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Basic concepts

o NP problems: decision problems whose “Yes" instances have
short certificates

(checkable in time polynomial in input length)

o NP-complete problems: “hardest” problems in this class.
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Basic concepts

NP problems: decision problems whose “Yes" instances have
short certificates

(checkable in time polynomial in input length)

NP-complete problems: “hardest” problems in this class.

Believed not to be solvable in polynomial time. (“P # NP")

Exponential Time Hypothesis (ETH)[Impagliazzo, Paturi, Zane '97] :

NP-complete problems require exponential time (roughly speaking)
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Example: Subset Sum

o INPUT: integers a1,...,an, T //each of bitlength O(n)

o DECIDE: is there a subset J C [n] such that ;. , a; = T 7
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o INPUT: integers a1,...,an, T //each of bitlength O(n)

o DECIDE: is there a subset J C [n] such that ;. , a; = T 7
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Example: Subset Sum

o INPUT: integers a1,...,an, T //each of bitlength O(n)

o DECIDE: is there a subset J C [n] such that ;. , a; = T 7

Natural certificate: the set J.

Naive algorithm: ~ n? - 2" steps.
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o INPUT: integers a1,...,an, T

o DECIDE: is there a subset J C [n] such that > ., a; = T 7
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Example: Subset Sum

o INPUT: integers a1,...,an, T

o DECIDE: is there a subset J C [n] such that > ., a; = T 7

@ NP-complete, so P # NP conjecture rules out a poly(n)-time
algorithm for this problem...
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Example: Subset Sum

o INPUT: integers a1,...,an, T

o DECIDE: is there a subset J C [n] such that > ., a; = T 7

@ NP-complete, so P # NP conjecture rules out a poly(n)-time
algorithm for this problem...

o ETH rules out a 2°(")-time algorithm.

@ But, neither hypothesis rules out improvements on brute-force search!
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Improved algorithm for Subset Sum

o INPUT: integers a1, ...,an, T

o DECIDE: is there a subset J C [n] such that ;. a; = T 7
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Improved algorithm for Subset Sum

o INPUT: integers a1, ...,an, T

o DECIDE: is there a subset J C [n] such that ;. a; = T 7

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
@ Compute L := (all possible subsums of ay,...,a,.);
@ Compute R := (all possible subsums of a,/51,...,a,);
© SORT each of L, R,

Q@ Checkif T el +R.
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Improved algorithm for Subset Sum

o INPUT: integers a1, ...,an, T

o DECIDE: is there a subset J C [n] such that ;. a; = T 7

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
@ Compute L := (all possible subsums of ay,...,a,.);
@ Compute R := (all possible subsums of a,/51,...,a,);
© SORT each of L, R,

Q@ Checkif T el +R.

Claim

Each step can be performed in 27/2 . poly(n) steps.
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I
Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
Q Checkif Te L+ R.

145 9 13

3611 17 21
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I
Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
Q Checkif Te L+ R.

J

145 9 13
T=120
3 6 11 17 21 a+b=22
A
b
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I
Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
Q Checkif Te L+ R.

J

145 9 13
T=120
3 6 11 17 21 a+b=18
A
b
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Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
Q Checkif Te L+ R.

d
v
145 9 13
T=120
3 6 11 17 21 a+b=21
A
b
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Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
Q Checkif Te L+ R.

d
v
145 9 13
T=120
3 6 11 17 21 a+b=15
A
b
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Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
Q Checkif Te L+ R.

d
v
145 9 13
T=120
3 6 11 17 21 a+b=16
A
b
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I
Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
Q Checkif Te L+ R.

J

v
145 9 13
T=120
3 6 11 17 21 a+b=20
A
b
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Improved algorithm for Subset Sum

“Meet-in-the-middle” algorithm [Horowitz, Sahni '74]:
Q Checkif Te L+ R.

a
v
145 (9) 13
~ T=120
3 (1117 21 a+b=20
A
b
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I
Improved algorithm for Subset Sum

@ 2"/2 yruntime: quite an gain over 2"...

e BUT, since 1974, no further speedups for this problem!
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Improved algorithm for Subset Sum

2"/2 yruntime: quite an gain over 2"...

o BUT, since 1974, no further speedups for this problem!

(except for special cases)

e No evidence 2"/2 is optimal!

@ One route to progress: the “k-SUM" problem...
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]
k-Sum

k > 3 a fixed integer.

o INPUT: sets of integers A1, ..., A, each of size n; a target value T.

o DECIDE: Is T € A1 + ...+ A7
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]
k-Sum

k > 3 a fixed integer.

o INPUT: sets of integers A1, ..., A, each of size n; a target value T.

@ DECIDE: Is T € A1 +...+ A?

@ Best known algorithm: ~ nl¥/2] steps.
Significant improvements would also improve the best algorithms for
SUBSET-SUM and other NP-complete problems.
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k-Sum
k > 3 a fixed integer.

o INPUT: sets of integers A1, ..., A, each of size n; a target value T.

@ DECIDE: Is T € A1 +...+ A?

@ Best known algorithm: ~ nl¥/2] steps.
Significant improvements would also improve the best algorithms for
SUBSET-SUM and other NP-complete problems.
OTOH, the ETH implies that k-SUM requires time n‘2(¥).
[Woeginger '04], [Patrascu, Williams ‘10]
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]
k-Sum

k > 3 a fixed integer.

INPUT: sets of integers Aj, ..., Ay each of size n; a target value T.

DECIDE: Is T € A; + ... + A(?

Best known algorithm: ~ nl%/2] steps.

Significant improvements would also improve the best algorithms for
SUBSET-SUM and other NP-complete problems.

OTOH, the ETH implies that k-SUM requires time n‘2(¥).
[Woeginger '04], [Patrascu, Williams ‘10]

Many such connections were found between the complexity of
polynomial-time solvable problems (like k-SUM) and NP-complete
problems (like SUBSET-SUM).

Deeper connections may exist.
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DESSS———....
Example: k-SAT

Andrew Drucker (IAS)

Exp-Time Algorithms for NP Problems



R ——
Example: k-SAT

k > 3 a fixed integer.

e INPUT: a CNF formula ¢(x1, ..., xp),
each clause of length < k.

e DECIDE: is there a variable assignment x such that ¢(x) = TRUE?
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R ——
Example: k-SAT

k > 3 a fixed integer.

e INPUT: a CNF formula ¢(x1, ..., xp),
each clause of length < k.

o DECIDE: is there a variable assignment X such that ¢(x) = TRUE?

e Exponential Time Hypothesis (ETH):

For suff. small § > 0, 3-SAT can't be solved in time 2°" - poly(|¢|).
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Improved algorithm for k-SAT

@ Will see a method to solve k-SAT by intelligent random guessing.
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Improved algorithm for k-SAT

@ Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudldk, Zane '97]

3 a poly(n)-time randomized algorithm A:

for any satisfiable ¢, A finds a satisfying assignment with probability
> 1. o—ntn/k
— n -
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Improved algorithm for k-SAT

@ Will see a method to solve k-SAT by intelligent random guessing.

Theorem [Paturi, Pudldk, Zane '97]

3 a poly(n)-time randomized algorithm A:

for any satisfiable ¢, A finds a satisfying assignment with probability
> 1. o—ntn/k
— n -

— can run A for ~ n- 2"~/ trials to obtain a solution w.h.p.
@ Many of the known improved algs for NP-complete problems have
this form! (or, can be re-expressed in this form)
[Paturi, Pudldk '10]

@ A rich, natural paradigm for algorithm design.
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Improved algorithm for k-SAT

¢(X17

To attempt to produce a satisfying assignment to k-CNF formula
ey Xn):
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Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula

d(X1y .-y Xn):
Algorithm A [PPZ]:

@ Pick a random permutation o € S, ("reordering” of xq, .
Q@ Fori=1,2,...,n:

ey Xn);

If x,(;) is “critical” for ¢ under current assignment, then set
accordingly;

Else set x,(;) randomly;
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Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula

d(X1y .-y Xn):
Algorithm A [PPZ]:

@ Pick a random permutation o € S, ("reordering” of xq, .
Q@ Fori=1,2,...,n:

ey Xn);

If x,(;) is “critical” for ¢ under current assignment, then set
accordingly;

Else set x,(;) randomly;

(TRUE) A (=1 V X3) A (X3 V =Xx,)
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Algorithm A [PPZ]:

@ Pick a random permutation o € S, ("reordering” of xq, .
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Algorithm A [PPZ]:
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Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula

d(X1y .-y Xn):
Algorithm A [PPZ]:

@ Pick a random permutation o € S, ("reordering” of xq, .
Q@ Fori=1,2,...,n:

ey Xn);

If x,(;) is “critical” for ¢ under current assignment, then set
accordingly;

Else set x,(;) randomly;

(1) ALV —x,)
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Improved algorithm for k-SAT

To attempt to produce a satisfying assignment to k-CNF formula

d(X1y .-y Xn):
Algorithm A [PPZ]:

@ Pick a random permutation o € S, ("reordering” of xq, .
Q@ Fori=1,2,...,n:

ey Xn);

If x,(;) is “critical” for ¢ under current assignment, then set
accordingly;

Else set x,(;) randomly;

TRUE
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Intelligent guessing procedures — Limits

@ ETH = no poly-time procedure can achieve success probability
> 2-°(") for solving satisfiable 3-SAT instances.

(But, ETH is a very strong assumption...)
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Intelligent guessing procedures — Limits

@ ETH = no poly-time procedure can achieve success probability
> 2-°(") for solving satisfiable 3-SAT instances.

(But, ETH is a very strong assumption...)

@ Can prove limits of poly-time random guessing under weaker
hypotheses.
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Intelligent guessing procedures — Limits

Theorem [Paturi, Pudldk ‘10]

If some poly-time random guessing procedure can achieve success
probability > 2797 for solving satisfiable Circuit-SAT instances,

then, Circuit-SAT has (non-uniform) algorithms of runtime om™
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Intelligent guessing procedures — Limits

Theorem [Paturi, Pudldk ‘10]

If some poly-time random guessing procedure can achieve success
probability > 2797 for solving satisfiable Circuit-SAT instances,

then, Circuit-SAT has (non-uniform) algorithms of runtime om™

Theorem [D ‘13]

If some poly-time random guessing procedure can achieve success
probability > 27" for solving satisfiable 3-SAT instances,

then NP C coNP/poly.
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N —
What's next?

@ May be possible to prove strong limits on other restricted algorithms
for solving NP-complete problems.

(under reasonable hardness assumptions)

o Candidate: Algorithms with superpolynomial time budget, but
polynomially-bounded space budget.
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N —
What's next?

@ May be possible to prove strong limits on other restricted algorithms
for solving NP-complete problems.

(under reasonable hardness assumptions)

o Candidate: Algorithms with superpolynomial time budget, but
polynomially-bounded space budget.

e E.g., unknown whether we can solve SUBSET-SUM in time (1.99)"
using space poly(n)...

Andrew Drucker (IAS) Exp-Time Algorithms for NP Problems Oct. 4, 2013



