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NP-completeness

NP-completeness theory gives great guidance about which problems
are efficiently solvable.

2-SAT, 2-Coloring, Euler Tour ∈ PTIME;

3-SAT, 3-Coloring, Hamilton Path ∈ NP-complete.
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NP-completeness

Want to solve NP-complete problems =⇒ must accept compromise!

Popular approach: find approximately-optimal solutions.

(for optimization probs.)

Here too, NP-completeness theory (+ PCPs) often provides great
guidance!

I .5-approx Max-LIN (F2) ∈ PTIME;

I (.5 + ε)-approx Max-LIN (F2): NP-Complete. [Håstad’97]

Andrew Drucker (IAS) NP and the ETH April 8, 2014



NP-completeness

Want to solve NP-complete problems =⇒ must accept compromise!

Popular approach: find approximately-optimal solutions.

(for optimization probs.)

Here too, NP-completeness theory (+ PCPs) often provides great
guidance!

I .5-approx Max-LIN (F2) ∈ PTIME;

I (.5 + ε)-approx Max-LIN (F2): NP-Complete. [Håstad’97]
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Andrew Drucker (IAS) NP and the ETH April 8, 2014



NP-completeness

Sometimes we need an exact solution to an NP-C problem.

Then, compromise =⇒ must accept an inefficient algorithm!

(at least, inefficient in the worst case—our focus)

Key question: Can we at least beat brute-force search??
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Time complexity

Known results for some popular NP-C problems:

Problem Parameter Trivial Improved Ref.

CNF-SAT n = #vars 2n 1.99n ??

k-SAT 2(1−1/k)n [Paturi, Pudlák, Zane ’97]

IND. SET n = #vertices 2n 1.23n [Tarjan, Trojanowski’77; more...]

PLANAR

IND. SET 2O(
√
n) [Ungar ’51; Lipton, Tarjan ’79]

HAM. PATH n! 2n , 1.7n [Held, Karp ’62; Bjorklund ’10]

(Strictly: F (n)’s above should be O∗(F (n)) , F (n) · |instance|O(1) . )
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Example: Schöning’s alg.

Given: a k-CNF F = C1 ∧ C2 ∧ . . . ∧ Cm.

(each Ci an OR of ≤ k literals)

Goal: find a satisfying solution to F if one exists.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.
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Example: Schöning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Claim: if F ∈ SAT, then

Pr[A(F)finds a solution] ≥ 2−(1−c/k)n.

=⇒ repeat for 2(1−c/k)n trials to find one w.h.p.!

Analysis idea is very simple!
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Example: Schöning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Suppose F(x∗) = 1. Let x t = state of x after t execs. of Step 2.
Let

Yt , ||x t − x∗||1 .

Key fact: if Yt > 0, then Pr[Yt+1 = Yt − 1] ≥ 1/k .

Can lower-bound Pr[mint Yt = 0] in terms of a biased random walk.

(biased against us, but not too badly!
Hope is that Y0 � n/2.)
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Time complexity
Known results for some popular NP-C problems:

Problem Parameter Trivial Improved Ref.

CNF-SAT n = #vars 2n 1.99n ??

k-SAT 2(1−1/k)n [Paturi, Pudlák, Zane ’97]

IND. SET n = #vertices 2n 1.23n [Tarjan, Trojanowski’77; more...]

PLANAR

IND. SET 2O(
√
n) [Ungar ’51; Lipton, Tarjan ’79]

HAM. PATH n! 2n , 1.7n [Held, Karp ’62; Bjorklund ’10]

NP-C theory: no prediction about relative difficulty, best runtimes for these probs!
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Time complexity
Known results for some popular NP-C problems:

Problem Parameter Trivial Improved Ref.

CNF-SAT n = #vars 2n 1.99n ??

k-SAT 2(1−1/k)n [Paturi, Pudlák, Zane ’97]

IND. SET n = #vertices 2n 1.23n [Tarjan, Trojanowski’77; more...]

PLANAR

IND. SET 2O(
√
n) [Ungar ’51; Lipton, Tarjan ’79]

HAM. PATH n! 2n , 1.7n [Held, Karp ’62; Bjorklund ’10]

Challenge for complexity theory: explain the seeming differences in difficulty!
Identify barriers to further progress!
Guide search for faster algorithms!
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Time complexity

Could P 6= NP conjecture imply that NP-C probs require exponential
time?

No idea. Seems hopeless!

Influential approach: strengthen the conjecture!

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No 2o(n)-time algorithm for n-variable 3-SAT.
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The ETH

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No 2o(n)-time algorithm for n-variable 3-SAT.

Formally: for k ≥ 3, define sk ∈ [0, 1] by

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

s3 > 0 .
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The ETH

Formally: for k ≥ 3, define sk ∈ [0, 1] by

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

s3 > 0 .

s3 ≤ s4 ≤ s5 ≤ . . .

Best known: s3 ≤ .388, s4 ≤ .555, sk ≤ 1−Θ(1/k).

[Paturi, Pudlák, Saks, Zane ’98; Hertli ’11]
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ETH

Much stronger belief than P 6= NP.

Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

Issue: ETH studies dependence on key param.

n = # vars(F) � |F|.

Measures dimension of search space, not input size!

c.f. [Hunt, Stearns’90], “power index”
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Consequences of ETH

Consider IND. SET problem. Solvable in O∗(1.23N) time on
N-vertex graphs.

Can we hope for 2o(N)? Or, would that violate ETH?

Given: 2o(N)-time alg for IND. SET; try to solve 3-SAT instance F .
(n , # vars, m , #clauses)

Usual NP-C reduction: F −→ (G , k), where

|V (G )| = Θ(n + m) = Θ(m) .

=⇒ We solve F in time 2o(m). WEAK!
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Consequences of ETH

2o(N) time alg for IND. SET =⇒ Solve 3-SAT in time 2o(m).

Theorem (IPZ)

Solve k-SAT in time 2o(m) =⇒ Solve k-SAT in time 2o(n) !!

So, 2o(N) time alg for IND. SET violates ETH.

Similar: HAM PATH, DOMINATING SET, VERTEX COVER.
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Consequences of ETH

Planar IND. SET problem: Solvable in 2O(
√
N) time on

N-vertex planar graphs.

Can we hope for 2o(
√
N)?

Usual NP-C reduction: 3-CNF F −→ (planar) (G , k), where

|V (G )| = Θ(m2) .

Solve Planar IND SET in time 2o(
√
N) =⇒

solve 3-SAT in time 2o(m).
Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.
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solve 3-SAT in time 2o(m).
Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.
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Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps F (4) −→ G(3), where

# vars(G(3)) = Θ
(

# clauses(F (3))
)
.

2o(n) time alg for 3-SAT =⇒ Solve 4-SAT in time 2o(m).

([IPZ] result, again) =⇒ Solve 4-SAT in time 2o(n) !

Theorem (IPZ)

s3 = 0 ⇐⇒ sk = 0 ∀k ≥ 3 .
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A stronger hypothesis

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

Exponential Time Hypothesis (ETH) (IPZ’97)

s3 > 0 .

Best known: sk ≤ 1−Θ(1/k). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

limk sk = 1 .

Note: SETH ⇒ ETH.
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More consequences of ETH, SETH

Many more runtime LBs shown under ETH, SETH.

Strong power to explain dependence on natural input parameters.

Major implications for parametrized complexity theory

[Downey, Fellows]; [Lokshtanov, Marx, Saurabh survey]
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Parametrized problems

Many problem instances have associated integer parameter — gives
some indication of difficulty.

E.g., VERTEX COVER:

Given: (G , k)

Decide: does G have a vertex cover of size k?

Goal of “parametrized algorithm”design: design algs that are
“fast when k is small.”
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Parametrized problems

VERTEX COVER:

Given: (G , k)

Decide: does G have a vertex cover of size k?

Known: VERTEX COVER solvable in time 2k · nO(1)

(n = # verts).

ETH implies: Can’t solve in time 2o(k) · nO(1).
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Parametrized problems

CLIQUE:

Given: (G , k)

Decide: does G have a clique of size k?

Known: CLIQUE solvable in time ≈ nk/k! (n = # verts).

Standard assumption (FPT 6= W[1]) implies:

can’t solve in F (k) · nO(1)...

ETH implies: Can’t solve in time F (k) · no(k).
[Chen, Huang, Kanj, Xia’06]
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Parametrized problems

k-DOMINATING SET:

Given: graph G .

Decide: does G have a dom. set of size k?

Known: solvable in time nk+o(1) .

[Eisenbrand, Grandoni’04; Pǎtraşcu, Williams’10]

Strong ETH implies:∗ Can’t solve in time nk−ε.

[Pǎtraşcu, Williams’10]

∗(Actually, a bit weaker hyp.)
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Treewidth

Treewidth of a graph G : tw(G ) = measure of “fatness” of G .

Known: many NP-C graph problems solvable fast on low-treewidth
graphs (by dynamic prog.), in time∗

ctw(G) · nO(1) for some c .

*(Given a tree decomposition.)

[Lokshtanov, Marx, Saurabh ’11]: Strong ETH =⇒ some of these
algorithms are optimal!

(constant c can’t be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3
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Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs in
subexponential time?

Consider obtaining an r -approximation to max ind. set size,
r = r(n) = ω(1).

Theorem (Chitniz, Hajiaghayi, Kortsarz’13)

Can get r -approximation in time O∗(2n/r ).

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under ETH, no alg. for r(n) < n.49 can have runtime O∗(2n
.99/r1.01) .
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Graph diameter

diameter(G ) , max
u,v

distG (u, v) .

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13 )

For a simple graph G on n verts, m edges, can compute
3/2-approximation to diameter(G ) in (expected) time Õ(m

√
n).

Theorem (Roddity, Vassilevska Williams’13 )

If we can estimate diameter(G ) to approx. factor (3/2− ε) in time
O(m2−δ), then SETH fails.

SETH =⇒ Detailed info about complexity of a poly-time
computation!
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Further afield

[Abboud, Vassilevska Williams’14]: Improvements in certain
dynamic algorithms for graph problems ⇒ ¬SETH.

[Bringmann, this morning]: Compute Fréchet distance in n2−ε time
⇒ ¬SETH.

Seems likely to see more results of this kind...
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The key theorem

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0.

m = # clauses(F), n = # variables(F).

Let’s see the proof ideas.
Main challenge: for general “dense” F , may have m� n.

Ideal approach: give a “sparsification” reduction:

F −→ptime F ′ SAT (F) = SAT (F ′)

m′ , n′ ≤ O(n) .

Solve F ′ in time 2o(m
′) = 2o(n) =⇒ solve F . ???
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The key lemma

Relax this idea further...

F →2o(n) time G1,G2, . . . ,Gs s = 2o(n)

SAT (F) =
∨
i

SAT (F i )

Sparsification Lemma (IPZ’97)

Fix k ≥ 3, ε > 0.
There exists a reduction F → G1, . . . ,Gs , computable in time O∗(2εn),
such that

1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).
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1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).

Now suppose we could solve k-SAT in time 2δm for small δ > 0.

Use Lemma to solve k-SAT in time 2εn · 2δ(Ck,εn). Take δ � C−1k,ε ε.
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Proof of sparsification lemma (debt to D. Scheder’s notes!)

.....
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Thanks!
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