Do NP-Hard Problems Require Exponential Time?

Andrew Drucker

IAS
April 8, 2014

NP-completeness

- NP-completeness theory gives great guidance about which problems are efficiently solvable.

NP-completeness

- NP-completeness theory gives great guidance about which problems are efficiently solvable.
- 2-SAT, 2-Coloring, Euler Tour \in PTIME;有

NP-completeness

- NP-completeness theory gives great guidance about which problems are efficiently solvable.
- 2-SAT, 2-Coloring, Euler Tour \in PTIME;

- 3-SAT, 3-Coloring, Hamilton Path

NP-completeness

- NP-completeness theory gives great guidance about which problems are efficiently solvable.
- 2-SAT, 2-Coloring, Euler Tour \in PTIME; R
- 3-SAT, 3-Coloring, Hamilton Path NP-complete.

NP-completeness

- Want to solve NP-complete problems \Longrightarrow must accept compromise!
- Popular approach: find approximately-optimal solutions. (for optimization probs.)
- Here too, NP-completeness theory (+ PCPs) often provides great guidance!
- .5-approx Max-LIN (\mathbb{F}_{2}) \in PTIME;
- $(.5+\varepsilon)$-approx Max-LIN (\mathbb{F}_{2}): NP-Complete. [Håstad'97]

NP-completeness

- Want to solve NP-complete problems \Longrightarrow must accept compromise!
- Popular approach: find approximately-optimal solutions.
(for optimization probs.)
- Here too, NP-completeness theory (+ PCPs) often provides great guidance!
- .5-approx Max-LIN (\mathbb{F}_{2}) $\in \quad$ PTIME;
- $(.5+\varepsilon)$-approx Max-LIN (\mathbb{F}_{2}): NP-Complete. [Håstad'97]

NP-completeness

- Want to solve NP-complete problems \Longrightarrow must accept compromise!
- Popular approach: find approximately-optimal solutions. (for optimization probs.)
- Here too, NP-completeness theory (+ PCPs) often provides great guidance!
- .5-approx Max-LIN (\mathbb{F}_{2}) \quad PTIME;
- $(.5+\varepsilon)$-approx Max-LIN (\mathbb{F}_{2}): NP-Complete. [Håstad'97]

NP-completeness

- Sometimes we need an exact solution to an NP-C problem.
- Then, compromise \Longrightarrow must accept an inefficient algorithm! (at least, inefficient in the worst case-our focus)
- Key question: Can we at least beat brute-force search??

NP-completeness

- Sometimes we need an exact solution to an NP-C problem.
- Then, compromise \Longrightarrow must accept an inefficient algorithm! (at least, inefficient in the worst case-our focus)
- Key question: Can we at least beat brute-force search??

NP-completeness

- Sometimes we need an exact solution to an NP-C problem.
- Then, compromise \Longrightarrow must accept an inefficient algorithm! (at least, inefficient in the worst case-our focus)
- Key question: Can we at least beat brute-force search??

Time complexity

Known results for some popular NP-C problems:

Problem	Parameter	Trivial	Improved	Ref.
CNF-SAT	$n=\#$ vars	2^{n}	1.99^{n} ??	
k-SAT			$2^{(1-1 / k) n}$	[Paturi, Pudlák, Zane '97]
IND. SET	$n=\#$ vertices	2^{n}	1.23^{n}	[Tarjan, Trojanowski'77; more...]
PLANAR				
IND. SET			$2^{\circ(\sqrt{n})}$	[Ungar '51; Lipton, Tarjan '79]
HAM. PATH		$n!$	$2^{n}, 1.7^{n}$	[Held, Karp '62; Bjorklund '10]

(Strictly: $F(n)$'s above should be $O^{*}(F(n)) \triangleq F(n) \cdot \mid$ instance $\left.\right|^{O(1)} \cdot$)

Example: Schöning's alg.

- Given: a k-CNF $\mathcal{F}=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$. (each C_{i} an OR of $\leq k$ literals)
- Goal: find a satisfying solution to \mathcal{F} if one exists.

```
Algorithm A(\mathcal{F}):
(1) Let }x\longleftarrow\mathrm{ (ranclom assignment).
(2) Choose any unsat. clause Ci; flip a rand. variable in Ci
(3) Repeat Step 2 for 3n steps.
```


Example: Schöning's alg.

- Given: a k-CNF $\mathcal{F}=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$. (each C_{i} an OR of $\leq k$ literals)
- Goal: find a satisfying solution to \mathcal{F} if one exists.

Algorithm $A(\mathcal{F})$:
(1) Let $x \longleftarrow$ (random assignment).
(2) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.
(3) Repeat Step 2 for $3 n$ steps.

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:
(1) Let $x \longleftarrow$ (random assignment).
(2) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.
(0) Repeat Step 2 for $3 n$ steps.

- Claim: if $\mathcal{F} \in S A T$, then

$$
\operatorname{Pr}[A(F) \text { finds a solution }] \geq 2^{-(1-c / k) n} \text {. }
$$

- Analysis idea is very simple!

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:
(1) Let $x \longleftarrow$ (random assignment).
(2) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.

- Repeat Step 2 for 3n steps.
- Claim: if $\mathcal{F} \in S A T$, then

$$
\operatorname{Pr}[A(\mathcal{F}) \text { finds a solution }] \geq 2^{-(1-c / k) n} .
$$

- Analysis idea is very simple!

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:
(1) Let $x \longleftarrow$ (random assignment).
(2) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.

- Repeat Step 2 for $3 n$ steps.
- Claim: if $\mathcal{F} \in S A T$, then

$$
\operatorname{Pr}[A(\mathcal{F}) \text { finds a solution }] \geq 2^{-(1-c / k) n} .
$$

\Longrightarrow repeat for $2^{(1-c / k) n}$ trials to find one w.h.p.!

- Analysis idea is very simple!

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:

(1) Let $x \longleftarrow$ (random assignment).
(2) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.
(3) Repeat Step 2 for $3 n$ steps.

- Claim: if $\mathcal{F} \in S A T$, then

$$
\operatorname{Pr}[A(\mathcal{F}) \text { finds a solution }] \geq 2^{-(1-c / k) n} .
$$

\Longrightarrow repeat for $2^{(1-c / k) n}$ trials to find one w.h.p.!

- Analysis idea is very simple!

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:
(1) Let $x \longleftarrow$ (random assignment).
(2) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.

- Repeat Step 2 for $3 n$ steps.
- Suppose $\mathcal{F}\left(x^{*}\right)=1$. Let $x^{t}=$ state of x after t execs. of Step 2. Let
- Key fact: if $Y_{t}>0$, then
- Can lower-bound $\operatorname{Pr}\left[\min _{t} Y_{t}=0\right]$ in terms of a biased random walk.
(biased against us, but not too badly! Hope is that $Y_{0} \ll n / 2$.)

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:
(1) Let $x \longleftarrow$ (random assignment).
(1) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.

- Repeat Step 2 for $3 n$ steps.
- Suppose $\mathcal{F}\left(\mathbf{x}^{*}\right)=1$. Let $x^{t}=$ state of x after t execs. of Step 2 . Let

$$
Y_{t} \triangleq\left\|x^{t}-\mathbf{x}^{*}\right\|_{1} .
$$

- Key fact: if $Y_{t}>0$, then
- Can lower-bound $\operatorname{Pr}\left[\min _{t} Y_{t}=0\right]$ in terms of a biased random walk.
(biased against us, but not too badly!

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:
(1) Let $x \longleftarrow$ (random assignment).
(2) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.

- Repeat Step 2 for $3 n$ steps.
- Suppose $\mathcal{F}\left(\mathbf{x}^{*}\right)=1$. Let $x^{t}=$ state of x after t execs. of Step 2 . Let

$$
Y_{t} \triangleq\left\|x^{t}-\mathbf{x}^{*}\right\|_{1} .
$$

- Key fact: if $Y_{t}>0$, then $\operatorname{Pr}\left[Y_{t+1}=Y_{t}-1\right] \geq 1 / k$.
- Can lower-bound $\operatorname{Pr}\left[\min _{t} Y_{t}=0\right]$ in terms of a biased random walk.
(biased against us, but not too badly!

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:

(1) Let $x \longleftarrow$ (random assignment).
(2) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.

- Repeat Step 2 for $3 n$ steps.
- Suppose $\mathcal{F}\left(\mathbf{x}^{*}\right)=1$. Let $x^{t}=$ state of x after t execs. of Step 2 . Let

$$
Y_{t} \triangleq\left\|x^{t}-\mathbf{x}^{*}\right\|_{1} .
$$

- Key fact: if $Y_{t}>0$, then

$$
\operatorname{Pr}\left[Y_{t+1}=Y_{t}-1\right] \geq 1 / k
$$

- Can lower-bound $\operatorname{Pr}\left[\min _{t} Y_{t}=0\right]$ in terms of a biased random walk.

Example: Schöning's alg.

Algorithm $A(\mathcal{F})$:
(1) Let $x \longleftarrow$ (random assignment).
(1) Choose any unsat. clause C_{i}; flip a rand. variable in C_{i}.

- Repeat Step 2 for 3n steps.
- Suppose $\mathcal{F}\left(\mathbf{x}^{*}\right)=1$. Let $x^{t}=$ state of x after t execs. of Step 2 . Let

$$
Y_{t} \triangleq\left\|x^{t}-\mathbf{x}^{*}\right\|_{1}
$$

- Key fact: if $Y_{t}>0$, then

$$
\operatorname{Pr}\left[Y_{t+1}=Y_{t}-1\right] \geq 1 / k
$$

- Can lower-bound $\operatorname{Pr}\left[\min _{t} Y_{t}=0\right]$ in terms of a biased random walk. (biased against us, but not too badly! Hope is that $Y_{0} \ll n / 2$.)

Time complexity

Known results for some popular NP-C problems:

Problem	Parameter	Trivial	Improved	Ref.
CNF-SAT	$n=\#$ vars	2^{n}	$1.99^{n} ? ?$	
k-SAT			$2^{(1-1 / k) n}$	[Paturi, Pudlák, Zane '97]
IND. SET	$n=\#$ vertices	2^{n}	1.23^{n}	[Tarjan, Trojanowski'77; more...]
PLANAR				
IND. SET			$2^{O(\sqrt{n})}$	[Ungar '51; Lipton, Tarjan '79]
HAM. PATH		$n!$	$2^{n}, 1.7^{n}$	[Held, Karp '62; Bjorklund '10]

[^0]
Time complexity

Known results for some popular NP-C problems:

Problem	Parameter	Trivial	Improved	Ref.
CNF-SAT	$n=\#$ vars	2^{n}	1.99^{n} ??	
k kSAT			$2^{(1-1 / k) n}$	[Paturi, Pudlák, Zane '97]
IND. SET	$n=\#$ vertices	2^{n}	1.23^{n}	[Tarjan, Trojanowski'77; more...]
PLANAR				
IND. SET			$2^{O(\sqrt{n})}$	[Ungar '51; Lipton, Tarjan '79]
HAM. PATH		$n!$	$2^{n}, 1.7^{n}$	[Held, Karp '62; Bjorklund '10]

NP-C theory: no prediction about relative difficulty, best runtimes for these probs!

Time complexity

Known results for some popular NP-C problems:

Problem	Parameter	Trivial	Improved	Ref.
CNF-SAT	$n=\#$ vars	2^{n}	$1.99^{n} ? ?$	
k-SAT			$2^{(1-1 / k) n}$	[Paturi, Pudlák, Zane '97]
IND. SET	$n=\#$ vertices	2^{n}	1.23^{n}	[Tarjan, Trojanowski'77; more...]
PLANAR				
IND. SET			$2^{0(\sqrt{n})}$	[Ungar '51; Lipton, Tarjan '79]
HAM. PATH		$n!$	$2^{n}, 1.7^{n}$	[Held, Karp '62; Bjorklund '10]

Challenge for complexity theory: explain the seeming differences in difficulty! Identify barriers to further progress!
Guide search for faster algorithms!

Time complexity

- Could $P \neq$ NP conjecture imply that NP-C probs require exponential time?
- No idea. Seems hopeless!
- Influential approach: strengthen the conjecture!
\square
Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane '98) No $2^{o(n)}$-time algorithm for n-variable 3-SAT.

Time complexity

- Could $P \neq$ NP conjecture imply that NP-C probs require exponential time?
- No idea. Seems hopeless!
- Influential approach: strengthen the conjecture!

Exponential Time Hypothesis-informal (Impagliazzo, Paturi, Zane '98)

No $2^{o(n)}$-time algorithm for n-variable 3-SAT.

The ETH

Exponential Time Hypothesis-informal (Impagliazzo, Paturi, Zane '98)
No $2^{o(n)}$-time algorithm for n-variable 3-SAT.

- Formally: for $k \geq 3$, define $s_{k} \in[0,1]$ by

$$
s_{k} \triangleq \inf \left\{\varepsilon: k-S A T \text { decidable in time } O^{*}\left(2^{\varepsilon n}\right)\right\}
$$

(allowing randomized algs with $1 / 3$ error prob.)

Exponential Time Hypothesis-formal (IPZ)

\qquad

The ETH

Exponential Time Hypothesis-informal (Impagliazzo, Paturi, Zane '98)

No $2^{o(n)}$-time algorithm for n-variable 3-SAT.

- Formally: for $k \geq 3$, define $s_{k} \in[0,1]$ by

$$
s_{k} \triangleq \inf \left\{\varepsilon: k \text {-SAT decidable in time } O^{*}\left(2^{\varepsilon n}\right)\right\} .
$$

(allowing randomized algs with $1 / 3$ error prob.)

Exponential Time Hypothesis-formal (IPZ)

The ETH

Exponential Time Hypothesis-informal (Impagliazzo, Paturi, Zane '98)

No $2^{o(n)}$-time algorithm for n-variable 3-SAT.

- Formally: for $k \geq 3$, define $s_{k} \in[0,1]$ by

$$
s_{k} \triangleq \inf \left\{\varepsilon: k \text {-SAT decidable in time } O^{*}\left(2^{\varepsilon n}\right)\right\} .
$$

(allowing randomized algs with $1 / 3$ error prob.)

Exponential Time Hypothesis-formal (IPZ)

$$
s_{3}>0 .
$$

The ETH

- Formally: for $k \geq 3$, define $s_{k} \in[0,1]$ by
$s_{k} \triangleq \inf \left\{\varepsilon: k\right.$-SAT decidable in time $\left.O^{*}\left(2^{\varepsilon n}\right)\right\}$.
(allowing randomized algs with $1 / 3$ error prob.)
Exponential Time Hypothesis-formal (IPZ)

$$
s_{3}>0
$$

- Best known: $s_{3} \leq .388$, $s_{4} \leq .555$, $s_{k} \leq 1-\Theta(1 / k)$.
[Paturi, Pudlák, Saks, Zane '98; Hertli '11]

The ETH

- Formally: for $k \geq 3$, define $s_{k} \in[0,1]$ by
$s_{k} \triangleq \inf \left\{\varepsilon: k\right.$-SAT decidable in time $\left.O^{*}\left(2^{\varepsilon n}\right)\right\}$.
(allowing randomized algs with $1 / 3$ error prob.)
Exponential Time Hypothesis-formal (IPZ)

$$
s_{3}>0
$$

- $s_{3} \leq s_{4} \leq s_{5} \leq \ldots$
- Best known: $s_{3} \leq .388$, $5_{4} \leq .555$, $s_{k} \leq 1-\Theta(1 / k)$.
[Paturi, Pudlák, Saks, Zane '98; Hertli '11]

The ETH

- Formally: for $k \geq 3$, define $s_{k} \in[0,1]$ by
$s_{k} \triangleq \inf \left\{\varepsilon: k\right.$-SAT decidable in time $\left.O^{*}\left(2^{\varepsilon n}\right)\right\}$.
(allowing randomized algs with $1 / 3$ error prob.)
Exponential Time Hypothesis-formal (IPZ)

$$
s_{3}>0
$$

- $s_{3} \leq s_{4} \leq s_{5} \leq \ldots$
- Best known: $s_{3} \leq .388, \quad s_{4} \leq .555, \quad s_{k} \leq 1-\Theta(1 / k)$.
[Paturi, Pudlák, Saks, Zane '98; Hertli '11]

ETH

- Much stronger belief than $P \neq N P$.
- Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

- Issue: ETH studies dependence on key param.

$$
n=\# \operatorname{vars}(\mathcal{F}) \ll|\mathcal{F}|
$$

- Measures dimension of search space, not input size!
c.f. [Hunt, Stearns'90], "power index"

ETH

- Much stronger belief than $P \neq N P$.
- Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

- Issue: ETH studies dependence on key param.

$$
n=\# \operatorname{vars}(\mathcal{F}) \ll|\mathcal{F}|
$$

- Measures dimension of search space, not input size!
c.f. [Hunt, Stearns'90], "power index"

ETH

- Much stronger belief than $P \neq N P$.
- Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

- Issue: ETH studies dependence on key param.
$n=\# \operatorname{vars}(\mathcal{F}) \ll|\mathcal{F}|$.
- Measures dimension of search space, not input size!
c.f. [Hunt, Stearns'90], "power index"

ETH

- Much stronger belief than $P \neq N P$.
- Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

- Issue: ETH studies dependence on key param.

$$
n=\# \operatorname{vars}(\mathcal{F}) \ll|\mathcal{F}|
$$

- Measures dimension of search space, not input size!
c.f. [Hunt, Stearns'90], "power index"

ETH

- Much stronger belief than $P \neq N P$.
- Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

- Issue: ETH studies dependence on key param.

$$
n=\# \operatorname{vars}(\mathcal{F}) \ll|\mathcal{F}|
$$

- Measures dimension of search space, not input size!
c.f. [Hunt, Stearns'90], "power index"

Consequences of ETH

- Consider IND. SET problem. Solvable in $O^{*}\left(1.23^{N}\right)$ time on N -vertex graphs.
- Can we hope for $2^{\circ(N)}$? Or, would that violate ETH?
- Given: $2^{o(N)}$-time alg for IND. SET; try to solve 3-SAT instance \mathcal{F}.

$$
(n \triangleq \# \text { vars, } \quad m \triangleq \# \text { clauses })
$$

- Usual NP-C reduction: $\mathcal{F} \longrightarrow(G, k)$, where

$$
|V(G)|=\Theta(n+m)=\Theta(m)
$$

- \Longrightarrow We solve \mathcal{F} in time $2^{\circ(m)}$. WEAK!

Consequences of ETH

- Consider IND. SET problem. Solvable in $O^{*}\left(1.23^{N}\right)$ time on N-vertex graphs.
- Can we hope for $2^{\circ(N)}$? Or, would that violate ETH?
- Given: $2^{o(N)}$-time alg for IND. SET; try to solve 3-SAT instance \mathcal{F}. ($n \triangleq \#$ vars, $m \triangleq$ \#clauses)
- Usual NP-C reduction: $\mathcal{F} \longrightarrow(G, k)$, where

$$
|V(G)|=\Theta(n+m)=\Theta(m)
$$

- \Longrightarrow We solve \mathcal{F} in time $2^{\circ(\mathrm{m})}$.

Consequences of ETH

- Consider IND. SET problem.

Solvable in $O^{*}\left(1.23^{N}\right)$ time on N-vertex graphs.

- Can we hope for $2^{\circ(N)}$? Or, would that violate ETH?
- Given: $2^{\circ(N)}$-time alg for IND. SET; try to solve 3-SAT instance \mathcal{F}. ($n \triangleq \#$ vars, $m \triangleq$ \#clauses)
- Usual NP-C reduction: $\mathcal{F} \longrightarrow(G, k)$, where

$$
|V(G)|=\Theta(n+m)=\Theta(m)
$$

- \Longrightarrow We solve \mathcal{F} in time $2^{\circ(m)}$.

Consequences of ETH

- Consider IND. SET problem.

Solvable in $O^{*}\left(1.23^{N}\right)$ time on N-vertex graphs.

- Can we hope for $2^{\circ(N)}$? Or, would that violate ETH?
- Given: $2^{\circ(N)}$-time alg for IND. SET; try to solve 3-SAT instance \mathcal{F}. ($n \triangleq \#$ vars, $m \triangleq$ \#clauses)
- Usual NP-C reduction: $\mathcal{F} \longrightarrow(G, k)$, where

$$
|V(G)|=\Theta(n+m)=\Theta(m)
$$

- \Longrightarrow We solve \mathcal{F} in time $2^{\circ(m)}$.

Consequences of ETH

- Consider IND. SET problem.

Solvable in $O^{*}\left(1.23^{N}\right)$ time on N-vertex graphs.

- Can we hope for $2^{o(N)}$? Or, would that violate ETH?
- Given: $2^{o(N)}$-time alg for IND. SET; try to solve 3-SAT instance \mathcal{F}.

$$
(n \triangleq \# \text { vars, } \quad m \triangleq \# \text { clauses })
$$

- Usual NP-C reduction: $\mathcal{F} \longrightarrow(G, k)$, where

$$
|V(G)|=\Theta(n+m)=\Theta(m)
$$

- \Longrightarrow We solve \mathcal{F} in time $2^{\circ(m)}$. WEAK!

Consequences of ETH

- Consider IND. SET problem.

Solvable in $O^{*}\left(1.23^{N}\right)$ time on N -vertex graphs.

- Can we hope for $2^{\circ(N)}$? Or, would that violate ETH?
- Given: $2^{o(N)}$-time alg for IND. SET; try to solve 3-SAT instance \mathcal{F}.

$$
(n \triangleq \# \text { vars, } \quad m \triangleq \# \text { clauses })
$$

- Usual NP-C reduction: $\mathcal{F} \longrightarrow(G, k)$, where

$$
|V(G)|=\Theta(n+m)=\Theta(m)
$$

- \Longrightarrow We solve \mathcal{F} in time $2^{\circ(m)}$.

Consequences of ETH

- Consider IND. SET problem.

Solvable in $O^{*}\left(1.23^{N}\right)$ time on N -vertex graphs.

- Can we hope for $2^{o(N)}$? Or, would that violate ETH?
- Given: $2^{o(N)}$-time alg for IND. SET; try to solve 3-SAT instance \mathcal{F}.

$$
(n \triangleq \# \text { vars, } \quad m \triangleq \# \text { clauses })
$$

- Usual NP-C reduction: $\mathcal{F} \longrightarrow(G, k)$, where

$$
|V(G)|=\Theta(n+m)=\Theta(m)
$$

- \Longrightarrow We solve \mathcal{F} in time $2^{\circ(m)}$. WEAK!

Consequences of ETH

- $2^{\circ(N)}$ time alg for IND. SET \Longrightarrow Solve 3-SAT in time $2^{\circ(\mathrm{m})}$.

```
Theorem (IPZ)
Solve k-SAT in time 2o(m) }\longrightarrow\mathrm{ Solve k-SAT in time 2o(n) !!
```

- So, $2^{\circ(N)}$ time alg for IND. SET violates ETH.

Consequences of ETH

- $2^{\circ(N)}$ time alg for IND. SET \Longrightarrow Solve 3-SAT in time $2^{\circ(m)}$.

```
Theorem (IPZ)
Solve k-SAT in time 2o(m) \Longrightarrow Solve k-SAT in time 2oo(n) !!
```


Consequences of ETH

- $2^{\circ(N)}$ time alg for IND. SET \Longrightarrow Solve 3-SAT in time $2^{\circ(\mathrm{m})}$.

Theorem (IPZ)
 Solve k-SAT in time $2^{\circ}(\mathrm{m}) \quad \Longrightarrow \quad$ Solve k-SAT in time $2^{\circ(n)}$!!

- So, $2^{o(N)}$ time alg for IND. SET violates ETH.

Consequences of ETH

- $2^{\circ(N)}$ time alg for IND. SET \Longrightarrow Solve 3-SAT in time $2^{\circ(m)}$.

Theorem (IPZ)

k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow$ k-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0 \quad!!$

- So, $2^{\circ(N)}$ time alg for IND. SET violates ETH.

Consequences of ETH

- $2^{\circ(N)}$ time alg for IND. SET \Longrightarrow Solve 3-SAT in time $2^{\circ(m)}$.

Theorem (IPZ)
k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow$ k-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0 \quad!!$

- So, $2^{\circ(N)}$ time alg for IND. SET violates ETH.
- Similar: HAM PATH, DOMINATING SET, VERTEX COVER.

Consequences of ETH

- Planar IND. SET problem: Solvable in $2^{O(\sqrt{N})}$ time on N -vertex planar graphs.
- Can we hope for $2^{\circ(\sqrt{N})}$?
- Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow$ (planar) (G, k), where

$$
|V(G)|=\Theta\left(m^{2}\right) .
$$

- Solve Planar IND SET in time $2^{\circ}(\sqrt{N})$

$$
\begin{aligned}
& \text { solve 3-SAT in time } 2^{\circ(m)} \text {. } \\
& \text { Again, violates ETH! }
\end{aligned}
$$

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Consequences of ETH

- Planar IND. SET problem: Solvable in $2^{O(\sqrt{N})}$ time on N -vertex planar graphs.
- Can we hope for $2^{\circ(\sqrt{N})}$?
- Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow$ (planar) (G, k), where

$$
|V(G)|=\Theta\left(m^{2}\right) .
$$

- Solve Planar IND SET in time $2^{\circ}(\sqrt{N})$ solve 3-SAT in time $2^{\circ(m)}$.

Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Consequences of ETH

- Planar IND. SET problem: Solvable in $2^{O(\sqrt{N})}$ time on N -vertex planar graphs.
- Can we hope for $2^{\circ}(\sqrt{N})$?
- Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow$ (planar) (G, k), where $V(G) \mid=\Theta\left(m^{2}\right)$
- Solve Planar IND SET in time $2^{\circ}(\sqrt{N})$ solve 3-SAT in time $2^{\circ(m)}$

Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Consequences of ETH

- Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on N -vertex planar graphs.

- Can we hope for $2^{\circ(\sqrt{N})}$?
- Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow$ (planar) (G, k), where $|V(G)|=\Theta\left(m^{2}\right)$
- Solve Planar IND SET in time $2^{\circ(\sqrt{N})}$ $=$ solve 3-SAT in time $2^{\circ(m)}$.

Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Consequences of ETH

- Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on N -vertex planar graphs.

- Can we hope for $2^{\circ(\sqrt{N})}$?
- Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow$ (planar) (G, k), where

$$
|V(G)|=\Theta\left(m^{2}\right)
$$

- Solve Planar IND SET in time $2^{\circ(\sqrt{N})}$ solve 3-SAT in time $2^{\circ(m)}$.

Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Consequences of ETH

- Planar IND. SET problem: Solvable in $2 O(\sqrt{N})$ time on N -vertex planar graphs.
- Can we hope for $2^{\circ(\sqrt{N})}$?
- Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow$ (planar) (G, k), where

$$
|V(G)|=\Theta\left(m^{2}\right)
$$

- Solve Planar IND SET in time $2^{\circ(\sqrt{N})} \Longrightarrow$ solve 3-SAT in time $2^{\circ(\mathrm{m})}$.

Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Consequences of ETH

- Planar IND. SET problem: Solvable in $2^{O(\sqrt{N})}$ time on N -vertex planar graphs.
- Can we hope for $2^{\circ(\sqrt{N})}$?
- Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow$ (planar) (G, k), where

$$
|V(G)|=\Theta\left(m^{2}\right) .
$$

- Solve Planar IND SET in time $2^{\circ(\sqrt{N})}$ \qquad solve 3-SAT in time $2^{\circ(m)}$.

Again, violates ETH!

- Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where

$$
\# \operatorname{vars}\left(\mathcal{G}^{(3)}\right)=\Theta\left(\# \operatorname{clauses}\left(\mathcal{F}^{(3)}\right)\right)
$$

- $2^{\circ(n)}$ time alg for 3-SAT \Longrightarrow Solve 4-SAT in time $2^{\circ(m)}$. ([IPZ] result, again) \Longrightarrow Solve 4-SAT in time $2^{\circ}(n)$!

Theorem (IPZ)

$$
s_{3}=0 \Longleftrightarrow s_{k}=0 \quad \forall k \geq 3 .
$$

Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where

$$
\# \operatorname{vars}\left(\mathcal{G}^{(3)}\right)=\Theta\left(\# \operatorname{clauses}\left(\mathcal{F}^{(3)}\right)\right)
$$

- $2^{\circ(n)}$ time alg for 3-SAT \Longrightarrow Solve 4-SAT in time $2^{\circ(m)}$. ([IPZ] result, again) \Longrightarrow Solve 4-SAT in time $2^{\circ(n)}$!

Theorem (IPZ)

Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where

- $2^{\circ(n)}$ time alg for 3-SAT \Longrightarrow Solve 4-SAT in time $2^{\circ(m)}$. ([IP7] result, again) \Longrightarrow Solve 4-SAT in time $2^{\circ}(n)$!

Theorem (IPZ)

Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where

$$
\# \operatorname{vars}\left(\mathcal{G}^{(3)}\right)=\Theta\left(\# \operatorname{clauses}\left(\mathcal{F}^{(3)}\right)\right) .
$$

- $2^{\circ(n)}$ time alg for 3-SAT \Longrightarrow Solve 4-SAT in time $2^{\circ(m)}$.
([IP7] result, again) \Longrightarrow Solve 4-SAT in time $2^{\circ}(n)$!

Theorem (IPZ)

Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where

$$
\# \operatorname{vars}\left(\mathcal{G}^{(3)}\right)=\Theta\left(\# \operatorname{clauses}\left(\mathcal{F}^{(3)}\right)\right)
$$

- $2^{\circ(n)}$ time alg for 3-SAT \Longrightarrow Solve 4-SAT in time $2^{\circ(m)}$. ([IPZ] result, again) \Longrightarrow Solve 4-SAT in time $2^{\circ(n)}$!

Theorem (IPZ)

Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where

$$
\# \operatorname{vars}\left(\mathcal{G}^{(3)}\right)=\Theta\left(\# \operatorname{clauses}\left(\mathcal{F}^{(3)}\right)\right)
$$

- $2^{\circ(n)}$ time alg for 3-SAT \Longrightarrow Solve 4-SAT in time $2^{\circ(m)}$. ([IPZ] result, again) \Longrightarrow Solve 4-SAT in time $2^{\circ(n)}$!

Robustness of ETH

- Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

- Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where

$$
\# \operatorname{vars}\left(\mathcal{G}^{(3)}\right)=\Theta\left(\# \operatorname{clauses}\left(\mathcal{F}^{(3)}\right)\right)
$$

- $2^{\circ(n)}$ time alg for 3-SAT \Longrightarrow Solve 4-SAT in time $2^{\circ(m)}$. ([IPZ] result, again) \Longrightarrow Solve 4-SAT in time $2^{\circ(n)}$!

Theorem (IPZ)

$$
s_{3}=0 \Longleftrightarrow s_{k}=0 \quad \forall k \geq 3
$$

A stronger hypothesis

$s_{k} \triangleq \inf \left\{\varepsilon: k-\right.$ SAT decidable in time $\left.O^{*}\left(2^{\varepsilon n}\right)\right\}$

Exponential Time Hypothesis (ETH) (IPZ'97)
 Best known: $s_{k} \leq 1-\Theta(1 / k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (SETH)

$$
\lim _{k} s_{k}=1 .
$$

- Note: SETH \Rightarrow ETH.

A stronger hypothesis

$$
s_{k} \triangleq \inf \left\{\varepsilon: k \text {-SAT decidable in time } O^{*}\left(2^{\varepsilon n}\right)\right\} .
$$

Exponential Time Hypothesis (ETH)
 (IPZ'97)
 $$
s_{3}>0 .
$$
 Best known: $s_{k} \leq 1-\Theta(1 / k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (SETH)
(IP'98)

- Note: SETH \Rightarrow ETH.

A stronger hypothesis

$$
s_{k} \triangleq \inf \left\{\varepsilon: k \text {-SAT decidable in time } O^{*}\left(2^{\varepsilon n}\right)\right\} .
$$

Exponential Time Hypothesis (ETH)
 (IPZ'97)
 $$
s_{3}>0 .
$$

Best known: $s_{k} \leq 1-\Theta(1 / k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (SETH)

- Note: SETH \Rightarrow ETH.

A stronger hypothesis

$$
s_{k} \triangleq \inf \left\{\varepsilon: k \text {-SAT decidable in time } O^{*}\left(2^{\varepsilon n}\right)\right\} .
$$

Exponential Time Hypothesis (ETH)
 (IPZ'97)
 $$
s_{3}>0 .
$$

Best known: $s_{k} \leq 1-\Theta(1 / k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (SETH)

- Note: SETH \Rightarrow ETH.

A stronger hypothesis

$$
s_{k} \triangleq \inf \left\{\varepsilon: k \text {-SAT decidable in time } O^{*}\left(2^{\varepsilon n}\right)\right\} .
$$

Exponential Time Hypothesis (ETH)
 (IPZ'97)
 $$
s_{3}>0 .
$$

Best known: $s_{k} \leq 1-\Theta(1 / k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (SETH)

$$
\lim _{k} s_{k}=1 .
$$

- Note: SETH \Rightarrow ETH.

A stronger hypothesis

$$
s_{k} \triangleq \inf \left\{\varepsilon: k \text {-SAT decidable in time } O^{*}\left(2^{\varepsilon n}\right)\right\} .
$$

Exponential Time Hypothesis (ETH)
 (IPZ'97)
 $$
s_{3}>0 .
$$

Best known: $s_{k} \leq 1-\Theta(1 / k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (SETH)

$$
\lim _{k} s_{k}=1
$$

- Note: SETH \Rightarrow ETH.

More consequences of ETH, SETH

- Many more runtime LBs shown under ETH, SETH.
- Strong power to explain dependence on natural input parameters.
- Major implications for parametrized complexity theory
[Downey, Fellows]; [Lokshtanov, Marx, Saurabh survey]

Parametrized problems

- Many problem instances have associated integer parameter - gives some indication of difficulty.
- E.g., VERTEX COVER:

Given: (G, k)
Decide: does G have a vertex cover of size k ?

- Goal of "parametrized algorithm" design: design algs that are "fast when k is small."

Parametrized problems

- VERTEX COVER:

Given: (G, k)
Decide: does G have a vertex cover of size k ?

- Known: VERTEX COVER solvable in time $2^{k} \cdot n^{O(1)}$
($n=\#$ verts).
- ETH implies: Can't solve in time $2^{o(k)} \cdot n^{O(1)}$.

Parametrized problems

- VERTEX COVER:

Given: (G, k)
Decide: does G have a vertex cover of size k ?

- Known: VERTEX COVER solvable in time $2^{k} \cdot n^{O(1)}$

$$
\text { (} n=\# \text { verts })
$$

- ETH implies: Can't solve in time $2^{o(k)} \cdot n^{O(1)}$.

Parametrized problems

- VERTEX COVER:

Given: (G, k)
Decide: does G have a vertex cover of size k ?

- Known: VERTEX COVER solvable in time $2^{k} \cdot n^{O(1)}$

$$
\text { (} n=\# \text { verts })
$$

- ETH implies: Can't solve in time $2^{o(k)} \cdot n^{O(1)}$.

Parametrized problems

- CLIQUE:

Given: (G, k)
Decide: does G have a clique of size k ?

- Known: CLIQUE solvable in time $\approx n^{k} / k!\quad(n=\#$ verts).
- Standard assumption (FPT $\neq \mathrm{W}[1]$) implies:
can't solve in $F(k) \cdot n^{O(1)} \ldots$
- ETH implies: Can't solve in time $F(k) \cdot n^{o(k)}$. [Chen, Huang, Kanj, Xia 06]

Parametrized problems

- CLIQUE:

Given: (G, k)
Decide: does G have a clique of size k ?

- Known: CLIQUE solvable in time $\approx n^{k} / k!\quad(n=\#$ verts $)$.
- Standard assumption (FPT $\neq \mathrm{W}[1]$) implies:

$$
\text { can't solve in } F(k) \cdot n^{O(1)} \ldots
$$

- ETH implies: Can't solve in time $F(k) \cdot n^{o(k)}$. [Chen, Huang, Kanj, Xia' ${ }^{\prime}$]

Parametrized problems

- CLIQUE:

Given: (G, k)
Decide: does G have a clique of size k ?

- Known: CLIQUE solvable in time $\approx n^{k} / k!\quad(n=\#$ verts $)$.
- Standard assumption (FPT $\neq \mathrm{W}[1]$) implies:

$$
\text { can't solve in } F(k) \cdot n^{O(1)} \ldots
$$

- ETH implies: Can't solve in time $F(k) \cdot n^{o(k)}$.
[Chen, Huang, Kanj, Xia'06]

Parametrized problems

- k-DOMINATING SET:

Given: graph G.
Decide: does G have a dom. set of size k ?

- Known: solvable in time $n^{k+o(1)}$
[Eisenbrand, Grandoni'04; Pǎtraşcu, Williams'10]
- Strong ETH implies:* Can't solve in time $n^{k-\varepsilon}$.
[Pǎtrascu, Williams'10]
*(Actually, a bit weaker hyp.)

Parametrized problems

- k-DOMINATING SET:

Given: graph G.
Decide: does G have a dom. set of size k ?

- Known: solvable in time $n^{k+o(1)}$.
[Eisenbrand, Grandoni'04; Pǎtraṣcu, Williams'10]
- Strong ETH implies:* Can't solve in time $n^{k-\varepsilon}$.
[Pătrascu, Williams'10]
*(Actually, a bit weaker hyp.)

Parametrized problems

- k-DOMINATING SET:

Given: graph G.
Decide: does G have a dom. set of size k ?

- Known: solvable in time $n^{k+o(1)}$.
[Eisenbrand, Grandoni'04; Pǎtraşcu, Williams'10]
- Strong ETH implies:* Can't solve in time $n^{k-\varepsilon}$.
[Pătraşcu, Williams'10]
*(Actually, a bit weaker hyp.)

Parametrized problems

- k-DOMINATING SET:

Given: graph G.
Decide: does G have a dom. set of size k ?

- Known: solvable in time $n^{k+o(1)}$.
[Eisenbrand, Grandoni'04; Pǎtraşcu, Williams'10]
- Strong ETH implies:* Can't solve in time $n^{k-\varepsilon}$.
[Pătraşcu, Williams'10]
*(Actually, a bit weaker hyp.)

Treewidth

- Treewidth of a graph $G: \quad \operatorname{tw}(G)=$ measure of "fatness" of G.
- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

*(Given a tree decomposition.)
- [Lokshtanov, Marx, Saurabh '11]: Strong ETH \Longrightarrow some of these algorithms are optimal!
(constant c can't be improved!)

$$
\text { E.g., IND SET, MAX-CUT: } c=2, \quad \text { DOM. SET: } c=3
$$

Treewidth

- Treewidth of a graph $G: \quad \operatorname{tw}(G)=$ measure of "fatness" of G.
- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

$$
c^{t w(G)} \cdot n^{O(1)} \quad \text { for some } c .
$$

*(Given a tree decomposition.)

- [Lokshtanov, Marx, Saurabh '11]: Strong ETH \Longrightarrow some of these algorithms are optimal!
(constant c can't be improved!)

Treewidth

- Treewidth of a graph $G: \quad \operatorname{tw}(G)=$ measure of "fatness" of G.
- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

$$
c^{t w(G)} \cdot n^{O(1)} \quad \text { for some } c
$$

*(Given a tree decomposition.)

- [Lokshtanov, Marx, Saurabh '11]: Strong ETH \Longrightarrow some of these algorithms are optimal!
(constant c can't be improved!)

Treewidth

- Treewidth of a graph $G: \quad t w(G)=$ measure of "fatness" of G.
- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

$$
c^{t w(G)} \cdot n^{O(1)} \quad \text { for some } c
$$

*(Given a tree decomposition.)

- [Lokshtanov, Marx, Saurabh '11]: Strong ETH \Longrightarrow some of these algorithms are optimal! (constant c can't be improved!)

$$
\text { E.g., IND SET, MAX-CUT: } c=2, \quad \text { DOM. SET: } c=3
$$

Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs in subexponential time?

```
Consider obtaining an r-approximation to max ind. set size,
r=r(n)=\omega(1).
```

Theorem (Chitniz, Hajiaghayi, Kortsarz'13)
Can get r-approximation in time
$O^{*}\left(2^{n / r}\right)$.

Theorem (Chalermsook, Laekhanukit, Nanongkai) Under ETH, no alg. for $r(n)<n^{49}$ can have runtime

Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs in subexponential time?

Consider obtaining an r-approximation to max ind. set size, $r=r(n)=\omega(1)$.

Theorem (Chitniz, Hajiaghayi, Kortsarz'13)
Can get r-approximation in time $O^{*}\left(2^{n / r}\right)$.

Theorem (Chalermsook, Laekhanukit, Nanongkai) Under ETH, no alg. for $r(n)<n^{49}$ can have runtime $O^{*}\left(2^{n^{.99} / r^{1.01}}\right)$

Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs in subexponential time?

Consider obtaining an r-approximation to max ind. set size, $r=r(n)=\omega(1)$.

Theorem (Chitniz, Hajiaghayi, Kortsarz'13)
Can get r-approximation in time $O^{*}\left(2^{n / r}\right)$.

Theorem (Chalermsook, Laekhanukit, Nanongkai) Under ETH, no alg. for $r(n)<n^{49}$ can have runtime $O^{*}\left(2^{n^{.99} / r^{1.01}}\right)$

Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs in subexponential time?

Consider obtaining an r-approximation to max ind. set size, $r=r(n)=\omega(1)$.

Theorem (Chitniz, Hajiaghayi, Kortsarz'13)
Can get r-approximation in time $O^{*}\left(2^{n / r}\right)$.

Theorem (Chalermsook, Laekhanukit, Nanongkai)
Under ETH, no alg. for $r(n)<n^{49}$ can have runtime $O^{*}\left(2^{n^{.99} / r^{1.01}}\right)$.

Graph diameter

$$
\operatorname{diameter}(G) \triangleq \max _{u, v} \operatorname{dist}_{G}(u, v)
$$

Theorem (Aingworth, Chekuri, Indyk, Motwani'96; Roddity, Vassilevska Williams'13) For a simple graph G on n verts, m edges, can compute 3/2-approximation to diameter (G) in (expected) time $O(m \sqrt{n})$.

Theorem (Roddity, Vassilevska Williams'13)
If we can estimate diameter(G) to approx. factor $(3 / 2-\varepsilon)$ in time $O\left(m^{2-\delta}\right)$, then SETH fails.

- SETH \Longrightarrow Detailed info about complexity of a poly-time computation!

Graph diameter

$$
\operatorname{diameter}(G) \triangleq \max _{u, v} \operatorname{dist}_{G}(u, v) .
$$

Theorem (Aingworth, Chekuri, Indyk, Motwani'96; Roddity, Vassilevska Williams'13) For a simple graph G on n verts, m edges, can compute 3/2-approximation to diameter (G) in (expected) time $O(m \sqrt{n})$.

Theorem (Roddity, Vassilevska Williams'13)

 $O\left(m^{2-\delta}\right)$, then SETH fails.

- SETH \Longrightarrow Detailed info about complexity of a poly-time computation!

Graph diameter

$$
\operatorname{diameter}(G) \triangleq \max _{u, v} \operatorname{dist}_{G}(u, v) .
$$

Theorem (Aingworth, Chekuri, Indyk, Motwani'96; Roddity, Vassilevska Williams'13) For a simple graph G on n verts, m edges, can compute 3/2-approximation to diameter (G) in (expected) time $\widetilde{O}(m \sqrt{n})$.

> Theorem (Roddity, Vassilevska Williams'13) If we can estimate diameter (G) to approx. factor $(3 / 2-\varepsilon)$ in time $O\left(m^{2-\delta}\right)$, then SETH fails.

- SETH \Longrightarrow Detailed info about complexity of a poly-time computation!

Graph diameter

$$
\operatorname{diameter}(G) \triangleq \max _{u, v} \operatorname{dist}_{G}(u, v)
$$

Theorem (Aingworth, Chekuri, Indyk, Motwani'96; Roddity, Vassilevska Williams'13) For a simple graph G on n verts, m edges, can compute 3/2-approximation to diameter (G) in (expected) time $\widetilde{O}(m \sqrt{n})$.

Theorem (Roddity, Vassilevska Williams'13)
If we can estimate diameter (G) to approx. factor $(3 / 2-\varepsilon)$ in time $O\left(m^{2-\delta}\right)$, then SETH fails.

- SETH \Longrightarrow Detailed info about complexity of a poly-time computation!

Graph diameter

$$
\operatorname{diameter}(G) \triangleq \max _{u, v} \operatorname{dist}_{G}(u, v)
$$

Theorem (Aingworth, Chekuri, Indyk, Motwani'96; Roddity, Vassilevska Williams'13) For a simple graph G on n verts, m edges, can compute 3/2-approximation to diameter (G) in (expected) time $\widetilde{O}(m \sqrt{n})$.

Theorem (Roddity, Vassilevska Williams'13)
If we can estimate diameter (G) to approx. factor $(3 / 2-\varepsilon)$ in time $O\left(m^{2-\delta}\right)$, then SETH fails.

- SETH \Longrightarrow Detailed info about complexity of a poly-time computation!

Further afield

- [Abboud, Vassilevska Williams'14]: Improvements in certain dynamic algorithms for graph problems $\Rightarrow \neg$ SETH.
- [Bringmann, this morning]: Compute Fréchet distance in $n^{2-\varepsilon}$ time $\Rightarrow \neg$ SETH.
- Seems likely to see more results of this kind...

The key theorem

Theorem (IPZ)
k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow \quad$ k-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0$.
$m=\# \operatorname{clauses}(\mathcal{F}), \quad n=\# \operatorname{variables}(\mathcal{F})$.

- Let's see the proof ideas.

Main challenge: for general "dense" \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a "sparsification" reduction:

- Solve \mathcal{F}^{\prime} in time $2^{\circ\left(m^{\prime}\right)}=2^{\circ(n)} \Longrightarrow$ solve \mathcal{F}. ???

The key theorem

Theorem (IPZ)
k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow \quad$ k-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0$.

$$
m=\# \operatorname{clauses}(\mathcal{F}), \quad n=\# \operatorname{variables}(\mathcal{F})
$$

- Let's see the proof ideas.

Main challenge: for general "dense" \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a "sparsification" reduction:

- Solve \mathcal{F}^{\prime} in time $2^{o\left(m^{\prime}\right)}=2^{o(n)}$

???

The key theorem

Theorem (IPZ)
k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow \quad$ k-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0$.

$$
m=\# \operatorname{clauses}(\mathcal{F}), \quad n=\# \operatorname{variables}(\mathcal{F}) .
$$

- Let's see the proof ideas.

Main challenge: for general "dense" \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a "sparsification" reduction:

$$
\begin{gathered}
\mathcal{F} \longrightarrow{ }^{\text {ptime }} \mathcal{F}^{\prime} \operatorname{SAT}(\mathcal{F})=\operatorname{SAT}\left(\mathcal{F}^{\prime}\right) \\
m^{\prime}, n^{\prime} \leq O(n)
\end{gathered}
$$

- Solve \mathcal{F}^{\prime} in time $2^{o\left(m^{\prime}\right)}$ \square

The key theorem

Theorem (IPZ)
k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow \quad \mathbf{k}$-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0$.

$$
m=\# \operatorname{clauses}(\mathcal{F}), \quad n=\# \operatorname{variables}(\mathcal{F}) .
$$

- Let's see the proof ideas.

Main challenge: for general "dense" \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a "sparsification" reduction:

$$
\begin{gathered}
\mathcal{F} \longrightarrow{ }^{\text {ptime }} \mathcal{F}^{\prime} \operatorname{SAT}(\mathcal{F})=\operatorname{SAT}\left(\mathcal{F}^{\prime}\right) \\
m^{\prime}, n^{\prime} \leq O(n)
\end{gathered}
$$

- Solve \mathcal{F}^{\prime} in time $2^{o\left(m^{\prime}\right)}=2^{o(n)} \Longrightarrow$ solve \mathcal{F}.

The key theorem

Theorem (IPZ)
k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow \quad \mathbf{k}$-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0$.

$$
m=\# \operatorname{clauses}(\mathcal{F}), \quad n=\# \operatorname{variables}(\mathcal{F}) .
$$

- Let's see the proof ideas.

Main challenge: for general "dense" \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a "sparsification" reduction:

$$
\begin{gathered}
\mathcal{F} \longrightarrow \longrightarrow^{\text {ptime }} \mathcal{F}^{\prime} \operatorname{SAT}(\mathcal{F})=\operatorname{SAT}\left(\mathcal{F}^{\prime}\right) \\
m^{\prime}, n^{\prime} \leq O(n)
\end{gathered}
$$

- Solve \mathcal{F}^{\prime} in time $2^{o\left(m^{\prime}\right)}=2^{o(n)} \Longrightarrow$ solve \mathcal{F}.

The key theorem

Theorem (IPZ)
k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow \quad$ k-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0$.

$$
m=\# \operatorname{clauses}(\mathcal{F}), \quad n=\# \operatorname{variables}(\mathcal{F}) .
$$

- Let's see the proof ideas.

Main challenge: for general "dense" \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a "sparsification" reduction:

$$
\begin{gathered}
\mathcal{F} \longrightarrow 2^{2^{o(n)} \text { time } \quad \mathcal{F}^{\prime} \quad \operatorname{SAT}(\mathcal{F})=\operatorname{SAT}\left(\mathcal{F}^{\prime}\right)} \\
m^{\prime}, n^{\prime} \leq O(n)
\end{gathered}
$$

- Solve \mathcal{F}^{\prime} in time $2^{o\left(m^{\prime}\right)}=2^{o(n)} \Longrightarrow$ solve \mathcal{F}.

The key theorem

Theorem (IPZ)
k-SAT in time $O^{*}\left(2^{\varepsilon m}\right) \forall \varepsilon>0 \Longrightarrow \quad$ k-SAT in time $O^{*}\left(2^{\varepsilon n}\right) \forall \varepsilon>0$.

$$
m=\# \operatorname{clauses}(\mathcal{F}), \quad n=\# \operatorname{variables}(\mathcal{F}) .
$$

- Let's see the proof ideas.

Main challenge: for general "dense" \mathcal{F}, may have $m \gg n$.

- Ideal approach: give a "sparsification" reduction:

$$
\begin{gathered}
\mathcal{F} \longrightarrow 2^{2^{o(n)} \text { time } \quad \mathcal{F}^{\prime} \quad \operatorname{SAT}(\mathcal{F})=\operatorname{SAT}\left(\mathcal{F}^{\prime}\right)} \\
m^{\prime}, n^{\prime} \leq O(n)
\end{gathered}
$$

- Solve \mathcal{F}^{\prime} in time $2^{o\left(m^{\prime}\right)}=2^{o(n)} \Longrightarrow$ solve \mathcal{F}.

The key lemma

- Relax this idea further...

$$
\operatorname{SAT}(\mathcal{F})=\bigvee_{i} \operatorname{SAT}\left(\mathcal{F}^{i}\right)
$$

Sparsification Lemma (IPZ'97)

There exists a reduction $\mathcal{F} \rightarrow \mathcal{G}^{1}, \ldots, \mathcal{G}^{s}$, computable in time $O^{*}\left(2^{\varepsilon n}\right)$, such that
(1) $\mathcal{F} \in$ SAT ff $\exists i: G^{i} \in S A T$;
(2) $s \leq 2^{\varepsilon n}$;
(3) $\# \operatorname{vars}\left(\mathcal{G}^{i}\right) \leq n$;
($\# \operatorname{clauses}\left(\mathcal{G}^{i}\right) \leq O_{k, \varepsilon}(n)$.

The key lemma

- Relax this idea further...

$$
\mathcal{F} \quad \rightarrow^{2^{o(n)} \text { time }} \quad \mathcal{G}^{1}, \mathcal{G}^{2}, \ldots, \mathcal{G}^{s} \quad s=2^{o(n)}
$$

$$
\operatorname{SAT}(\mathcal{F})=\bigvee_{i} \operatorname{SAT}\left(\mathcal{F}^{i}\right)
$$

Sparsification Lemma (IPZ'97)

There exists a reduction $\mathcal{F} \rightarrow \mathcal{G}^{1}, \ldots, \mathcal{G}^{s}$, computable in time $O^{*}\left(2^{\varepsilon n}\right)$, such that
(1) $\mathcal{F} \in S A T$ iff $\exists i: g^{i} \in S A T$;
(2) $s \leq 2^{\varepsilon n}$;
(3) $\# \operatorname{vars}\left(\mathcal{G}^{i}\right) \leq n$;
($\#$ clauses $\left(\mathcal{G}^{i}\right) \leq O_{k, \varepsilon}(n)$.

The key lemma

- Relax this idea further...

$$
\mathcal{F} \quad \rightarrow^{2 o(n)} \text { time } \quad \mathcal{G}^{1}, \mathcal{G}^{2}, \ldots, \mathcal{G}^{s} \quad s=2^{o(n)}
$$

$$
\operatorname{SAT}(\mathcal{F})=\bigvee_{i} \operatorname{SAT}\left(\mathcal{F}^{i}\right)
$$

Sparsification Lemma (IPZ'97)

Fix $k \geq 3, \varepsilon>0$.
There exists a reduction $\mathcal{F} \rightarrow \mathcal{G}^{1}, \ldots, \mathcal{G}^{s}$, computable in time $O^{*}\left(2^{\varepsilon n}\right)$, such that
(1) $\mathcal{F} \in S A T$ iff $\exists i: \mathcal{G}^{i} \in S A T$;
(2) $s \leq 2^{\varepsilon n}$;
(3) $\# \operatorname{vars}\left(\mathcal{G}^{i}\right) \leq n$;
(9) \#clauses $\left(\mathcal{G}^{i}\right) \leq O_{k, \varepsilon}(n)$.

The key lemma

Sparsification Lemma (IPZ'97)

Fix $k \geq 3, \varepsilon>0$.
There exists a reduction $\mathcal{F} \rightarrow \mathcal{G}^{1}, \ldots, \mathcal{G}^{s}$, computable in time $O^{*}\left(2^{\varepsilon n}\right)$, such that
(1) $\mathcal{F} \in S A T$ iff $\exists i: \mathcal{G}^{i} \in S A T$;
(3) $s \leq 2^{\varepsilon n}$;
(0) $\# \operatorname{vars}\left(\mathcal{G}^{i}\right) \leq n$;

- \#clauses $\left(\mathcal{G}^{i}\right) \leq O_{k, \varepsilon}(n)$.
- Now suppose we could solve k-SAT in time $2^{\delta m}$ for small $\delta>0$.
- Use Lemma to solve k-SAT in time $2^{\varepsilon n} \cdot 2^{\delta\left(C_{k, \varepsilon} n\right)}$.

The key lemma

Sparsification Lemma (IPZ'97)

Fix $k \geq 3, \varepsilon>0$.
There exists a reduction $\mathcal{F} \rightarrow \mathcal{G}^{1}, \ldots, \mathcal{G}^{s}$, computable in time $O^{*}\left(2^{\varepsilon n}\right)$, such that
(1) $\mathcal{F} \in S A T$ iff $\exists i: \mathcal{G}^{i} \in S A T$;
(3) $s \leq 2^{\varepsilon n}$;

- $\# \operatorname{vars}\left(\mathcal{G}^{i}\right) \leq n$;
- \#clauses $\left(\mathcal{G}^{i}\right) \leq O_{k, \varepsilon}(n)$.
- Now suppose we could solve k-SAT in time $2^{\delta m}$ for small $\delta>0$.
- Use Lemma to solve k-SAT in time $2^{\varepsilon n} \cdot 2^{\delta\left(C_{k, \varepsilon} n\right)}$.

Take δ

The key lemma

Sparsification Lemma (IPZ'97)

Fix $k \geq 3, \varepsilon>0$.
There exists a reduction $\mathcal{F} \rightarrow \mathcal{G}^{1}, \ldots, \mathcal{G}^{s}$, computable in time $O^{*}\left(2^{\varepsilon n}\right)$, such that
(1) $\mathcal{F} \in S A T$ iff $\exists i: \mathcal{G}^{i} \in S A T$;
(3) $s \leq 2^{\varepsilon n}$;

- $\# \operatorname{vars}\left(\mathcal{G}^{i}\right) \leq n$;
- \#clauses $\left(\mathcal{G}^{i}\right) \leq O_{k, \varepsilon}(n)$.
- Now suppose we could solve k-SAT in time $2^{\delta m}$ for small $\delta>0$.
- Use Lemma to solve k-SAT in time $2^{\varepsilon n} \cdot 2^{\delta\left(C_{k, \varepsilon} n\right)}$.

The key lemma

Sparsification Lemma (IPZ'97)

Fix $k \geq 3, \varepsilon>0$.
There exists a reduction $\mathcal{F} \rightarrow \mathcal{G}^{1}, \ldots, \mathcal{G}^{s}$, computable in time $O^{*}\left(2^{\varepsilon n}\right)$, such that
(1) $\mathcal{F} \in S A T$ iff $\exists i: \mathcal{G}^{i} \in S A T$;
(3) $s \leq 2^{\varepsilon n}$;

- $\# \operatorname{vars}\left(\mathcal{G}^{i}\right) \leq n$;
- \#clauses $\left(\mathcal{G}^{i}\right) \leq O_{k, \varepsilon}(n)$.
- Now suppose we could solve k-SAT in time $2^{\delta m}$ for small $\delta>0$.
- Use Lemma to solve k-SAT in time $2^{\varepsilon n} \cdot 2^{\delta\left(C_{k, \varepsilon} n\right)}$. Take $\delta \ll C_{k, \varepsilon}^{-1} \varepsilon$.

Proof of sparsification lemma

(debt to D. Scheder's notes!)

Thanks!

[^0]: NP-C theory: no prediction about relative difficulty, best runtimes for these probs!

