
Exponential-Time Algorithms for NP Problems:
Prospects and Limits

Andrew Drucker

IAS

Oct. 4, 2013

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Basic concepts

NP problems: decision problems whose “Yes” instances have
short certificates

(checkable in time polynomial in input length)

NP-complete problems: “hardest” problems in this class.

Believed not to be solvable in polynomial time. (“P 6= NP”)

Exponential Time Hypothesis (ETH)[Impagliazzo, Paturi, Zane ‘97] :

NP-complete problems require exponential time (roughly speaking)

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Basic concepts

NP problems: decision problems whose “Yes” instances have
short certificates

(checkable in time polynomial in input length)

NP-complete problems: “hardest” problems in this class.

Believed not to be solvable in polynomial time. (“P 6= NP”)

Exponential Time Hypothesis (ETH)[Impagliazzo, Paturi, Zane ‘97] :

NP-complete problems require exponential time (roughly speaking)

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Basic concepts

NP problems: decision problems whose “Yes” instances have
short certificates

(checkable in time polynomial in input length)

NP-complete problems: “hardest” problems in this class.

Believed not to be solvable in polynomial time. (“P 6= NP”)

Exponential Time Hypothesis (ETH)[Impagliazzo, Paturi, Zane ‘97] :

NP-complete problems require exponential time (roughly speaking)

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: Subset Sum

INPUT: integers a1, . . . , an,T //each of bitlength O(n)

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

Natural certificate: the set J.

Näıve algorithm: ∼ n2 · 2n steps.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: Subset Sum

INPUT: integers a1, . . . , an,T //each of bitlength O(n)

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

Natural certificate: the set J.

Näıve algorithm: ∼ n2 · 2n steps.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: Subset Sum

INPUT: integers a1, . . . , an,T //each of bitlength O(n)

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

Natural certificate: the set J.

Näıve algorithm: ∼ n2 · 2n steps.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: Subset Sum

INPUT: integers a1, . . . , an,T

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

NP-complete, so P 6= NP conjecture rules out a poly(n)-time
algorithm for this problem...

ETH rules out a 2o(n)-time algorithm.

But, neither hypothesis rules out improvements on brute-force search!

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: Subset Sum

INPUT: integers a1, . . . , an,T

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

NP-complete, so P 6= NP conjecture rules out a poly(n)-time
algorithm for this problem...

ETH rules out a 2o(n)-time algorithm.

But, neither hypothesis rules out improvements on brute-force search!

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: Subset Sum

INPUT: integers a1, . . . , an,T

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

NP-complete, so P 6= NP conjecture rules out a poly(n)-time
algorithm for this problem...

ETH rules out a 2o(n)-time algorithm.

But, neither hypothesis rules out improvements on brute-force search!

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: Subset Sum

INPUT: integers a1, . . . , an,T

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

NP-complete, so P 6= NP conjecture rules out a poly(n)-time
algorithm for this problem...

ETH rules out a 2o(n)-time algorithm.

But, neither hypothesis rules out improvements on brute-force search!

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

INPUT: integers a1, . . . , an,T

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

1 Compute L := (all possible subsums of a1, . . . , an/2);

2 Compute R := (all possible subsums of an/2+1, . . . , an);

3 SORT each of L,R;

4 Check if T ∈ L + R.

Claim

Each step can be performed in 2n/2 · poly(n) steps.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

INPUT: integers a1, . . . , an,T

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

1 Compute L := (all possible subsums of a1, . . . , an/2);

2 Compute R := (all possible subsums of an/2+1, . . . , an);

3 SORT each of L,R;

4 Check if T ∈ L + R.

Claim

Each step can be performed in 2n/2 · poly(n) steps.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

INPUT: integers a1, . . . , an,T

DECIDE: is there a subset J ⊆ [n] such that
∑

j∈J aj = T ?

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

1 Compute L := (all possible subsums of a1, . . . , an/2);

2 Compute R := (all possible subsums of an/2+1, . . . , an);

3 SORT each of L,R;

4 Check if T ∈ L + R.

Claim

Each step can be performed in 2n/2 · poly(n) steps.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

4 Check if T ∈ L + R.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

4 Check if T ∈ L + R.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

4 Check if T ∈ L + R.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

4 Check if T ∈ L + R.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

4 Check if T ∈ L + R.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

4 Check if T ∈ L + R.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

4 Check if T ∈ L + R.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni ’74] :

4 Check if T ∈ L + R.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

2n/2 runtime: quite an gain over 2n...

BUT, since 1974, no further speedups for this problem!

(except for special cases)

No evidence 2n/2 is optimal!

One route to progress: the “k-SUM” problem...

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

2n/2 runtime: quite an gain over 2n...

BUT, since 1974, no further speedups for this problem!

(except for special cases)

No evidence 2n/2 is optimal!

One route to progress: the “k-SUM” problem...

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

2n/2 runtime: quite an gain over 2n...

BUT, since 1974, no further speedups for this problem!

(except for special cases)

No evidence 2n/2 is optimal!

One route to progress: the “k-SUM” problem...

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for Subset Sum

2n/2 runtime: quite an gain over 2n...

BUT, since 1974, no further speedups for this problem!

(except for special cases)

No evidence 2n/2 is optimal!

One route to progress: the “k-SUM” problem...

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

k-Sum
k ≥ 3 a fixed integer.

INPUT: sets of integers A1, . . . ,Ak each of size n; a target value T .

DECIDE: Is T ∈ A1 + . . .+ Ak?

Best known algorithm: ∼ ndk/2e steps.
Significant improvements would also improve the best algorithms for
SUBSET-SUM and other NP-complete problems.
OTOH, the ETH implies that k-SUM requires time nΩ(k).
[Woeginger ‘04], [Patrascu, Williams ‘10]

Many such connections were found between the complexity of
polynomial-time solvable problems (like k-SUM) and NP-complete
problems (like SUBSET-SUM).

Deeper connections may exist.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

k-Sum
k ≥ 3 a fixed integer.

INPUT: sets of integers A1, . . . ,Ak each of size n; a target value T .

DECIDE: Is T ∈ A1 + . . .+ Ak?

Best known algorithm: ∼ ndk/2e steps.
Significant improvements would also improve the best algorithms for
SUBSET-SUM and other NP-complete problems.
OTOH, the ETH implies that k-SUM requires time nΩ(k).
[Woeginger ‘04], [Patrascu, Williams ‘10]

Many such connections were found between the complexity of
polynomial-time solvable problems (like k-SUM) and NP-complete
problems (like SUBSET-SUM).

Deeper connections may exist.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

k-Sum
k ≥ 3 a fixed integer.

INPUT: sets of integers A1, . . . ,Ak each of size n; a target value T .

DECIDE: Is T ∈ A1 + . . .+ Ak?

Best known algorithm: ∼ ndk/2e steps.
Significant improvements would also improve the best algorithms for
SUBSET-SUM and other NP-complete problems.
OTOH, the ETH implies that k-SUM requires time nΩ(k).
[Woeginger ‘04], [Patrascu, Williams ‘10]

Many such connections were found between the complexity of
polynomial-time solvable problems (like k-SUM) and NP-complete
problems (like SUBSET-SUM).

Deeper connections may exist.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

k-Sum
k ≥ 3 a fixed integer.

INPUT: sets of integers A1, . . . ,Ak each of size n; a target value T .

DECIDE: Is T ∈ A1 + . . .+ Ak?

Best known algorithm: ∼ ndk/2e steps.
Significant improvements would also improve the best algorithms for
SUBSET-SUM and other NP-complete problems.
OTOH, the ETH implies that k-SUM requires time nΩ(k).
[Woeginger ‘04], [Patrascu, Williams ‘10]

Many such connections were found between the complexity of
polynomial-time solvable problems (like k-SUM) and NP-complete
problems (like SUBSET-SUM).

Deeper connections may exist.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

k-Sum
k ≥ 3 a fixed integer.

INPUT: sets of integers A1, . . . ,Ak each of size n; a target value T .

DECIDE: Is T ∈ A1 + . . .+ Ak?

Best known algorithm: ∼ ndk/2e steps.
Significant improvements would also improve the best algorithms for
SUBSET-SUM and other NP-complete problems.
OTOH, the ETH implies that k-SUM requires time nΩ(k).
[Woeginger ‘04], [Patrascu, Williams ‘10]

Many such connections were found between the complexity of
polynomial-time solvable problems (like k-SUM) and NP-complete
problems (like SUBSET-SUM).

Deeper connections may exist.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: k-SAT

k ≥ 3 a fixed integer.

INPUT: a CNF formula φ(x1, . . . , xn),
each clause of length ≤ k .

DECIDE: is there a variable assignment x such that φ(x) = TRUE?

Exponential Time Hypothesis (ETH):

For suff. small δ > 0, 3-SAT can’t be solved in time 2δn · poly(|φ|).

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: k-SAT

k ≥ 3 a fixed integer.

INPUT: a CNF formula φ(x1, . . . , xn),
each clause of length ≤ k .

DECIDE: is there a variable assignment x such that φ(x) = TRUE?

Exponential Time Hypothesis (ETH):

For suff. small δ > 0, 3-SAT can’t be solved in time 2δn · poly(|φ|).

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Example: k-SAT

k ≥ 3 a fixed integer.

INPUT: a CNF formula φ(x1, . . . , xn),
each clause of length ≤ k .

DECIDE: is there a variable assignment x such that φ(x) = TRUE?

Exponential Time Hypothesis (ETH):

For suff. small δ > 0, 3-SAT can’t be solved in time 2δn · poly(|φ|).

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudlák, Zane ’97]

∃ a poly(n)-time randomized algorithm A:
for any satisfiable φ, A finds a satisfying assignment with probability
≥ 1

n · 2
−n+n/k .

=⇒ can run A for ∼ n · 2n−n/k trials to obtain a solution w.h.p.

Many of the known improved algs for NP-complete problems have
this form! (or, can be re-expressed in this form)
[Paturi, Pudlák ‘10]

A rich, natural paradigm for algorithm design.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudlák, Zane ’97]

∃ a poly(n)-time randomized algorithm A:
for any satisfiable φ, A finds a satisfying assignment with probability
≥ 1

n · 2
−n+n/k .

=⇒ can run A for ∼ n · 2n−n/k trials to obtain a solution w.h.p.

Many of the known improved algs for NP-complete problems have
this form! (or, can be re-expressed in this form)
[Paturi, Pudlák ‘10]

A rich, natural paradigm for algorithm design.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudlák, Zane ’97]

∃ a poly(n)-time randomized algorithm A:
for any satisfiable φ, A finds a satisfying assignment with probability
≥ 1

n · 2
−n+n/k .

=⇒ can run A for ∼ n · 2n−n/k trials to obtain a solution w.h.p.

Many of the known improved algs for NP-complete problems have
this form! (or, can be re-expressed in this form)
[Paturi, Pudlák ‘10]

A rich, natural paradigm for algorithm design.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudlák, Zane ’97]

∃ a poly(n)-time randomized algorithm A:
for any satisfiable φ, A finds a satisfying assignment with probability
≥ 1

n · 2
−n+n/k .

=⇒ can run A for ∼ n · 2n−n/k trials to obtain a solution w.h.p.

Many of the known improved algs for NP-complete problems have
this form! (or, can be re-expressed in this form)
[Paturi, Pudlák ‘10]

A rich, natural paradigm for algorithm design.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula
φ(x1, . . . , xn):

Algorithm A [PPZ] :

1 Pick a random permutation σ ∈ Sn (“reordering” of x1, . . . , xn);
2 For i = 1, 2, . . . , n :

I If xσ(i) is “critical” for φ under current assignment, then set
accordingly;

I Else set xσ(i) randomly;

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Intelligent guessing procedures — Limits

ETH =⇒ no poly-time procedure can achieve success probability
≥ 2−o(n) for solving satisfiable 3-SATinstances.

(But, ETH is a very strong assumption...)

Can prove limits of poly-time random guessing under weaker
hypotheses.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Intelligent guessing procedures — Limits

ETH =⇒ no poly-time procedure can achieve success probability
≥ 2−o(n) for solving satisfiable 3-SATinstances.

(But, ETH is a very strong assumption...)

Can prove limits of poly-time random guessing under weaker
hypotheses.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Intelligent guessing procedures — Limits

ETH =⇒ no poly-time procedure can achieve success probability
≥ 2−o(n) for solving satisfiable 3-SATinstances.

(But, ETH is a very strong assumption...)

Can prove limits of poly-time random guessing under weaker
hypotheses.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Intelligent guessing procedures — Limits

Theorem [Paturi, Pudlák ‘10]

If some poly-time random guessing procedure can achieve success
probability ≥ 2−.9n for solving satisfiable Circuit-SAT instances,

then, Circuit-SAT has (non-uniform) algorithms of runtime 2n
.99

.

Theorem [D ‘13]

If some poly-time random guessing procedure can achieve success
probability ≥ 2−n

.9
for solving satisfiable 3-SAT instances,

then NP ⊆ coNP/poly.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

Intelligent guessing procedures — Limits

Theorem [Paturi, Pudlák ‘10]

If some poly-time random guessing procedure can achieve success
probability ≥ 2−.9n for solving satisfiable Circuit-SAT instances,

then, Circuit-SAT has (non-uniform) algorithms of runtime 2n
.99

.

Theorem [D ‘13]

If some poly-time random guessing procedure can achieve success
probability ≥ 2−n

.9
for solving satisfiable 3-SAT instances,

then NP ⊆ coNP/poly.

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

What’s next?

May be possible to prove strong limits on other restricted algorithms
for solving NP-complete problems.

(under reasonable hardness assumptions)

Candidate: Algorithms with superpolynomial time budget, but
polynomially-bounded space budget.

E.g., unknown whether we can solve SUBSET-SUM in time (1.99)n

using space poly(n)...

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

What’s next?

May be possible to prove strong limits on other restricted algorithms
for solving NP-complete problems.

(under reasonable hardness assumptions)

Candidate: Algorithms with superpolynomial time budget, but
polynomially-bounded space budget.

E.g., unknown whether we can solve SUBSET-SUM in time (1.99)n

using space poly(n)...

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013

