Exponential-Time Algorithms for NP Problems: Prospects and Limits

Andrew Drucker

IAS
Oct. 4, 2013

Basic concepts

- NP problems: decision problems whose "Yes" instances have short certificates
(checkable in time polynomial in input length)
- NP-complete problems: "hardest" problems in this class.
- Believed not to be solvable in polynomial time. (" $\mathrm{P} \neq \mathrm{NP}$ ")
- Exponential Time Hypothesis (ETH)[Impagliazzo, Paturi, Zane '97]: NP-complete problems require exponential time (roughly speaking)

Basic concepts

- NP problems: decision problems whose "Yes" instances have short certificates
(checkable in time polynomial in input length)
- NP-complete problems: "hardest" problems in this class.
- Believed not to be solvable in polynomial time. (" $P \neq N P$ ")
- Exponential Time Hypothesis (ETH)[Impagliazzo, Paturi, Zane '97]: NP-complete problems require exponential time (roughly speaking)

Basic concepts

- NP problems: decision problems whose "Yes" instances have short certificates
(checkable in time polynomial in input length)
- NP-complete problems: "hardest" problems in this class.
- Believed not to be solvable in polynomial time. (" $P \neq N P$ ")
- Exponential Time Hypothesis (ETH)[Impagliazzo, Paturi, Zane '97]: NP-complete problems require exponential time (roughly speaking)

Example: Subset Sum

- INPUT: integers $a_{1}, \ldots, a_{n}, T \quad / / e a c h$ of bitlength $O(n)$
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?

Natural certificate: the set J.

Naïve algorithm: $\sim n^{2} \cdot 2^{n}$ steps.

Example: Subset Sum

- INPUT: integers $a_{1}, \ldots, a_{n}, T \quad / / e a c h$ of bitlength $O(n)$
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?

Natural certificate: the set J.
Naïve algorithm: $\sim n^{2} \cdot 2^{n}$ steps.

Example: Subset Sum

- INPUT: integers $a_{1}, \ldots, a_{n}, T \quad / / e a c h$ of bitlength $O(n)$
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?

Natural certificate: the set J.
Naïve algorithm: $\sim n^{2} \cdot 2^{n}$ steps.

Example: Subset Sum

- INPUT: integers a_{1}, \ldots, a_{n}, T
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?
- NP-complete, so $P \neq$ NP conjecture rules out a poly(n)-time algorithm for this problem...
- ETH rules out a $2^{o(n)}$-time algorithm.
- But, neither hypothesis rules out improvements on brute-force search!

Example: Subset Sum

- INPUT: integers a_{1}, \ldots, a_{n}, T
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?
- NP-complete, so $\mathrm{P} \neq \mathrm{NP}$ conjecture rules out a poly(n)-time algorithm for this problem...
- ETH rules out a $2^{\circ(n)}$-time algorithm.
- But, neither hypothesis rules out improvements on brute-force search!

Example: Subset Sum

- INPUT: integers a_{1}, \ldots, a_{n}, T
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?
- NP-complete, so $\mathrm{P} \neq \mathrm{NP}$ conjecture rules out a poly(n)-time algorithm for this problem...
- ETH rules out a $2^{o(n)}$-time algorithm.
- But, neither hypothesis rules out improvements on brute-force search!

Example: Subset Sum

- INPUT: integers a_{1}, \ldots, a_{n}, T
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?
- NP-complete, so $\mathrm{P} \neq$ NP conjecture rules out a poly (n)-time algorithm for this problem...
- ETH rules out a $2^{o(n)}$-time algorithm.
- But, neither hypothesis rules out improvements on brute-force search!

Improved algorithm for Subset Sum

- INPUT: integers a_{1}, \ldots, a_{n}, T
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?

```
"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:
(1) Compute L:=(all possible subsums of a1_ \ldots..a.an/2);
(3) Compute R:= (all possible subsums of an/2+1,\ldots, an);
(3) SORT each of L,R;
(0) Check if T\inL+R
```

```
Each step can be performed in 2 2 n/2}\mathrm{ . poly(n) steps.
```


Improved algorithm for Subset Sum

- INPUT: integers a_{1}, \ldots, a_{n}, T
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?
"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:
(1) Compute $L:=\left(\right.$ all possible subsums of $\left.a_{1}, \ldots, a_{n / 2}\right)$;
(2) Compute $R:=\left(\right.$ all possible subsums of $\left.a_{n / 2+1}, \ldots, a_{n}\right)$;
(3) SORT each of L, R;
(9) Check if $T \in L+R$.

Improved algorithm for Subset Sum

- INPUT: integers a_{1}, \ldots, a_{n}, T
- DECIDE: is there a subset $J \subseteq[n]$ such that $\sum_{j \in J} a_{j}=T$?
"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:
(1) Compute $L:=\left(\right.$ all possible subsums of $\left.a_{1}, \ldots, a_{n / 2}\right)$;
(2) Compute $R:=\left(\right.$ all possible subsums of $\left.a_{n / 2+1}, \ldots, a_{n}\right)$;
(3) SORT each of L, R;
(9) Check if $T \in L+R$.

Claim

Each step can be performed in $2^{n / 2} \cdot \operatorname{poly}(n)$ steps.

Improved algorithm for Subset Sum

"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:

- Check if $T \in L+R$.

$$
\begin{array}{lllll}
1 & 4 & 5 & 9 & 13 \\
\hline & & & & \\
\hline 3 & 6 & 11 & 17 & 21
\end{array} \quad T=20
$$

Improved algorithm for Subset Sum

"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:

- Check if $T \in L+R$.

Improved algorithm for Subset Sum

"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:

- Check if $T \in L+R$.

Improved algorithm for Subset Sum

"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:

- Check if $T \in L+R$.

Improved algorithm for Subset Sum

"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:

- Check if $T \in L+R$.

Improved algorithm for Subset Sum

"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:

- Check if $T \in L+R$.

Improved algorithm for Subset Sum

"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:

- Check if $T \in L+R$.

Improved algorithm for Subset Sum

"Meet-in-the-middle" algorithm [Horowitz, Sahni '74]:

- Check if $T \in L+R$.

Improved algorithm for Subset Sum

- $2^{n / 2}$ runtime: quite an gain over $2^{n} \ldots$
- BUT, since 1974, no further speedups for this problem!
(except for special cases)
- No evidence $2^{n / 2}$ is optimal!
- One route to progress: the "k-SUM" problem...

Improved algorithm for Subset Sum

- $2^{n / 2}$ runtime: quite an gain over $2^{n} \ldots$
- BUT, since 1974, no further speedups for this problem!
(except for special cases)
- No evidence $2^{n / 2}$ is optimal!
- One route to progress: the "k-SUM" problem...

Improved algorithm for Subset Sum

- $2^{n / 2}$ runtime: quite an gain over $2^{n} \ldots$
- BUT, since 1974, no further speedups for this problem!
(except for special cases)
- No evidence $2^{n / 2}$ is optimal!
- One route to progress: the "k-SUM" problem...

Improved algorithm for Subset Sum

- $2^{n / 2}$ runtime: quite an gain over $2^{n} \ldots$
- BUT, since 1974, no further speedups for this problem!
(except for special cases)
- No evidence $2^{n / 2}$ is optimal!
- One route to progress: the "k-SUM" problem...
k-Sum
$k \geq 3$ a fixed integer.
- INPUT: sets of integers A_{1}, \ldots, A_{k} each of size $n ;$ a target value T.
- DECIDE: Is $T \in A_{1}+\ldots+A_{k}$?
- Best known algorithm: $\sim n^{\lceil k / 2\rceil}$ steps. Significant improvements would also improve the best algorithms for SUBSET-SUM and other NP-complete problems.
OTOH, the ETH implies that k-SUM requires time $n^{\Omega(k)}$. [Woeginger '04], [Patrascu, Williams '10]
- Many such connections were found between the complexity of polynomial-time solvable problems (like k-SUM) and NP-complete problems (like SUBSET-SUM).

Deeper connections may exist.
k-Sum
$k \geq 3$ a fixed integer.

- INPUT: sets of integers A_{1}, \ldots, A_{k} each of size $n ;$ a target value T.
- DECIDE: Is $T \in A_{1}+\ldots+A_{k}$?
- Best known algorithm: $\sim n^{\lceil k / 2\rceil}$ steps.

Significant improvements would also improve the best algorithms for SUBSET-SUM and other NP-complete problems.
OTOH , the ETH implies that k-SUM requires time $n^{\Omega(k)}$. [Woeginger '04], [Patrascu, Williams '10]

- Many such connections were found between the complexity of polynomial-time solvable problems (like k-SUM) and NP-complete problems (like SUBSET-SUM).

Deeper connections may exist.
k-Sum
$k \geq 3$ a fixed integer.

- INPUT: sets of integers A_{1}, \ldots, A_{k} each of size $n ;$ a target value T.
- DECIDE: Is $T \in A_{1}+\ldots+A_{k}$?
- Best known algorithm: $\sim n^{\lceil k / 2\rceil}$ steps. Significant improvements would also improve the best algorithms for SUBSET-SUM and other NP-complete problems.
OTOH, the ETH implies that k-SUM requires time $n^{\Omega(k)}$. [Woeginger '04], [Patrascu, Williams '10]
- Many such connections were found between the complexity of polynomial-time solvable problems (like k-SUM) and NP-complete problems (like SUBSET-SUM).

Deeper connections may exist.
k-Sum
$k \geq 3$ a fixed integer.

- INPUT: sets of integers A_{1}, \ldots, A_{k} each of size $n ;$ a target value T.
- DECIDE: Is $T \in A_{1}+\ldots+A_{k}$?
- Best known algorithm: $\sim n^{\lceil k / 2\rceil}$ steps. Significant improvements would also improve the best algorithms for SUBSET-SUM and other NP-complete problems. OTOH, the ETH implies that k-SUM requires time $n^{\Omega(k)}$. [Woeginger '04], [Patrascu, Williams '10]
- Many such connections were found between the complexity of polynomial-time solvable problems (like k-SUM) and NP-complete problems (like SUBSET-SUM).

Deeper connections may exist.
k-Sum
$k \geq 3$ a fixed integer.

- INPUT: sets of integers A_{1}, \ldots, A_{k} each of size $n ;$ a target value T.
- DECIDE: Is $T \in A_{1}+\ldots+A_{k}$?
- Best known algorithm: $\sim n^{\lceil k / 2\rceil}$ steps. Significant improvements would also improve the best algorithms for SUBSET-SUM and other NP-complete problems. OTOH , the ETH implies that k-SUM requires time $n^{\Omega(k)}$. [Woeginger '04], [Patrascu, Williams '10]
- Many such connections were found between the complexity of polynomial-time solvable problems (like k-SUM) and NP-complete problems (like SUBSET-SUM).

Deeper connections may exist.

Example: k-SAT

Example: k-SAT

$k \geq 3$ a fixed integer.

- INPUT: a CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$, each clause of length $\leq k$.
- DECIDE: is there a variable assignment \bar{x} such that $\phi(\bar{x})=$ TRUE?

$$
\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(-x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee-x_{4}\right)
$$

- Exponential Time Hypothesis (ETH):

For suff. small $\delta>0,3$-SAT can't be solved in time $2^{\delta n} \cdot \operatorname{poly}(|\phi|)$.

Example: k-SAT

$k \geq 3$ a fixed integer.

- INPUT: a CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$, each clause of length $\leq k$.
- DECIDE: is there a variable assignment \bar{x} such that $\phi(\bar{x})=$ TRUE?

$$
\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee \neg x_{4}\right)
$$

- Exponential Time Hypothesis (ETH):

For suff. small $\delta>0,3$-SAT can't be solved in time $2^{\delta n} \cdot \operatorname{poly}(|\phi|)$.

Improved algorithm for k-SAT

- Will see a method to solve k-SAT by intelligent random guessing.
\square
Theorem [Paturi, Pudlák, Zane '97]
\exists a poly(n)-time randomized algorithm A:
for any satisfiable ϕ, A finds a satisfying assignment with probability $\frac{1}{n} \cdot 2^{-n+n / k}$
\Longrightarrow can run A for $\sim n \cdot 2^{n-n / k}$ trials to obtain a solution w.h.p.
- Many of the known improved algs for NP-complete problems have this form! (or, can be re-expressed in this form) [Paturi, Pudlák '10]
- A rich, natural paradigm for algorithm design.

Improved algorithm for k-SAT

- Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudlák, Zane '97]
\exists a poly (n)-time randomized algorithm A :
for any satisfiable ϕ, A finds a satisfying assignment with probability
$\geq \frac{1}{n} \cdot 2^{-n+n / k}$.

- Many of the known improved algs for NP-complete problems have this form! (or, can be re-expressed in this form) [Paturi, Pudlák '10]
- A rich, natural paradigm for algorithm design.

Improved algorithm for k-SAT

- Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudlák, Zane '97]
\exists a poly (n)-time randomized algorithm A : for any satisfiable ϕ, A finds a satisfying assignment with probability $\geq \frac{1}{n} \cdot 2^{-n+n / k}$.
\Longrightarrow can run A for $\sim n \cdot 2^{n-n / k}$ trials to obtain a solution w.h.p.

- Many of the known improved algs for NP-complete problems have this form! (or, can be re-expressed in this form) [Paturi, Pudlák '10]
- A rich, natural paradigm for algorithm design.

Improved algorithm for k-SAT

- Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudlák, Zane '97]
\exists a poly (n)-time randomized algorithm A :
for any satisfiable ϕ, A finds a satisfying assignment with probability
$\geq \frac{1}{n} \cdot 2^{-n+n / k}$.
\Longrightarrow can run A for $\sim n \cdot 2^{n-n / k}$ trials to obtain a solution w.h.p.

- Many of the known improved algs for NP-complete problems have this form! (or, can be re-expressed in this form)
[Paturi, Pudlák '10]
- A rich, natural paradigm for algorithm design.

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:
(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly;
Else set $x_{\sigma(i)}$ randomly;

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:
(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set
accordingly;
Else set $x_{\sigma(i)}$ randomly;

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly;
Else set $x_{\sigma(i)}$ randomly;

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly;
Else set $x_{\sigma(i)}$ randomly;

$\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee \neg x_{4}\right)$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly; Else set $x_{\sigma(i)}$ randomly;

$$
\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee \neg x_{4}\right)
$$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly;
Else set $x_{\sigma(i)}$ randomly;

$\left(x_{1} \vee 1 \vee x_{4}\right) \wedge\left(-1 \vee x_{3}\right) \wedge\left(x_{3} \vee-x_{4}\right)$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly; Else set $x_{\sigma(i)}$ randomly;
(TRUE) $\wedge\left(\neg 1 \vee x_{3}\right) \wedge\left(x_{3} \vee \neg x_{4}\right)$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly; Else set $x_{\sigma(i)}$ randomly;

$$
\left(-1 \vee x_{3}\right) \wedge\left(x_{3} \vee-x_{4}\right)
$$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly;
Else set $x_{\sigma(i)}$ randomly;

$\left(x_{3}\right) \wedge\left(x_{3} \vee-x_{4}\right)$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly;
Else set $x_{\sigma(i)}$ randomly;

$\left(x_{3}\right) \wedge\left(x_{3} \vee-x_{4}\right)$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly;
Else set $x_{\sigma(i)}$ randomly;

$\left(x_{3}\right) \wedge\left(x_{3} \vee-x_{4}\right)$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly; Else set $x_{\sigma(i)}$ randomly;

(1) $\wedge\left(1 \vee-x_{4}\right)$

Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)$:

Algorithm A [PPZ]:

(1) Pick a random permutation $\sigma \in S_{n}$ ("reordering" of x_{1}, \ldots, x_{n});
(2) For $i=1,2, \ldots, n$:

If $x_{\sigma(i)}$ is "critical" for ϕ under current assignment, then set accordingly;
Else set $x_{\sigma(i)}$ randomly;

TRUE

Intelligent guessing procedures - Limits

- ETH \Longrightarrow no poly-time procedure can achieve success probability $\geq 2^{-o(n)}$ for solving satisfiable 3-SAT instances.
(But, ETH is a very strong assumption...)
- Can prove limits of poly-time random guessing under weaker hypotheses.

Intelligent guessing procedures - Limits

- $\mathrm{ETH} \Longrightarrow$ no poly-time procedure can achieve success probability $\geq 2^{-o(n)}$ for solving satisfiable 3-SATinstances.
(But, ETH is a very strong assumption...)
- Can prove limits of poly-time random guessing under weaker hypotheses.

Intelligent guessing procedures - Limits

- $\mathrm{ETH} \Longrightarrow$ no poly-time procedure can achieve success probability $\geq 2^{-o(n)}$ for solving satisfiable 3-SAT instances.
(But, ETH is a very strong assumption...)
- Can prove limits of poly-time random guessing under weaker hypotheses.

Intelligent guessing procedures - Limits

Theorem [Paturi, Pudlák '10]
If some poly-time random guessing procedure can achieve success probability $\geq 2^{-.9 n}$ for solving satisfiable Circuit-SAT instances, then, Circuit-SAT has (non-uniform) algorithms of runtime $2^{n \cdot 99}$.

If some poly-time random guessing procedure can achieve success probability $\geq 2^{-n^{-9}}$ for solving satisfiable 3 -SAT instances, then $N P \subseteq$ coNP /poly.

Intelligent guessing procedures - Limits

Theorem [Paturi, Pudlák '10]

If some poly-time random guessing procedure can achieve success probability $\geq 2^{-.9 n}$ for solving satisfiable Circuit-SAT instances, then, Circuit-SAT has (non-uniform) algorithms of runtime $2^{n \cdot 99}$.

Theorem [D '13]

If some poly-time random guessing procedure can achieve success probability $\geq 2^{-n^{\cdot 9}}$ for solving satisfiable 3-SAT instances, then $N P \subseteq$ coNP/poly.

What's next?

- May be possible to prove strong limits on other restricted algorithms for solving NP-complete problems.
(under reasonable hardness assumptions)
- Candidate: Algorithms with superpolynomial time budget, but polynomially-bounded space budget.
- E.g., unknown whether we can solve SUBSET-SUM in time (1.99) ${ }^{n}$ using space poly(n)...

What's next?

- May be possible to prove strong limits on other restricted algorithms for solving NP-complete problems. (under reasonable hardness assumptions)
- Candidate: Algorithms with superpolynomial time budget, but polynomially-bounded space budget.
- E.g., unknown whether we can solve SUBSET-SUM in time (1.99) ${ }^{n}$ using space poly(n)...

