Do NP-Hard Problems Require Exponential Time?

Andrew Drucker

IAS

April 8, 2014

Andrew Drucker (IAS)

NP and the ETH

April 8, 2014

★ 3 > < 3 >

• NP-completeness theory gives great guidance about which problems are efficiently solvable.

A B < A B <</p>

< A

- NP-completeness theory gives great guidance about which problems are efficiently solvable.
- 2-SAT, 2-Coloring, Euler Tour \in PTIME;

- NP-completeness theory gives great guidance about which problems are efficiently solvable.
- 2-SAT, 2-Coloring, Euler Tour \in PTIME;

• 3-SAT, 3-Coloring, Hamilton Path

- NP-completeness theory gives great guidance about which problems are efficiently solvable.
- 2-SAT, 2-Coloring, Euler Tour \in PTIME;

• 3-SAT, 3-Coloring, Hamilton Path NP-complete.

NP and the ETH

• Want to solve NP-complete problems \implies must accept compromise!

- Popular approach: find approximately-optimal solutions. (for optimization probs.)
- Here too, NP-completeness theory (+ PCPs) often provides great guidance!
 - ▶ .5-approx Max-LIN $(\mathbb{F}_2) \in \mathsf{PTIME};$
 - ▶ $(.5 + \varepsilon)$ -approx Max-LIN (\mathbb{F}_2): NP-Complete. [Håstad'97]

イロト イポト イヨト イヨト

- Want to solve NP-complete problems \implies must accept compromise!
- Popular approach: find approximately-optimal solutions. (for optimization probs.)
- Here too, NP-completeness theory (+ PCPs) often provides great guidance!
 - ▶ .5-approx Max-LIN $(\mathbb{F}_2) \in \mathsf{PTIME};$
 - ▶ $(.5 + \varepsilon)$ -approx Max-LIN (\mathbb{F}_2): NP-Complete. [Håstad'97]

- Want to solve NP-complete problems \implies must accept compromise!
- Popular approach: find approximately-optimal solutions. (for optimization probs.)
- Here too, NP-completeness theory (+ PCPs) often provides great guidance!
 - ▶ .5-approx Max-LIN $(\mathbb{F}_2) \in \mathsf{PTIME};$
 - ► $(.5 + \varepsilon)$ -approx Max-LIN (\mathbb{F}_2): NP-Complete. [Håstad'97]

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• Sometimes we need an **exact** solution to an NP-C problem.

 Then, compromise ⇒ must accept an inefficient algorithm! (at least, inefficient in the worst case—our focus)

• Key question: Can we at least beat brute-force search??

(B)

- Sometimes we need an **exact** solution to an NP-C problem.
- Then, compromise ⇒ must accept an inefficient algorithm! (at least, inefficient in the worst case—our focus)
- Key question: Can we at least beat brute-force search??

(B)

- Sometimes we need an **exact** solution to an NP-C problem.
- Then, compromise must accept an inefficient algorithm! (at least, inefficient in the worst case—our focus)
- Key question: Can we at least beat brute-force search??

(B)

Known results for some popular NP-C problems:

Problem	Parameter	Trivial	Improved	Ref.
CNF-SAT	n = #vars	2 ^{<i>n</i>}	1.99" ??	
<i>k</i> -SAT			$2^{(1-1/k)n}$	[Paturi, Pudlák, Zane '97]
IND. SET	n = #vertices	2 ^{<i>n</i>}	1.23 ⁿ	[Tarjan, Trojanowski'77; more]
PLANAR IND. SET			$2^{O(\sqrt{n})}$	[Ungar '51; Lipton, Tarjan '79]
HAM. PATH		<i>n</i> !	2^n , 1.7^n	[Held, Karp '62; Bjorklund '10]

(Strictly: F(n)'s above should be $O^*(F(n)) \triangleq F(n) \cdot |instance|^{O(1)}$.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくで

• Given: a k-CNF $\mathcal{F} = C_1 \wedge C_2 \wedge \ldots \wedge C_m$.

(each C_i an OR of $\leq k$ literals)

• Goal: find a satisfying solution to \mathcal{F} if one exists.

Algorithm $A(\mathcal{F})$:

- Let $x \leftarrow (random assignment)$.
- 2 Choose any unsat. clause C_i; flip a rand. variable in C_i.
- **Bepeat** Step 2 for 3n steps.

• Given: a k-CNF $\mathcal{F} = C_1 \wedge C_2 \wedge \ldots \wedge C_m$.

(each C_i an OR of $\leq k$ literals)

イロト イポト イヨト イヨト

• Goal: find a satisfying solution to \mathcal{F} if one exists.

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- 2 Choose any unsat. clause C_i ; flip a rand. variable in C_i .
- **3** Repeat Step 2 for 3n steps.

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .
- **3** Repeat Step 2 for 3n steps.

• Claim: if $\mathcal{F} \in SAT$, then

```
\Pr[A(\mathcal{F}) \text{finds a solution}] \geq 2^{-(1-c/k)n}.
```

 \implies repeat for $2^{(1-c/k)n}$ trials to find one w.h.p.!

• Analysis idea is very simple!

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .
- **3** Repeat Step 2 for 3n steps.

• Claim: if $\mathcal{F} \in SAT$, then

 $\Pr[A(\mathcal{F}) \text{finds a solution}] \geq 2^{-(1-c/k)n}.$

 \implies repeat for $2^{(1-c/k)n}$ trials to find one w.h.p.!

• Analysis idea is very simple!

イロト 不得下 イヨト イヨト

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .
- **3** Repeat Step 2 for 3n steps.

• Claim: if $\mathcal{F} \in SAT$, then

 $\Pr[A(\mathcal{F}) \text{finds a solution}] \geq 2^{-(1-c/k)n}.$

 \implies repeat for $2^{(1-c/k)n}$ trials to find one w.h.p.!

• Analysis idea is very simple!

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .
- **3** Repeat Step 2 for 3n steps.

• Claim: if $\mathcal{F} \in SAT$, then

 $\Pr[A(\mathcal{F}) \text{finds a solution}] \geq 2^{-(1-c/k)n}.$

 \implies repeat for $2^{(1-c/k)n}$ trials to find one w.h.p.!

Analysis idea is very simple!

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .

Or Repeat Step 2 for **3***n* steps.

Suppose \$\mathcal{F}(x^*) = 1\$. Let \$x^t = state of \$x\$ after \$t\$ execs. of Step 2. Let

$$Y_t \triangleq ||x^t - \mathbf{x}^*||_1$$
.

• Key fact: if $Y_t > 0$, then $\Pr[Y_{t+1} = Y_t - 1] \ge 1/k$.

• Can lower-bound $Pr[min_t Y_t = 0]$ in terms of a <u>biased random walk</u>. (biased against us, but not too badly!

Hope is that $Y_0 \ll n/2$.)

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .

Organization Repeat Step 2 for 3n steps.

Suppose \$\mathcal{F}(x^*) = 1\$. Let \$x^t\$ = state of \$x\$ after \$t\$ execs. of Step 2. Let

$$Y_t \triangleq ||x^t - \mathbf{x}^*||_1$$
.

• Key fact: if $Y_t > 0$, then $\Pr[Y_{t+1} = Y_t - 1] \ge 1/k$.

• Can lower-bound $Pr[min_t Y_t = 0]$ in terms of a <u>biased random walk</u>.

(biased against us, but not too badly!

Hope is that $Y_0 \ll n/2$.)

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .

Organization Repeat Step 2 for 3n steps.

Suppose \$\mathcal{F}(x^*) = 1\$. Let \$x^t\$ = state of \$x\$ after \$t\$ execs. of Step 2. Let

$$Y_t \triangleq ||x^t - \mathbf{x}^*||_1$$
.

• Key fact: if $Y_t > 0$, then $\Pr[Y_{t+1} = Y_t - 1] \ge 1/k$.

• Can lower-bound $Pr[min_t Y_t = 0]$ in terms of a <u>biased random walk</u>.

(biased against us, but not too badly!

Hope is that $Y_0 \ll n/2$.)

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .

Or Repeat Step 2 for **3***n* steps.

Suppose \$\mathcal{F}(x^*) = 1\$. Let \$x^t\$ = state of \$x\$ after \$t\$ execs. of Step 2. Let

$$Y_t \triangleq ||x^t - \mathbf{x}^*||_1$$
.

- Key fact: if $Y_t > 0$, then $\Pr[Y_{t+1} = Y_t 1] \ge 1/k$.
- Can lower-bound $Pr[\min_t Y_t = 0]$ in terms of a <u>biased random walk</u>.

(biased against us, but not too badly!

Algorithm $A(\mathcal{F})$:

- Let x ← (random assignment).
- **2** Choose any unsat. clause C_i ; flip a rand. variable in C_i .

Organization Repeat Step 2 for 3n steps.

Suppose \$\mathcal{F}(x^*) = 1\$. Let \$x^t\$ = state of \$x\$ after \$t\$ execs. of Step 2. Let

$$Y_t \triangleq ||x^t - \mathbf{x}^*||_1$$
.

- Key fact: if $Y_t > 0$, then $\Pr[Y_{t+1} = Y_t 1] \ge 1/k$.
- Can lower-bound $Pr[\min_t Y_t = 0]$ in terms of a <u>biased random walk</u>.

(biased against us, but not too badly!

Hope is that $Y_0 \ll n/2$.)

Known results for some popular NP-C problems:

Problem	Parameter	Trivial	Improved	Ref.
CNF-SAT	n = #vars	2 ^{<i>n</i>}	1.99" ??	
k-SAT			$2^{(1-1/k)n}$	[Paturi, Pudlák, Zane '97]
IND. SET	n = #vertices	2 ^{<i>n</i>}	1.23 ⁿ	[Tarjan, Trojanowski'77; more]
PLANAR IND. SET			$2^{O(\sqrt{n})}$	[Ungar '51; Lipton, Tarjan '79]
HAM. PATH		<i>n</i> !	2 ⁿ , 1.7 ⁿ	[Held, Karp '62; Bjorklund '10]

NP-C theory: no prediction about relative difficulty, best runtimes for these probs!

イロト イポト イヨト イヨト

Known results for some popular NP-C problems:

Problem	Parameter	Trivial	Improved	Ref.
CNF-SAT	n = #vars	2 ^{<i>n</i>}	1.99" ??	
<i>k</i> -SAT			$2^{(1-1/k)n}$	[Paturi, Pudlák, Zane '97]
IND. SET	n = #vertices	2 ^{<i>n</i>}	1.23 ⁿ	[Tarjan, Trojanowski'77; more]
PLANAR IND. SET			$2^{O(\sqrt{n})}$	[Ungar '51; Lipton, Tarjan '79]
HAM. PATH		<i>n</i> !	2 ⁿ , 1.7 ⁿ	[Held, Karp '62; Bjorklund '10]

NP-C theory: no prediction about relative difficulty, best runtimes for these probs!

April 8, 2014

		< ⊡ >	· 독 - 1
Andrew Drucker (IAS)	NP and the ETH		

Known results for some popular NP-C problems:

Problem	Parameter	Trivial	Improved	Ref.
CNF-SAT	n = #vars	2 ^{<i>n</i>}	1.99 ⁿ ??	
<i>k</i> -SAT			$2^{(1-1/k)n}$	[Paturi, Pudlák, Zane '97]
IND. SET	n = #vertices	2 ^{<i>n</i>}	1.23 ^{<i>n</i>}	[Tarjan, Trojanowski'77; more]
PLANAR IND. SET			$2^{O(\sqrt{n})}$	[Ungar '51; Lipton, Tarjan '79]
HAM. PATH		<i>n</i> !	2 ⁿ , 1.7 ⁿ	[Held, Karp '62; Bjorklund '10]

Challenge for complexity theory:	explain the seeming differences in difficulty!
	Identify barriers to further progress!
	Guide search for faster algorithms!

And	rew	Druc	ker ((IAS)
		0.40		

- Could P \neq NP conjecture imply that NP-C probs require exponential time?
- No idea. Seems hopeless!
- Influential approach: strengthen the conjecture!

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane '98) No $2^{o(n)}$ -time algorithm for n-variable 3-SAT.

- Could P \neq NP conjecture imply that NP-C probs require exponential time?
- No idea. Seems hopeless!
- Influential approach: strengthen the conjecture!

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane '98) No $2^{o(n)}$ -time algorithm for n-variable 3-SAT.

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane '98) No $2^{o(n)}$ -time algorithm for n-variable 3-SAT.

• Formally: for $k \ge 3$, define $s_k \in [0, 1]$ by

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ) $s_3 > 0$.

イロト 不得下 イヨト イヨト 二日

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane '98) No $2^{o(n)}$ -time algorithm for n-variable 3-SAT.

• Formally: for $k \ge 3$, define $s_k \in [0, 1]$ by

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$.

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane '98) No $2^{o(n)}$ -time algorithm for n-variable 3-SAT.

• Formally: for $k \ge 3$, define $s_k \in [0, 1]$ by

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$.

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ) $s_3 > 0$.

• Formally: for $k \ge 3$, define $s_k \in [0, 1]$ by

 $s_k \triangleq \inf \{\varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n})\}$.

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ) $s_3 > 0$.

• $s_3 \leq s_4 \leq s_5 \leq \ldots$

• Best known: $s_3 \leq .388$, $s_4 \leq .555$, $s_k \leq 1 - \Theta(1/k)$. [Paturi, Pudlák, Saks, Zane '98; Hertli '11]

• Formally: for $k \ge 3$, define $s_k \in [0, 1]$ by

 $s_k \triangleq \inf \{\varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n})\}$.

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ) $s_3 > 0$.

• $s_3 \leq s_4 \leq s_5 \leq \ldots$

• Best known: $s_3 \leq .388$, $s_4 \leq .555$, $s_k \leq 1 - \Theta(1/k)$. [Paturi, Pudlák, Saks, Zane '98; Hertli '11]

• Formally: for $k \ge 3$, define $s_k \in [0, 1]$ by

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$.

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ) $s_3 > 0$.

• $s_3 \leq s_4 \leq s_5 \leq \ldots$

• Best known: $s_3 \leq .388$, $s_4 \leq .555$, $s_k \leq 1 - \Theta(1/k)$. [Paturi, Pudlák, Saks, Zane '98; Hertli '11]

• Much stronger belief than $P \neq NP$.

• Payoff in explanatory power?

(ES! But, story is more complex than NP-completeness.

• Issue: ETH studies dependence on key param.

 $n = \# \operatorname{vars}(\mathcal{F}) \ll |\mathcal{F}|.$

• Measures dimension of **search space**, not input size!

c.f. [Hunt, Stearns'90], "power index"

(日) (周) (三) (三)

• Much stronger belief than $P \neq NP$.

• Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

• Issue: ETH studies dependence on key param.

 $n = \# \operatorname{vars}(\mathcal{F}) \ll |\mathcal{F}|.$

• Measures dimension of **search space**, not input size!

c.f. [Hunt, Stearns'90], "power index"

< ロ > < 同 > < 三 > < 三 > :

• Much stronger belief than $P \neq NP$.

• Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

• Issue: ETH studies dependence on key param.

 $n = \# \operatorname{vars}(\mathcal{F}) \ll |\mathcal{F}|.$

• Measures dimension of **search space**, not input size!

c.f. [Hunt, Stearns'90], "power index"

イロト 不得下 イヨト イヨト

• Much stronger belief than $P \neq NP$.

• Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

• Issue: ETH studies dependence on key param.

 $n = \# \operatorname{vars}(\mathcal{F}) \ll |\mathcal{F}|.$

• Measures dimension of **search space**, not input size!

c.f. [Hunt, Stearns'90], "power index"

• Much stronger belief than $P \neq NP$.

• Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

• Issue: ETH studies dependence on key param.

 $n = \# \operatorname{vars}(\mathcal{F}) \ll |\mathcal{F}|.$

• Measures dimension of **search space**, not input size!

c.f. [Hunt, Stearns'90], "power index"

• Consider **IND. SET** problem.

Solvable in $O^*(1.23^N)$ time on *N*-vertex graphs.

• Can we hope for $2^{o(N)}$? Or, would that violate ETH?

• Given: $2^{o(N)}$ -time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F} . ($n \triangleq \#$ vars, $m \triangleq \#$ clauses)

• Usual NP-C reduction: $\mathcal{F} \longrightarrow (G, k)$, where $|V(G)| = \Theta(n+m) = \Theta(m)$

• \implies We solve \mathcal{F} in time $2^{o(m)}$.

WEAK!

(日) (周) (三) (三)

• Consider IND. SET problem.

Solvable in *O**(1.23^{*N*}) time on *N*-vertex graphs.

• Can we hope for $2^{o(N)}$? Or, would that violate ETH?

• Given: $2^{o(N)}$ -time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F} . ($n \triangleq \#$ vars, $m \triangleq \#$ clauses)

• Usual NP-C reduction: $\mathcal{F} \longrightarrow (G, k)$, where $|V(G)| = \Theta(n+m) = \Theta(m)$

• \implies We solve \mathcal{F} in time $2^{o(m)}$.

WEAK!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Consider IND. SET problem.

Solvable in $O^*(1.23^N)$ time on *N*-vertex graphs.

• Can we hope for $2^{o(N)}$? Or, would that violate ETH?

• Given: $2^{o(N)}$ -time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F} . ($n \triangleq \#$ vars, $m \triangleq \#$ clauses)

• Usual NP-C reduction: $\mathcal{F} \longrightarrow (G, k)$, where $|V(G)| = \Theta(n+m) = \Theta(m)$

• \implies We solve \mathcal{F} in time $2^{o(m)}$.

WEAK!

イロト 不得下 イヨト イヨト

• Consider IND. SET problem.

Solvable in $O^*(1.23^N)$ time on *N*-vertex graphs.

• Can we hope for $2^{o(N)}$? Or, would that violate ETH?

• Given: $2^{o(N)}$ -time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F} . ($n \triangleq \#$ vars, $m \triangleq \#$ clauses)

• Usual NP-C reduction: $\mathcal{F} \longrightarrow (G, k)$, where $|V(G)| = \Theta(n+m) = \Theta(m)$

• \implies We solve \mathcal{F} in time $2^{o(m)}$.

WEAK!

- Consider **IND. SET** problem. Solvable in $O^*(1.23^N)$ time on *N*-vertex graphs.
- Can we hope for $2^{o(N)}$? Or, would that violate ETH?
- Given: $2^{o(N)}$ -time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F} . ($n \triangleq \#$ vars, $m \triangleq \#$ clauses)
- Usual NP-C reduction: $\mathcal{F} \longrightarrow (G, k)$, where $|V(G)| = \Theta(n+m) = \Theta(m)$
- \implies We solve \mathcal{F} in time $2^{o(m)}$.

Andrew Drucker (IAS)

WEAK!

- Consider IND. SET problem. Solvable in $O^*(1.23^N)$ time on *N*-vertex graphs.
- Can we hope for $2^{o(N)}$? Or, would that violate ETH?
- Given: $2^{o(N)}$ -time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F} . ($n \triangleq \#$ vars, $m \triangleq \#$ clauses)
- Usual NP-C reduction: $\mathcal{F} \longrightarrow (G, k)$, where $|V(G)| = \Theta(n+m) = \Theta(m)$.
- \implies We solve \mathcal{F} in time $2^{o(m)}$.

WEAK!

- Consider IND. SET problem. Solvable in O^{*}(1.23^N) time on N-vertex graphs.
- Can we hope for $2^{o(N)}$? Or, would that violate ETH?
- Given: $2^{o(N)}$ -time alg for **IND. SET**; try to solve **3-SAT** instance \mathcal{F} . ($n \triangleq \#$ vars, $m \triangleq \#$ clauses)
- Usual NP-C reduction: $\mathcal{F} \longrightarrow (G, k)$, where $|V(G)| = \Theta(n+m) = \Theta(m)$.

•
$$\implies$$
 We solve \mathcal{F} in time $2^{o(m)}$

WEAK!

• $2^{o(N)}$ time alg for IND. SET \implies Solve 3-SAT in time $2^{o(m)}$.

Solve k-SAT in time $2^{o(m)} \implies$ Solve k-SAT in time $2^{o(n)}$!!

• So, $2^{o(N)}$ time alg for **IND. SET** violates **ETH**.

• $2^{o(N)}$ time alg for IND. SET \implies Solve 3-SAT in time $2^{o(m)}$.

Theorem (IPZ)

Solve k-SAT in time $2^{o(m)} \implies$ Solve k-SAT in time $2^{o(n)}$!!

• So, $2^{o(N)}$ time alg for **IND. SET** violates **ETH**.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• $2^{o(N)}$ time alg for IND. SET \implies Solve 3-SAT in time $2^{o(m)}$.

Theorem (IPZ)

Solve k-SAT in time $2^{o(m)} \implies$ Solve k-SAT in time $2^{o(n)}$!!

• So, 2^{o(N)} time alg for **IND. SET** violates **ETH**.

A B M A B M

• $2^{o(N)}$ time alg for IND. SET \implies Solve 3-SAT in time $2^{o(m)}$.

Theorem (IPZ)

k-SAT in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies$ **k-SAT** in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0$!!

• So, $2^{o(N)}$ time alg for **IND. SET** violates **ETH**.

• $2^{o(N)}$ time alg for IND. SET \implies Solve 3-SAT in time $2^{o(m)}$.

Theorem (IPZ)

k-SAT in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies$ **k-SAT** in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0$!!

- So, 2^{o(N)} time alg for **IND. SET** violates **ETH**.
- Similar: HAM PATH, DOMINATING SET, VERTEX COVER.

• Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on *N*-vertex planar graphs.

• Can we hope for $2^{o(\sqrt{N})}$?

• Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

• Solve Planar IND SET in time $2^{o(\sqrt{N})} \implies$ solve 3-SAT in time $2^{o(m)}$. Again, violates ETH!

• Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on *N*-vertex planar graphs.

• Can we hope for $2^{o(\sqrt{N})}$?

• Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

• Solve Planar IND SET in time $2^{o(\sqrt{N})} \implies$ solve 3-SAT in time $2^{o(m)}$. Again, violates ETH!

• Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on *N*-vertex planar graphs.

• Can we hope for $2^{o(\sqrt{N})}$?

• Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

• Solve Planar IND SET in time $2^{o(\sqrt{N})} \implies$ solve 3-SAT in time $2^{o(m)}$. Again, violates ETH!

• Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on *N*-vertex planar graphs.

• Can we hope for $2^{o(\sqrt{N})}$?

• Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

• Solve Planar IND SET in time $2^{o(\sqrt{N})} \implies$ solve 3-SAT in time $2^{o(m)}$. Again, violates ETH!

• Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on *N*-vertex planar graphs.

• Can we hope for $2^{o(\sqrt{N})}$?

• Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

• Solve Planar IND SET in time $2^{o(\sqrt{N})} \implies$ solve 3-SAT in time $2^{o(m)}$. Again, violates ETH!

• Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on *N*-vertex planar graphs.

• Can we hope for $2^{o(\sqrt{N})}$?

• Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

• Solve Planar IND SET in time $2^{o(\sqrt{N})} \implies$ solve 3-SAT in time $2^{o(m)}$. Again, violates ETH!

• Planar IND. SET problem:

Solvable in $2^{O(\sqrt{N})}$ time on *N*-vertex planar graphs.

< < p>< < p>

• Can we hope for $2^{o(\sqrt{N})}$?

• Usual NP-C reduction: 3-CNF $\mathcal{F} \longrightarrow (\text{planar}) (G, k)$, where $|V(G)| = \Theta(m^2)$.

• Solve Planar IND SET in time $2^{o(\sqrt{N})} \implies$ solve 3-SAT in time $2^{o(m)}$. Again, violates ETH!

• Why focus on **3-SAT**? Is it WLOG?

• Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where $\# \operatorname{vars}(\mathcal{G}^{(3)}) = \Theta(\# \operatorname{clauses}(\mathcal{F}^{(3)}))$.

• $2^{o(n)}$ time alg for **3-SAT** \implies Solve **4-SAT** in time $2^{o(m)}$. ([IPZ] result, again) \implies Solve **4-SAT** in time $2^{o(n)}$!

Theorem (IPZ)

 $s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3$.

イロト 不得 トイヨト イヨト 二日

• Why focus on **3-SAT**? Is it WLOG?

• Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where $\# \operatorname{vars}(\mathcal{G}^{(3)}) = \Theta(\# \operatorname{clauses}(\mathcal{F}^{(3)}))$.

• $2^{o(n)}$ time alg for **3-SAT** \implies Solve **4-SAT** in time $2^{o(m)}$. ([IPZ] result, again) \implies Solve **4-SAT** in time $2^{o(n)}$!

Theorem (IPZ)

 $s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3$.

• Why focus on **3-SAT**? Is it WLOG?

• Usual NP-C reduction maps $\mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}$, where

• $2^{o(n)}$ time alg for **3-SAT** \implies Solve **4-SAT** in time $2^{o(m)}$. ([IPZ] result, again) \implies Solve **4-SAT** in time $2^{o(n)}$!

Theorem (IPZ)

 $s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3$.

• Why focus on **3-SAT**? Is it WLOG?

 $\begin{array}{l} \mbox{Could 3-SAT be much easier than 4-SAT}??\\ \bullet \mbox{ Usual NP-C reduction maps } \mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}, \mbox{ where}\\ \\ \# \mbox{ vars}(\mathcal{G}^{(3)}) \ = \ \Theta\left(\# \mbox{ clauses}(\mathcal{F}^{(3)})\right) \ . \end{array}$

• $2^{o(n)}$ time alg for **3-SAT** \implies Solve **4-SAT** in time $2^{o(m)}$. ([IPZ] result, again) \implies Solve **4-SAT** in time $2^{o(n)}$!

Theorem (IPZ)

 $s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3$.

• Why focus on **3-SAT**? Is it WLOG?

 $\begin{array}{l} \mbox{Could 3-SAT be much easier than 4-SAT}??\\ \bullet \mbox{ Usual NP-C reduction maps } \mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}, \mbox{ where}\\ \\ \# \mbox{ vars}(\mathcal{G}^{(3)}) \ = \ \Theta\left(\# \mbox{ clauses}(\mathcal{F}^{(3)})\right) \ . \end{array}$

• $2^{o(n)}$ time alg for **3-SAT** \implies Solve **4-SAT** in time $2^{o(m)}$. ([IPZ] result, again) \implies Solve **4-SAT** in time $2^{o(n)}$!

Theorem (IPZ)

 $s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3$.

• Why focus on **3-SAT**? Is it WLOG?

 $\begin{array}{l} \mbox{Could 3-SAT be much easier than 4-SAT}??\\ \bullet \mbox{ Usual NP-C reduction maps } \mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}, \mbox{ where}\\ \\ \# \mbox{ vars}(\mathcal{G}^{(3)}) \ = \ \Theta\left(\# \mbox{ clauses}(\mathcal{F}^{(3)})\right) \ . \end{array}$

• $2^{o(n)}$ time alg for **3-SAT** \implies Solve **4-SAT** in time $2^{o(m)}$. ([IPZ] result, again) \implies Solve **4-SAT** in time $2^{o(n)}$!

Theorem (IPZ)

 $s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3$.

• Why focus on **3-SAT**? Is it WLOG?

 $\begin{array}{l} \mbox{Could 3-SAT be much easier than 4-SAT}??\\ \bullet \mbox{ Usual NP-C reduction maps } \mathcal{F}^{(4)} \longrightarrow \mathcal{G}^{(3)}, \mbox{ where}\\ \\ \# \mbox{ vars}(\mathcal{G}^{(3)}) \ = \ \Theta\left(\# \mbox{ clauses}(\mathcal{F}^{(3)})\right) \ . \end{array}$

• $2^{o(n)}$ time alg for **3-SAT** \implies Solve **4-SAT** in time $2^{o(m)}$. ([IPZ] result, again) \implies Solve **4-SAT** in time $2^{o(n)}$!

Theorem (IPZ)

$$s_3 = 0 \iff s_k = 0 \quad \forall k \geq 3$$
.

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$.

Exponential Time Hypothesis (**ETH**) (IPZ'97) $s_3 > 0$.

Best known: $s_k \leq 1 - \Theta(1/k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (**SETH**) (IP'98) $\lim_{k} s_{k} = 1.$

• Note: SETH \Rightarrow ETH.

 $s_k \triangleq \inf \{\varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n})\}$.

Exponential Time Hypothesis (ETH)	(IPZ'97)
$s_3 > 0$.		

Best known: $s_k \leq 1 - \Theta(1/k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (**SETH**) (IP'98) $\lim_{k} s_{k} = 1.$

• Note: SETH \Rightarrow ETH.

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$.

Exponential Time Hypothesis (**ETH**) (IPZ'97)
$$s_3 > 0$$
.

Best known: $s_k \leq 1 - \Theta(1/k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (**SETH**) (IP'98) $\lim_{k} s_{k} = 1.$

• Note: SETH \Rightarrow ETH.

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$.

Exponential Time Hypothesis (**ETH**) (IPZ'97)
$$s_3 > 0$$
.

Best known: $s_k \leq 1 - \Theta(1/k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (**SETH**) (IP'98) $\lim_{k} s_{k} = 1.$

• Note: SETH \Rightarrow ETH.

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$.

Exponential Time Hypothesis (**ETH**) (IPZ'97)
$$s_3 > 0$$
.

Best known: $s_k \leq 1 - \Theta(1/k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (**SETH**) (IP'98) $\lim_{k} s_{k} = 1.$

• Note: SETH \Rightarrow ETH.

 $s_k \triangleq \inf \{ \varepsilon : k \text{-SAT decidable in time } O^*(2^{\varepsilon n}) \}$.

Exponential Time Hypothesis (**ETH**) (IPZ'97)
$$s_3 > 0$$
.

Best known: $s_k \leq 1 - \Theta(1/k)$. Why not "go for broke?"

Strong Exp. Time Hypothesis (**SETH**) (IP'98) $\lim_{k} s_{k} = 1.$

• Note: SETH \Rightarrow ETH.

More consequences of ETH, SETH

- Many more runtime LBs shown under ETH, SETH.
- Strong power to explain dependence on natural input parameters.
- Major implications for parametrized complexity theory
 [Downey, Fellows]; [Lokshtanov, Marx, Saurabh survey]
- Many problem instances have associated integer parameter gives some indication of difficulty.
- E.g., VERTEX COVER:

Given: (G, k)**Decide:** does *G* have a vertex cover of size *k*?

 Goal of "parametrized algorithm" design: design algs that are "fast when k is small."

• VERTEX COVER:

Given: (*G*, *k*) **Decide:** does *G* have a vertex cover of size *k*?

• Known: VERTEX COVER solvable in time $2^k \cdot n^{O(1)}$

• **ETH implies**: Can't solve in time $2^{o(k)} \cdot n^{O(1)}$.

• VERTEX COVER:

Given: (*G*, *k*) **Decide:** does *G* have a vertex cover of size *k*?

Known: VERTEX COVER solvable in time 2^k · n^{O(1)}
 (n = # verts).

• **ETH implies**: Can't solve in time $2^{o(k)} \cdot n^{O(1)}$.

• VERTEX COVER:

Given: (*G*, *k*) **Decide:** does *G* have a vertex cover of size *k*?

• Known: VERTEX COVER solvable in time $2^k \cdot n^{O(1)}$

(n = # verts).

• ETH implies: Can't solve in time $2^{o(k)} \cdot n^{O(1)}$.

• CLIQUE:

Given: (G, k)

Decide: does G have a clique of size k?

- Known: CLIQUE solvable in time $\approx n^k/k!$ (n = # verts).
- Standard assumption (FPT \neq W[1]) implies:

can't solve in $F(k) \cdot n^{O(1)}$...

イロト 不得下 イヨト イヨト

• ETH implies: Can't solve in time $F(k) \cdot n^{o(k)}$. [Chen, Huang, Kanj, Xia'06]

• CLIQUE:

Given: (G, k)

Decide: does G have a clique of size k?

- Known: CLIQUE solvable in time $\approx n^k/k!$ (n = # verts).
- Standard assumption (FPT \neq W[1]) implies:

can't solve in $F(k) \cdot n^{O(1)}$...

イロト 不得下 イヨト イヨト 二日

• ETH implies: Can't solve in time $F(k) \cdot n^{o(k)}$. [Chen, Huang, Kanj, Xia'06

• CLIQUE:

Given: (G, k)

Decide: does G have a clique of size k?

- Known: CLIQUE solvable in time $\approx n^k/k!$ (n = # verts).
- Standard assumption (FPT \neq W[1]) implies:

can't solve in $F(k) \cdot n^{O(1)}$...

イロト 不得下 イヨト イヨト 二日

• ETH implies: Can't solve in time $F(k) \cdot n^{o(k)}$. [Chen, Huang, Kanj, Xia'06]

• <u>k-DOMINATING SET:</u>

Given: graph *G*. **Decide:** does *G* have a dom. set of size *k*?

• Known: solvable in time $n^{k+o(1)}$.

[Eisenbrand, Grandoni'04; Pătrașcu, Williams'10]

• **Strong ETH implies**:* Can't solve in time $n^{k-\varepsilon}$.

[Pătrașcu, Williams'10]

- 4 同 6 4 日 6 4 日 6

• <u>k-DOMINATING SET:</u>

Given: graph *G*. **Decide:** does *G* have a dom. set of size *k*?

• Known: solvable in time $n^{k+o(1)}$.

[Eisenbrand, Grandoni'04; Pătrașcu, Williams'10]

• **Strong ETH implies**:* Can't solve in time $n^{k-\varepsilon}$.

[Pătrașcu, Williams'10]

• <u>k-DOMINATING SET:</u>

Given: graph *G*. **Decide:** does *G* have a dom. set of size *k*?

• Known: solvable in time $n^{k+o(1)}$.

[Eisenbrand, Grandoni'04; Pătrașcu, Williams'10]

• Strong ETH implies:* Can't solve in time $n^{k-\varepsilon}$.

[Pătrașcu, Williams'10]

• <u>k-DOMINATING SET:</u>

Given: graph *G*. **Decide:** does *G* have a dom. set of size *k*?

• Known: solvable in time $n^{k+o(1)}$.

[Eisenbrand, Grandoni'04; Pătrașcu, Williams'10]

• Strong ETH implies:* Can't solve in time $n^{k-\varepsilon}$.

[Pătrașcu, Williams'10]

- **Treewidth** of a graph G: tw(G) = measure of "fatness" of G.
- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

 $c^{tw(G)} \cdot n^{O(1)}$ for some c.

*(Given a tree decomposition.)

• [Lokshtanov, Marx, Saurabh '11]: **Strong ETH** \implies some of these algorithms are **optimal!**

(constant *c* can't be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3

- **Treewidth** of a graph G: tw(G) = measure of "fatness" of G.
- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

 $c^{tw(G)} \cdot n^{O(1)}$ for some c.

*(Given a tree decomposition.)

• [Lokshtanov, Marx, Saurabh '11]: **Strong ETH** \implies some of these algorithms are **optimal!**

(constant *c* can't be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3

- **Treewidth** of a graph G: tw(G) = measure of "fatness" of G.
- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

 $c^{tw(G)} \cdot n^{O(1)}$ for some c.

*(Given a tree decomposition.)

• [Lokshtanov, Marx, Saurabh '11]: **Strong ETH** \implies some of these algorithms are **optimal!**

(constant *c* can't be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3

- **Treewidth** of a graph G: tw(G) = measure of "fatness" of G.
- Known: many NP-C graph problems solvable fast on low-treewidth graphs (by dynamic prog.), in time*

 $c^{tw(G)} \cdot n^{O(1)}$ for some c.

*(Given a tree decomposition.)

● [Lokshtanov, Marx, Saurabh '11]: Strong ETH ⇒ some of these algorithms are optimal!

(constant *c* can't be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3

How well can we approximate IND SET on *n*-vertex graphs in subexponential time?

Consider obtaining an *r*-approximation to max ind. set size, $r = r(n) = \omega(1)$.

Theorem (Chitniz, Hajiaghayi, Kortsarz'13) Can get r-approximation in time $O^*(2^{n/r})$.

Theorem (Chalermsook, Laekhanukit, Nanongkai) Under **ETH**, no alg. for $r(n) < n^{.49}$ can have runtime $O^*(2^{n^{.99}/r^{1.01}})$.

イロト 不得下 イヨト イヨト

How well can we approximate IND SET on *n*-vertex graphs in subexponential time?

Consider obtaining an *r*-approximation to max ind. set size, $r = r(n) = \omega(1)$.

Theorem (Chitniz, Hajiaghayi, Kortsarz'13)

Can get r-approximation in time $O^*(2^{n/r})$.

Theorem (Chalermsook, Laekhanukit, Nanongkai) Under **ETH**, no alg. for $r(n) < n^{.49}$ can have runtime $O^*(2^{n^{.99}/r^{1.01}})$.

イロト 不得下 イヨト イヨト

How well can we approximate IND SET on *n*-vertex graphs in subexponential time?

Consider obtaining an *r*-approximation to max ind. set size, $r = r(n) = \omega(1)$.

Theorem (Chitniz, Hajiaghayi, Kortsarz'13)

Can get *r*-approximation in time $O^*(2^{n/r})$.

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under **ETH**, no alg. for $r(n) < n^{.49}$ can have runtime $O^*(2^{n^{.99}/r^{1.01}})$.

イロト イ理ト イヨト イヨト

How well can we approximate IND SET on *n*-vertex graphs in subexponential time?

Consider obtaining an *r*-approximation to max ind. set size, $r = r(n) = \omega(1)$.

Theorem (Chitniz, Hajiaghayi, Kortsarz'13)

Can get r-approximation in time $O^*(2^{n/r})$.

Theorem (Chalermsook, Laekhanukit, Nanongkai) Under ETH, no alg. for $r(n) < n^{.49}$ can have runtime $O^*(2^{n^{.99}/r^{1.01}})$.

イロト 不得 トイヨト イヨト

diameter(G)
$$\triangleq \max_{u,v} \operatorname{dist}_{G}(u,v)$$
.

l heorem (Roddity, Vassilevska Williams'13)

If we can estimate diameter(G) to approx. factor $(3/2 - \varepsilon)$ in time $O(m^{2-\delta})$, then **SETH** fails.

SETH => Detailed info about complexity of a poly-time computation!

イロト イヨト イヨト

diameter(G)
$$\triangleq \max_{u,v} \operatorname{dist}_G(u,v)$$
.

Theorem (Roddity, Vassilevska Williams'13)

If we can estimate diameter(G) to approx. factor $(3/2 - \varepsilon)$ in time $O(m^{2-\delta})$, then **SETH** fails.

• SETH \implies Detailed info about complexity of a poly-time computation!

(日) (周) (三) (三)

diameter(G)
$$\triangleq \max_{u,v} \operatorname{dist}_{G}(u,v)$$
.

Theorem (Roddity, Vassilevska Williams'13)

If we can estimate diameter(G) to approx. factor $(3/2 - \varepsilon)$ in time $O(m^{2-\delta})$, then **SETH** fails.

SETH => Detailed info about complexity of a poly-time computation!

diameter(G)
$$\triangleq \max_{u,v} \operatorname{dist}_{G}(u,v)$$
.

Theorem (Roddity, Vassilevska Williams'13)

If we can estimate diameter(G) to approx. factor $(3/2 - \varepsilon)$ in time $O(m^{2-\delta})$, then **SETH** fails.

SETH => Detailed info about complexity of a poly-time computation!

diameter(G)
$$\triangleq \max_{u,v} \operatorname{dist}_{G}(u,v)$$
.

Theorem (Roddity, Vassilevska Williams'13)

If we can estimate diameter(G) to approx. factor $(3/2 - \varepsilon)$ in time $O(m^{2-\delta})$, then **SETH** fails.

 SETH => Detailed info about complexity of a poly-time computation!

Andrew Drucker (IAS)

Further afield

- [Abboud, Vassilevska Williams'14]: Improvements in certain dynamic algorithms for graph problems ⇒ ¬SETH.
- [Bringmann, this morning]: Compute <u>Fréchet distance</u> in $n^{2-\varepsilon}$ time $\Rightarrow \neg$ SETH.
- Seems likely to see more results of this kind...

A B M A B M

Theorem (IPZ) **k-SAT** in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies \text{k-SAT}$ in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0$.

 $m = \# \operatorname{clauses}(\mathcal{F}), \qquad n = \# \operatorname{variables}(\mathcal{F}).$

• Let's see the proof ideas. Main challenge: for general "dense" \mathcal{F} , may have $m \gg n$.

• Ideal approach: give a "sparsification" reduction:

 $\mathcal{F} \longrightarrow^{ptime} \mathcal{F}' \qquad SAT(\mathcal{F}) = SAT(\mathcal{F}')$ $m', n' \leq O(n).$

• Solve \mathcal{F}' in time $2^{o(m')} = 2^{o(n)} \implies$ solve \mathcal{F} . ???

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … の々で

Theorem (IPZ) **k-SAT** in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies$ **k-SAT** in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0$.

 $m = \# \operatorname{clauses}(\mathcal{F}), \qquad n = \# \operatorname{variables}(\mathcal{F}).$

Let's see the proof ideas.
 Main challenge: for general "dense" *F*, may have *m* ≫ *n*.

• Ideal approach: give a "sparsification" reduction:

 $\mathcal{F} \longrightarrow^{ptime} \mathcal{F}' \qquad SAT(\mathcal{F}) = SAT(\mathcal{F}')$ $m', n' \leq O(n).$

• Solve \mathcal{F}' in time $2^{o(m')} = 2^{o(n)} \implies$ solve \mathcal{F} . ???

Theorem (IPZ) **k-SAT** in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies$ **k-SAT** in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0.$

 $m = \# \operatorname{clauses}(\mathcal{F}), \qquad n = \# \operatorname{variables}(\mathcal{F}).$

Let's see the proof ideas.
 Main challenge: for general "dense" *F*, may have *m* ≫ *n*.

• Ideal approach: give a "sparsification" reduction:

 $\mathcal{F} \longrightarrow^{ptime} \mathcal{F}' \qquad SAT(\mathcal{F}) = SAT(\mathcal{F}')$ $m', n' \leq O(n).$

• Solve \mathcal{F}' in time $2^{o(m')} = 2^{o(n)} \implies$ solve \mathcal{F} . ???

Theorem (IPZ) **k-SAT** in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies \text{k-SAT}$ in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0.$

 $m = \# \operatorname{clauses}(\mathcal{F}), \qquad n = \# \operatorname{variables}(\mathcal{F}).$

Let's see the proof ideas.
 Main challenge: for general "dense" *F*, may have *m* ≫ *n*.

• Ideal approach: give a "sparsification" reduction:

 $\mathcal{F} \longrightarrow^{ptime} \mathcal{F}' \qquad SAT(\mathcal{F}) = SAT(\mathcal{F}')$ $m', n' \leq O(n).$

• Solve \mathcal{F}' in time $2^{o(m')} = 2^{o(n)} \implies$ solve \mathcal{F} . ???

Theorem (IPZ) **k-SAT** in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies \text{k-SAT}$ in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0.$

 $m = \# \operatorname{clauses}(\mathcal{F}), \qquad n = \# \operatorname{variables}(\mathcal{F}).$

Let's see the proof ideas.
 Main challenge: for general "dense" *F*, may have *m* ≫ *n*.

• Ideal approach: give a "sparsification" reduction:

 $\mathcal{F} \longrightarrow^{ptime} \mathcal{F}' \qquad SAT(\mathcal{F}) = SAT(\mathcal{F}')$ $m', n' \leq O(n).$

• Solve \mathcal{F}' in time $2^{o(m')} = 2^{o(n)} \implies$ solve \mathcal{F} . ???

Theorem (IPZ) **k-SAT** in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies$ **k-SAT** in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0$.

 $m = \# \operatorname{clauses}(\mathcal{F}), \qquad n = \# \operatorname{variables}(\mathcal{F}).$

- Let's see the proof ideas.
 Main challenge: for general "dense" *F*, may have *m* ≫ *n*.
- Ideal approach: give a "sparsification" reduction:

 $\mathcal{F} \longrightarrow^{2^{o(n)} time} \mathcal{F}' \qquad SAT(\mathcal{F}) = SAT(\mathcal{F}')$ $m', n' \leq O(n) .$

• Solve \mathcal{F}' in time $2^{o(m')} = 2^{o(n)} \implies$ solve \mathcal{F} . ???

Theorem (IPZ) **k-SAT** in time $O^*(2^{\varepsilon m}) \ \forall \varepsilon > 0 \implies$ **k-SAT** in time $O^*(2^{\varepsilon n}) \ \forall \varepsilon > 0$.

 $m = \# \operatorname{clauses}(\mathcal{F}), \qquad n = \# \operatorname{variables}(\mathcal{F}).$

- Let's see the proof ideas.
 Main challenge: for general "dense" *F*, may have *m* ≫ *n*.
- Ideal approach: give a "sparsification" reduction:

 $\mathcal{F} \longrightarrow^{2^{o(n)} time} \mathcal{F}' \qquad SAT(\mathcal{F}) = SAT(\mathcal{F}')$ $m', n' \leq O(n) .$

• Solve \mathcal{F}' in time $2^{o(m')} = 2^{o(n)} \implies$ solve \mathcal{F} . ???

• Relax this idea further...

$$\mathcal{F} \rightarrow^{2^{o(n)} time} \mathcal{G}^1, \mathcal{G}^2, \dots, \mathcal{G}^s \qquad s = 2^{o(n)}$$

$$SAT(\mathcal{F}) = \bigvee_{i} SAT(\mathcal{F}^{i})$$

Sparsification Lemma (IPZ'97)

Fix $k \geq 3, \varepsilon > 0$.

There exists a reduction $\mathcal{F} \to \mathcal{G}^1, \ldots, \mathcal{G}^s$, computable in time $O^*(2^{\varepsilon n})$, such that

- $\mathcal{F} \in SAT$ iff $\exists i : \mathcal{G}^i \in SAT$;
- 2 $s \leq 2^{\varepsilon n};$
- 3 $\#vars(\mathcal{G}^i) \leq n;$
- # clauses $(\mathcal{G}^i) \leq O_{k,\varepsilon}(n)$.

• Relax this idea further...

$$\mathcal{F} \longrightarrow^{2^{o(n)} time} \mathcal{G}^1, \mathcal{G}^2, \dots, \mathcal{G}^s \qquad s = 2^{o(n)}$$

$$SAT(\mathcal{F}) = \bigvee_{i} SAT(\mathcal{F}^{i})$$

Sparsification Lemma (IPZ'97)

Fix $k \geq 3, \varepsilon > 0$.

There exists a reduction $\mathcal{F} \to \mathcal{G}^1, \ldots, \mathcal{G}^s$, computable in time $O^*(2^{\varepsilon n})$, such that

- $\mathcal{F} \in SAT$ iff $\exists i : \mathcal{G}^i \in SAT$;
- 2 $s \leq 2^{\varepsilon n};$
- 3 $\#vars(\mathcal{G}^i) \leq n;$
- # clauses $(\mathcal{G}^i) \leq O_{k,\varepsilon}(n)$.

• Relax this idea further...

$$\mathcal{F} \rightarrow^{2^{o(n)} time} \mathcal{G}^1, \mathcal{G}^2, \dots, \mathcal{G}^s \quad s = 2^{o(n)}$$

$$SAT(\mathcal{F}) = \bigvee_{i} SAT(\mathcal{F}^{i})$$

Sparsification Lemma (IPZ'97)

Fix $k \geq 3, \varepsilon > 0$.

There exists a reduction $\mathcal{F} \to \mathcal{G}^1, \dots, \mathcal{G}^s$, computable in time $O^*(2^{\varepsilon n})$, such that

- $\mathcal{F} \in SAT$ iff $\exists i : \mathcal{G}^i \in SAT$;
- 2 $s \leq 2^{\varepsilon n}$;
- $\#vars(\mathcal{G}^i) \leq n;$
- # clauses $(\mathcal{G}^i) \leq O_{k,\varepsilon}(n)$.

• Now suppose we could solve **k-SAT** in time $2^{\delta m}$ for small $\delta > 0$.

• Use Lemma to solve **k-SAT** in time $2^{\varepsilon n} \cdot 2^{\delta(C_{k,\varepsilon}n)}$. Take $\delta \ll C_{k,\varepsilon}^{-1}\varepsilon$.
The key lemma

• Now suppose we could solve **k-SAT** in time $2^{\delta m}$ for small $\delta > 0$.

• Use Lemma to solve **k-SAT** in time $2^{\varepsilon n} \cdot 2^{\delta(C_{k,\varepsilon}n)}$. Take $\delta \ll C_{k,\varepsilon}^{-1}\varepsilon$.

イロト 不得下 イヨト イヨト

The key lemma

- Now suppose we could solve **k-SAT** in time $2^{\delta m}$ for small $\delta > 0$.
- Use Lemma to solve **k-SAT** in time $2^{\varepsilon n} \cdot 2^{\delta(C_{k,\varepsilon}n)}$. Take $\delta \ll C_{k,\varepsilon}^{-1}\varepsilon$.

イロト 不得 トイヨト イヨト

The key lemma

- Now suppose we could solve **k-SAT** in time $2^{\delta m}$ for small $\delta > 0$.
- Use Lemma to solve **k-SAT** in time $2^{\varepsilon n} \cdot 2^{\delta(C_{k,\varepsilon}n)}$. Take $\delta \ll C_{k,\varepsilon}^{-1}\varepsilon$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proof of sparsification lemma

(debt to D. Scheder's notes!)

.

Andrew Drucker (IAS)

NP and the ETH

April 8, 2014

A B M A B M

< A

Thanks!

Andrew Drucker (IAS)

NP and the ETH

April 8, 2014

イロン イヨン イヨン イヨン