Y )?
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Disjointness

We call two bounded arithmetic functions a, b : N→ C asymptotically independent if

lim
N→∞

[
1

N

N∑
n=1

a(n)b(n)−

(
1

N

N∑
n=1

a(n)

)
·

(
1

N

N∑
n=1

b(n)

)]
= 0. (1)

Note that the Liouville disjointness conjecture says that a(n) = f (T nx) and b(n) = λ(n) are asymptotically
independent.

Definition

Let (X ,T ) be an additive topological dynamical system and (Y , S) a multiplicative topological dynamical
system. We call (X ,T ) and (Y , S) disjoint if for all x ∈ X , f ∈ C(x), y ∈ Y , and g ∈ C(Y ) the sequences
a(n) = f (T nx) and b(n) = g(Sny) are asymptotically independent.

Consider the multiplicative system (Y , S), where Y = {0, 1} and Sn(x) = x + Ω(n) mod 2 for all n ∈ N. We
refer to this system as multiplicative rotation on two points.

Liouville disjointness conjecture reformulated

Multiplicative rotation on two points is disjoint from every zero entropy additive topological dynamical system.
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Our Conjecture

Heuristic

If (X ,T ) is a “low complexity” additive topological dynamical system and (Y ,S) a “low complexity”
multiplicative topological dynamical system and there are no “local obstructions”, then (X ,T ) and (Y , S) are
disjoint.

Let us call an additive topological dynamical system (X ,T ) aperiodic if for all f ∈ C(X ) and x ∈ X the
sequence a(n) = f (T nx) is asymptotically independent from every periodic sequence.

Let us call an multiplicative topological dynamical system (Y , S) aperiodic if for all g ∈ C(Y ) and y ∈ Y the
sequence b(n) = g(Snx) is asymptotically independent from every periodic sequence.

Conjecture 1

If (X ,T ) is a zero entropy additive topological dynamical system and (Y , S) a finitely generated multiplicative
topological dynamical system and either (X ,T ) or (Y , S) is aperiodic, then (X ,T ) and (Y , S) are disjoint.

Theorem C (Bergelson-R. 2020)

Conjecture 1 holds when (X ,T ) is a nilsystem.

Theorem D (Bergelson-R. 2020)

Conjecture 1 holds when (X ,T ) is a horocycle flow.
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Proof of Theorem A
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Theorem A (Bergelson-R. 2020)

Let (X , µ,T ) be uniquely ergodic. Then

lim
N→∞

1

N

N∑
n=1

f
(
TΩ(n)x

)
=

∫
f dµ

for all x ∈ X and f ∈ C(X ).

Main technical result from which Theorem A follows:

Theorem 1

For any bounded sequence a : N→ C we have

1

N

N∑
n=1

a(Ω(n) + 1) =
1

N

N∑
n=1

a(Ω(n)) + oN→∞(1).

Theorem 1 applied to a(n) = (−1)n =⇒ Prime Number Theorem

Theorem 1 applied to a(n) = ζn where ζ is a root of unity =⇒ Pillai-Selberg Theorem

Theorem 1 applied to a(n) = e2πnα =⇒ Erdős-Delange Theorem

Theorem 1 applied to a(n) = f (T nx) =⇒ Theorem A.
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For a finite and non-empty set B ⊂ N and a function a : B → C we denote the Cesàro average of a over B and
the logarithmic average of a over B respectively by

E
n∈B

a(n) :=
1

|B|
∑
n∈B

a(n) and Elog

n∈B
a(n) :=

∑
n∈B a(n)/n∑

n∈B 1/n
.

We will write [N] for {1, . . . ,N}.

A well-known (and not hard to prove) fact from number theory asserts that for “large” s and for “almost all”
n ∈ N the number of primes in the interval [s] that divide n is approximately equal to

∑
p6s 1/p. This can be

expressed more formally as

lim
s→∞

lim
N→∞

E
n∈[N]

∣∣∣∣Elog

p∈P∩[s]

(
1− p1p|n

)∣∣∣∣ = 0, (2)

where 1p|n = 1 if p divides n and 1p|n = 0 otherwise. An equivalent form of (2), which will be particularly
useful for our purposes, states that for all bounded arithmetic functions a : N→ C one has

lim
s→∞

lim sup
N→∞

∣∣∣∣ En∈[N]
a(n) − Elog

p∈P∩[s]
E

n∈[N/p]
a(pn)

∣∣∣∣ = 0. (3)

An important role in our proof of Theorem A will be played by a variant of (3), asserting that

lim sup
N→∞

∣∣∣∣ En∈[N]
a(n) − Elog

m∈B
E

n∈[N/m]
a(mn)

∣∣∣∣ 6 ε, (4)

for some special types of finite and non-empty subsets B ⊂ N.

Florian K. Richter Dynamical generalizations of the Prime Number Theorem and disjointness of additive and multiplicative semigroup actions 18/22



Proposition

Let B ⊂ N be finite and non-empty. For any arithmetic function a : N→ C bounded in modulus by 1 we have

lim sup
N→∞

∣∣∣∣ En∈[N]
a(n) − Elog

m∈B
E

n∈[N/m]
a(mn)

∣∣∣∣ 6 (Elog

m∈B
Elog

n∈B
Φ(n,m)

)1/2

, (5)

where Φ: N× N→ N ∪ {0} is the function Φ(m, n) := gcd(m, n)− 1.

Proof.

We will show that

lim
N→∞

E
n∈[N]

∣∣∣∣Elog

m∈B

(
1−m1m|n

)∣∣∣∣2 = Elog

l∈B
Elog

m∈B
Φ(l ,m). (6)

From this (5) follows by Cauchy-Schwarz. By expanding the square on the left hand side of (6) we get

E
n∈[N]

∣∣∣∣Elog

m∈B

(
1−m1m|n

)∣∣∣∣2 = 1− 2Σ1 + Σ2, (7)

where Σ1 := En∈[N]Elog
m∈Bm1m|n and Σ2 := En∈[N]Elog

l,m∈B(l1l|n)(m1m|n). Note that En∈[N]m1m|n = 1 + O (1/N)
and therefore

Σ1 = 1 + O
(

1
N

)
. (8)

Similarly, since En∈[N]lm1l|n1m|n = gcd(l ,m) + O (1/N), we have

Σ2 = Elog

l∈B
Elog

m∈B
gcd(l ,m) + O

(
1
N

)
= 1 + Elog

l∈B
Elog

m∈B
Φ(l ,m) + O

(
1
N

)
. (9)
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We denote by P2 the set of 2-almost primes, i.e., P2 = {n ∈ N : Ω(n) = 2}.

Lemma

For all ε ∈ (0, 1) and ρ ∈ (1, 1 + ε] there exist finite and non-empty sets B1,B2 ⊂ N with the following
properties:

1 B1 ⊂ P and B2 ⊂ P2;

2 |B1 ∩ [ρj , ρj+1)| = |B2 ∩ [ρj , ρj+1)| for all j ∈ N ∪ {0};

3 Elog
m∈B1

Elog
n∈B1

Φ(m, n) 6 ε as well as Elog
m∈B2

Elog
n∈B2

Φ(m, n) 6 ε, where Φ(m, n) := gcd(m, n)− 1.

Proof of Theorem 1.

Let a : N→ C be bounded. Our goal is to show that

lim
N→∞

∣∣∣∣ En∈[N]
a
(
Ω(n) + 1

)
− E

n∈[N]
a
(
Ω(n)

)∣∣∣∣ = 0. (10)

Let ε ∈ (0, 1) and ρ ∈ (1, 1 + ε] be arbitrary and find two finite sets B1,B2 ⊂ N satisfying conditions 1, 2, and 3
of the above Lemma. Combining the Proposition with part 3 of the Lemma gives

E
n∈[N]

a
(
Ω(n) + 1

)
= Elog

p∈B1

E
n∈[N/p]

a
(
Ω(pn) + 1

)
+ O(ε1/2) + oN→∞(1) (11)

as well as
E
n∈[N]

a
(
Ω(n)

)
= Elog

q∈B2

E
n∈[N/q]

a
(
Ω(qn)

)
+ O(ε1/2) + oN→∞(1). (12)
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Proof of Theorem 1 (cont.)

Since B1 is comprised only of primes, we have a
(
Ω(pn) + 1

)
= a
(
Ω(n) + 2

)
for all p ∈ B1. Similarly we have

a
(
Ω(qn)

)
= a
(
Ω(n) + 2

)
for all q ∈ B2, because B2 is comprised only of 2-almost primes. So (13) and (14)

become
E
n∈[N]

a
(
Ω(n) + 1

)
= Elog

p∈B1

E
n∈[N/p]

a
(
Ω(n) + 2

)
+ O(ε1/2) + oN→∞(1) (13)

as well as
E
n∈[N]

a
(
Ω(n)

)
= Elog

q∈B2

E
n∈[N/q]

a
(
Ω(n) + 2

)
+ O(ε1/2) + oN→∞(1). (14)

Finally, note that if p and q belong to the same ρ-adic interval [ρj , ρj+1) then

E
n∈[N/p]

a
(
Ω(n) + 2

)
= E

n∈[N/q]
a
(
Ω(n) + 2

)
+ O(ρ− 1).

Since B1 and B2 have the same cardinality when restricted to [ρj , ρj+1) for every j ∈ N, we obtain∣∣∣∣ En∈[N]
a
(
Ω(n) + 1

)
− E

n∈[N]
a
(
Ω(n)

)∣∣∣∣ = O(η − 1) + O(ε1/2) + oN→∞(1).

Using η ∈ (1, 1 + ε] and letting ε tend to 0 finishes the proof of (10).
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Thank you
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