Cubic fourfolds and K3 surfaces

Joint work with Nick Addington

Plan of talk

Describe analogy cubic fourfolds $X \leftrightarrow \mathrm{~K} 3$ surfaces S.
(Deligne-Rapaport, Beauville-Donagi, Voisin, ...)

Plan of talk

Describe analogy cubic fourfolds $X \leftrightarrow \mathrm{~K} 3$ surfaces S.
(Deligne-Rapaport, Beauville-Donagi, Voisin, ...)
Hassett:
There exists a codimension-1 locus of "special" cubics which look like a K3 to Hodge theory.

Kuznetsov:
There exists a locus of cubics which look like a K3 to the derived category.

Plan of talk

Describe analogy cubic fourfolds $X \leftrightarrow \mathrm{~K} 3$ surfaces S.
(Deligne-Rapaport, Beauville-Donagi, Voisin, ...)
Hassett:
There exists a codimension-1 locus of "special" cubics which look like a K3 to Hodge theory.

Kuznetsov:
There exists a locus of cubics which look like a K3 to the derived category.

Conjecturally both equivalent to the rationality $X<->\mathbb{P}^{4}$ of the cubic X. We will illustrate this with examples.

Plan of talk

Describe analogy cubic fourfolds $X \leftrightarrow \mathrm{~K} 3$ surfaces S.
(Deligne-Rapaport, Beauville-Donagi, Voisin, ...)
Hassett:
There exists a codimension-1 locus of "special" cubics which look like a K3 to Hodge theory.

Kuznetsov:
There exists a locus of cubics which look like a K3 to the derived category.

Conjecturally both equivalent to the rationality $X<->\mathbb{P}^{4}$ of the cubic X. We will illustrate this with examples.

At the end of the talk we show these loci are (almost) the same.

Cubic fourfolds

- $X \subset \mathbb{P}^{5}$ smooth cubic fourfold

Cubic fourfolds

- $X \subset \mathbb{P}^{5}$ smooth cubic fourfold
- Moduli space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{5}}(3)\right) / G L(6, \mathbb{C})$ 20-dimensional

Cubic fourfolds

- $X \subset \mathbb{P}^{5}$ smooth cubic fourfold
- Moduli space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{5}}(3)\right) / G L(6, \mathbb{C}) 20$-dimensional
- Hodge diamond

			1	
		1		
0	1	21	1	0
		1		
			1	

Cubic fourfolds

- $X \subset \mathbb{P}^{5}$ smooth cubic fourfold
- Moduli space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{5}}(3)\right) / G L(6, \mathbb{C}) 20$-dimensional
- Hodge diamond

			1	
		1		
0	1	21	1	0
		1		
			1	

- Primitive cohomology $\begin{array}{lllllll}0 & 1 & 20 & 1 & 0 & \text { Signature }(20,2)\end{array}$

Cubic fourfolds

- $X \subset \mathbb{P}^{5}$ smooth cubic fourfold
- Moduli space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{5}}(3)\right) / G L(6, \mathbb{C}) 20$-dimensional
- Hodge diamond

$$
\begin{array}{ccccc}
& & & 1 & \\
& & 1 & & \\
0 & 1 & 21 & 1 & 0 \\
& & 1 & & \\
& & & 1 & \\
& &
\end{array}
$$

- Primitive cohomology $\begin{array}{lllllll}0 & 1 & 20 & 1 & 0 & \text { Signature }(20,2)\end{array}$
- Generator $\sigma^{3,1} \in H^{3,1}(X)$ defines period point in $H^{4}(X, \mathbb{C})$ \Rightarrow Torelli theorem (Voisin).

Cubic fourfolds

- $X \subset \mathbb{P}^{5}$ smooth cubic fourfold
- Moduli space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{5}}(3)\right) / G L(6, \mathbb{C}) 20$-dimensional
- Hodge diamond

$$
\begin{array}{ccccc}
& & & 1 & \\
& & 1 & & \\
0 & 1 & 21 & 1 & 0 \\
& & 1 & & \\
& & & 1 & \\
& & &
\end{array}
$$

- Primitive cohomology $\begin{array}{lllllll}0 & 1 & 20 & 1 & 0 & \text { Signature }(20,2)\end{array}$
- Generator $\sigma^{3,1} \in H^{3,1}(X)$ defines period point in $H^{4}(X, \mathbb{C})$ \Rightarrow Torelli theorem (Voisin).
- cf. $H^{2}(\mathrm{~K} 3$ surface $S) 120 \quad 1$ Signature $(3,19)$

Cubic fourfolds

- $X \subset \mathbb{P}^{5}$ smooth cubic fourfold
- Moduli space $H^{0}\left(\mathcal{O}_{\mathbb{P}^{5}}(3)\right) / G L(6, \mathbb{C}) 20$-dimensional
- Hodge diamond

			1		
			1		
0	1	21	1	0	
		1			
			1		

- Primitive cohomology $\begin{array}{lllllll}0 & 1 & 20 & 1 & 0 & \text { Signature }(20,2)\end{array}$
- Generator $\sigma^{3,1} \in H^{3,1}(X)$ defines period point in $H^{4}(X, \mathbb{C})$ \Rightarrow Torelli theorem (Voisin).
- cf. $H^{2}(\mathrm{~K} 3$ surface $S) 120 \quad 1$ Signature $(3,19)$
- Generator $\sigma^{2,0} \in H^{2,0}(S)$ defines period point in $H^{2}(S, \mathbb{C})$ \Rightarrow Torelli theorem (Pjateckii-Šapiro-Šafarevič, Burns-Rapoport).

Not same unless pass to codimension-1 sub-Hodge structure of signature $(2,19)$ in both cases.

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$.

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$. K3 surfaces

- Generically $H^{1,1}(S, \mathbb{Z}):=H^{1,1}(S) \cap H^{2}(S, \mathbb{Z})=0$.

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$. K3 surfaces

- Generically $H^{1,1}(S, \mathbb{Z}):=H^{1,1}(S) \cap H^{2}(S, \mathbb{Z})=0$.
- $N L_{d}$ is locus of K 3 surfaces where a class $c_{1}(L) \in H^{2}(S, \mathbb{Z})$ (of degree $\left.d=c_{1}(L)^{2}\right)$ becomes of type $(1,1)$.

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$.

K3 surfaces

- Generically $H^{1,1}(S, \mathbb{Z}):=H^{1,1}(S) \cap H^{2}(S, \mathbb{Z})=0$.
- $N L_{d}$ is locus of K 3 surfaces where a class $c_{1}(L) \in H^{2}(S, \mathbb{Z})$ (of degree $\left.d=c_{1}(L)^{2}\right)$ becomes of type (1,1).
- $N L_{d}$ is a divisor, cut out by the one equation $\int_{c_{1}(L)} \sigma^{2,0}=0$.

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$.

K3 surfaces

- Generically $H^{1,1}(S, \mathbb{Z}):=H^{1,1}(S) \cap H^{2}(S, \mathbb{Z})=0$.
- $N L_{d}$ is locus of K 3 surfaces where a class $c_{1}(L) \in H^{2}(S, \mathbb{Z})$ (of degree $\left.d=c_{1}(L)^{2}\right)$ becomes of type $(1,1)$.
- $N L_{d}$ is a divisor, cut out by the one equation $\int_{c_{1}(L)} \sigma^{2,0}=0$.
- Moduli space of polarised K3 surfaces of degree d.

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$.

K3 surfaces

- Generically $H^{1,1}(S, \mathbb{Z}):=H^{1,1}(S) \cap H^{2}(S, \mathbb{Z})=0$.
- $N L_{d}$ is locus of K 3 surfaces where a class $c_{1}(L) \in H^{2}(S, \mathbb{Z})$ (of degree $\left.d=c_{1}(L)^{2}\right)$ becomes of type $(1,1)$.
- $N L_{d}$ is a divisor, cut out by the one equation $\int_{c_{1}(L)} \sigma^{2,0}=0$.
- Moduli space of polarised K3 surfaces of degree d.

Cubic fourfolds

- Generically $H_{\text {prim }}^{2,2}(X, \mathbb{Z})=0$.

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$.

K3 surfaces

- Generically $H^{1,1}(S, \mathbb{Z}):=H^{1,1}(S) \cap H^{2}(S, \mathbb{Z})=0$.
- $N L_{d}$ is locus of K 3 surfaces where a class $c_{1}(L) \in H^{2}(S, \mathbb{Z})$ (of degree $\left.d=c_{1}(L)^{2}\right)$ becomes of type $(1,1)$.
- $N L_{d}$ is a divisor, cut out by the one equation $\int_{c_{1}(L)} \sigma^{2,0}=0$.
- Moduli space of polarised K3 surfaces of degree d.

Cubic fourfolds

- Generically $H_{\text {prim }}^{2,2}(X, \mathbb{Z})=0$.
- $N L_{d}$ is locus of cubics where a class $T \in H^{4}(S, \mathbb{Z})$ (of discriminant $d=\operatorname{disc}\left\langle h^{2}, T\right\rangle$) becomes of type (2,2).

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$.

K3 surfaces

- Generically $H^{1,1}(S, \mathbb{Z}):=H^{1,1}(S) \cap H^{2}(S, \mathbb{Z})=0$.
- $N L_{d}$ is locus of K 3 surfaces where a class $c_{1}(L) \in H^{2}(S, \mathbb{Z})$ (of degree $\left.d=c_{1}(L)^{2}\right)$ becomes of type $(1,1)$.
- $N L_{d}$ is a divisor, cut out by the one equation $\int_{c_{1}(L)} \sigma^{2,0}=0$.
- Moduli space of polarised K3 surfaces of degree d.

Cubic fourfolds

- Generically $H_{\text {prim }}^{2,2}(X, \mathbb{Z})=0$.
- $N L_{d}$ is locus of cubics where a class $T \in H^{4}(S, \mathbb{Z})$ (of discriminant $d=\operatorname{disc}\left\langle h^{2}, T\right\rangle$) becomes of type (2,2).
- $N L_{d}$ is a divisor, cut out by the one equation $\int_{T} \sigma^{3,1}=0$.

Noether-Lefschetz loci

Up to lattice automorphisms, these classified by one integer $d>0$.

K3 surfaces

- Generically $H^{1,1}(S, \mathbb{Z}):=H^{1,1}(S) \cap H^{2}(S, \mathbb{Z})=0$.
- $N L_{d}$ is locus of K 3 surfaces where a class $c_{1}(L) \in H^{2}(S, \mathbb{Z})$ (of degree $\left.d=c_{1}(L)^{2}\right)$ becomes of type $(1,1)$.
- $N L_{d}$ is a divisor, cut out by the one equation $\int_{c_{1}(L)} \sigma^{2,0}=0$.
- Moduli space of polarised K3 surfaces of degree d.

Cubic fourfolds

- Generically $H_{\text {prim }}^{2,2}(X, \mathbb{Z})=0$.
- $N L_{d}$ is locus of cubics where a class $T \in H^{4}(S, \mathbb{Z})$ (of discriminant $d=\operatorname{disc}\left\langle h^{2}, T\right\rangle$) becomes of type (2,2).
- $N L_{d}$ is a divisor, cut out by the one equation $\int_{T} \sigma^{3,1}=0$.
- Moduli space of special cubics fourfolds of discriminant d.

Hassett's theorem

Identifies precisely when the orthogonal lattices

$$
\left\langle c_{1}(L)\right\rangle^{\perp}=H_{\text {prim }}^{2}(S, \mathbb{Z}) \subset H^{2}(S, \mathbb{Z})
$$

and

$$
\left\langle h^{2}, T\right\rangle^{\perp} \subset H^{4}(X, \mathbb{Z})
$$

are isometric as Hodge structures (after a Tate twist on $H_{\text {prim }}^{2}(S, \mathbb{Z})$).

Hassett's theorem

Identifies precisely when the orthogonal lattices

$$
\left\langle c_{1}(L)\right\rangle^{\perp}=H_{\text {prim }}^{2}(S, \mathbb{Z}) \subset H^{2}(S, \mathbb{Z})
$$

and

$$
\left\langle h^{2}, T\right\rangle^{\perp} \subset H^{4}(X, \mathbb{Z})
$$

are isometric as Hodge structures (after a Tate twist on $H_{\text {prim }}^{2}(S, \mathbb{Z})$).
Theorem (Hassett)
Fix a special cubic fourfold (X,T) of discriminant $d=\operatorname{disc}\left\langle h^{2}, T\right\rangle$. There exists a polarised K3 surface (S, L) such that

$$
H_{\text {prim }}^{2}(S, \mathbb{Z})(-1) \cong\left\langle h^{2}, T\right\rangle^{\perp}
$$

if and only if

Hassett's theorem

Identifies precisely when the orthogonal lattices

$$
\left\langle c_{1}(L)\right\rangle^{\perp}=H_{\text {prim }}^{2}(S, \mathbb{Z}) \subset H^{2}(S, \mathbb{Z})
$$

and

$$
\left\langle h^{2}, T\right\rangle^{\perp} \subset H^{4}(X, \mathbb{Z})
$$

are isometric as Hodge structures (after a Tate twist on $H_{\text {prim }}^{2}(S, \mathbb{Z})$).
Theorem (Hassett)
Fix a special cubic fourfold (X,T) of discriminant $d=\operatorname{disc}\left\langle h^{2}, T\right\rangle$. There exists a polarised K3 surface (S, L) such that

$$
H_{\text {prim }}^{2}(S, \mathbb{Z})(-1) \cong\left\langle h^{2}, T\right\rangle^{\perp}
$$

if and only if
(*) d even, not divisible by 4,9, nor any prime $6 n+5$.
That is $d=(6), 14,26,38, \ldots$. This is then $\operatorname{deg}(L)$ also.

Examples

Hassett's theorem produces abstract K3 surfaces by Torelli. But there exist geometric constructions for small d.

Examples

Hassett's theorem produces abstract K3 surfaces by Torelli. But there exist geometric constructions for small d.

Example " $d=6$ "; Cubic fourfolds containing an odp $p \in X$

Examples

Hassett's theorem produces abstract K3 surfaces by Torelli. But there exist geometric constructions for small d.

Example " $d=6$ "; Cubic fourfolds containing an odp $p \in X$

- Let $\mathbb{P}^{4}=\left\{\right.$ Lines $L \subset \mathbb{P}^{5}$ through $\left.p\right\}$

Examples

Hassett's theorem produces abstract K3 surfaces by Torelli. But there exist geometric constructions for small d.

Example " $d=6$ "; Cubic fourfolds containing an odp $p \in X$

- Let $\mathbb{P}^{4}=\left\{\right.$ Lines $L \subset \mathbb{P}^{5}$ through $\left.p\right\}$
- Generic L hits X in $3-2=1$ more point $q \in X$

Examples

Hassett's theorem produces abstract K3 surfaces by Torelli. But there exist geometric constructions for small d.

Example " $d=6$ "; Cubic fourfolds containing an odp $p \in X$

- Let $\mathbb{P}^{4}=\left\{\right.$ Lines $L \subset \mathbb{P}^{5}$ through $\left.p\right\}$
- Generic L hits X in $3-2=1$ more point $q \in X$
- Gives birational map $\pi: X->\mathbb{P}^{4}, \quad q \mapsto L$

Example $d=6$ continued

$\pi: \mathrm{Bl}_{p} X \rightarrow \mathbb{P}^{4}$ blows down universal line (a \mathbb{P}^{1}-bundle) over

$$
S:=\{\text { Lines } L \subset X \text { through } p\} \subset \mathbb{P}^{4}
$$

Example $d=6$ continued

$\pi: \mathrm{BI}_{p} X \rightarrow \mathbb{P}^{4}$ blows down universal line (a \mathbb{P}^{1}-bundle) over

$$
S:=\{\text { Lines } L \subset X \text { through } p\} \subset \mathbb{P}^{4}
$$

which is a $(2,3)$ intersection in \mathbb{P}^{4} - i.e. a K 3 surface!

Example $d=6$ continued

$\pi: \mathrm{BI}_{p} X \rightarrow \mathbb{P}^{4}$ blows down universal line (a \mathbb{P}^{1}-bundle) over

$$
S:=\{\text { Lines } L \subset X \text { through } p\} \subset \mathbb{P}^{4}
$$

which is a $(2,3)$ intersection in \mathbb{P}^{4} - i.e. a K 3 surface!
So

$$
\mathrm{Bl}_{p} X \cong \mathrm{Bl}_{S} \mathbb{P}^{4}
$$

giving a correspondence between X and S.

Example $d=6$ continued

$\pi: \mathrm{BI}_{p} X \rightarrow \mathbb{P}^{4}$ blows down universal line (a \mathbb{P}^{1}-bundle) over

$$
S:=\{\text { Lines } L \subset X \text { through } p\} \subset \mathbb{P}^{4}
$$

which is a $(2,3)$ intersection in \mathbb{P}^{4} - i.e. a K 3 surface!
So

$$
\mathrm{Bl}_{p} X \cong \mathrm{Bl}_{S} \mathbb{P}^{4}
$$

giving a correspondence between X and S. Eventually this yields

$$
H_{\text {prim }}^{2}(S, \mathbb{Z}) \hookrightarrow H^{4}(X, \mathbb{Z})
$$

as $\left\langle h^{2}, T\right\rangle^{\perp}$.

Example $d=6$ continued

$\pi: \mathrm{BI}_{p} X \rightarrow \mathbb{P}^{4}$ blows down universal line (a \mathbb{P}^{1}-bundle) over

$$
S:=\{\text { Lines } L \subset X \text { through } p\} \subset \mathbb{P}^{4}
$$

which is a $(2,3)$ intersection in \mathbb{P}^{4} - i.e. a K 3 surface!
So

$$
\mathrm{Bl}_{p} X \cong \mathrm{Bl}_{S} \mathbb{P}^{4}
$$

giving a correspondence between X and S. Eventually this yields

$$
H_{\text {prim }}^{2}(S, \mathbb{Z}) \hookrightarrow H^{4}(X, \mathbb{Z})
$$

as $\left\langle h^{2}, T\right\rangle^{\perp}$.
(The correspondence in $X \times S$ actually gives a Fourier-Mukai kernel in $D(X \times S)$ yielding $D(S) \hookrightarrow D(X)$ - see later.)

Example $d=14$; Beauville-Donagi

$$
\operatorname{Pf}(4,6) \subset \mathbb{P}^{14}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6 *}\right)
$$

is the Pfaffian variety of 2 -forms of rank ≤ 4 on \mathbb{C}^{6}.

Example $d=14$; Beauville-Donagi

$$
\operatorname{Pf}(4,6) \subset \mathbb{P}^{14}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6 *}\right)
$$

is the Pfaffian variety of 2 -forms of rank ≤ 4 on \mathbb{C}^{6}.
It is a cubic hypersurface $\{\omega: \omega \wedge \omega \wedge \omega=0\}$.

Example $d=14$; Beauville-Donagi

$$
\operatorname{Pf}(4,6) \subset \mathbb{P}^{14}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6 *}\right)
$$

is the Pfaffian variety of 2 -forms of rank ≤ 4 on \mathbb{C}^{6}.
It is a cubic hypersurface $\{\omega: \omega \wedge \omega \wedge \omega=0\}$.
Its projective dual is

$$
\operatorname{Gr}(2,6) \subset\left(\mathbb{P}^{14}\right)^{*}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6}\right)
$$

Example $d=14$; Beauville-Donagi

$$
\operatorname{Pf}(4,6) \subset \mathbb{P}^{14}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6 *}\right)
$$

is the Pfaffian variety of 2 -forms of rank ≤ 4 on \mathbb{C}^{6}.
It is a cubic hypersurface $\{\omega: \omega \wedge \omega \wedge \omega=0\}$.
Its projective dual is

$$
\operatorname{Gr}(2,6) \subset\left(\mathbb{P}^{14}\right)^{*}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6}\right)
$$

Intersecting the former with a $\mathbb{P}^{5} \subset \mathbb{P}^{14}$ gives a Pfaffian cubic $x \subset \mathbb{P}^{5}$.

Example $d=14$; Beauville-Donagi

$$
\operatorname{Pf}(4,6) \subset \mathbb{P}^{14}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6 *}\right)
$$

is the Pfaffian variety of 2 -forms of rank ≤ 4 on \mathbb{C}^{6}.
It is a cubic hypersurface $\{\omega: \omega \wedge \omega \wedge \omega=0\}$.
Its projective dual is

$$
\operatorname{Gr}(2,6) \subset\left(\mathbb{P}^{14}\right)^{*}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6}\right)
$$

Intersecting the former with a $\mathbb{P}^{5} \subset \mathbb{P}^{14}$ gives a Pfaffian cubic $X \subset \mathbb{P}^{5}$.
Intersecting the latter with the dual $\mathbb{P}^{8}=\left(\mathbb{P}^{5}\right)^{\perp} \subset\left(\mathbb{P}^{14}\right)^{*}$ gives a K3 surface S.

Example $d=14$; Beauville-Donagi

$$
\operatorname{Pf}(4,6) \subset \mathbb{P}^{14}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6 *}\right)
$$

is the Pfaffian variety of 2-forms of rank ≤ 4 on \mathbb{C}^{6}.
It is a cubic hypersurface $\{\omega: \omega \wedge \omega \wedge \omega=0\}$.
Its projective dual is

$$
\operatorname{Gr}(2,6) \subset\left(\mathbb{P}^{14}\right)^{*}=\mathbb{P}\left(\Lambda^{2} \mathbb{C}^{6}\right)
$$

Intersecting the former with a $\mathbb{P}^{5} \subset \mathbb{P}^{14}$ gives a Pfaffian cubic $X \subset \mathbb{P}^{5}$.
Intersecting the latter with the dual $\mathbb{P}^{8}=\left(\mathbb{P}^{5}\right)^{\perp} \subset\left(\mathbb{P}^{14}\right)^{*}$ gives a K3 surface S.

This gives a correspondence $\subset X \times S$ (and FM kernel in $D(X \times S))$ giving

$$
H_{\text {prim }}^{2}(S, \mathbb{Z}) \hookrightarrow H^{4}(X, \mathbb{Z})
$$

Pfaffian cubics are also all rational.

Non-example $d=8$

$d=8$ not on list $(*)$.
Cubic X containing a plane $P \subset X \subset \mathbb{P}^{5} .\left(\operatorname{disc}\left\langle h^{2}, P\right\rangle=8\right.$.)

Non-example $d=8$

$d=8$ not on list (*).
Cubic X containing a plane $P \subset X \subset \mathbb{P}^{5} .\left(\operatorname{disc}\left\langle h^{2}, P\right\rangle=8\right.$.)
Defines another plane

$$
\mathbb{P}^{2}:=\left\{\text { 3-planes } P \subset \mathbb{P}^{3} \subset \mathbb{P}^{5}\right\}
$$

Such a 3-plane intersects X in a singular cubic surface $P \cup Q$.

Non-example $d=8$

$d=8$ not on list (*).
Cubic X containing a plane $P \subset X \subset \mathbb{P}^{5} .\left(\operatorname{disc}\left\langle h^{2}, P\right\rangle=8\right.$.)
Defines another plane

$$
\mathbb{P}^{2}:=\left\{\text { 3-planes } P \subset \mathbb{P}^{3} \subset \mathbb{P}^{5}\right\}
$$

Such a 3-plane intersects X in a singular cubic surface $P \cup Q$.
$\Rightarrow \mathbb{P}^{2}$ family of quadric surfaces Q;

Non-example $d=8$

$d=8$ not on list $(*)$.
Cubic X containing a plane $P \subset X \subset \mathbb{P}^{5} .\left(\operatorname{disc}\left\langle h^{2}, P\right\rangle=8.\right)$
Defines another plane

$$
\mathbb{P}^{2}:=\left\{\text { 3-planes } P \subset \mathbb{P}^{3} \subset \mathbb{P}^{5}\right\}
$$

Such a 3-plane intersects X in a singular cubic surface $P \cup Q$.
$\Rightarrow \mathbb{P}^{2}$ family of quadric surfaces Q; in fact

$$
\mathrm{Bl}_{P} X \rightarrow \mathbb{P}^{2}
$$

is a quadric surface fibration, generic fibre $\mathbb{P}^{1} \times \mathbb{P}^{1}$, singular fibres (cone over a conic) over discriminant sextic curve $\subset \mathbb{P}^{2}$.

Non-example $d=8$ continued

Let \mathcal{M} be the moduli space of lines in the quadric surface fibres, and let S be the moduli space of choices of rulings on each fibre.

Non-example $d=8$ continued

Let \mathcal{M} be the moduli space of lines in the quadric surface fibres, and let S be the moduli space of choices of rulings on each fibre.

$$
\mathcal{M}:=\left\{\text { Lines in fibres of } \pi: \mathrm{BI}_{P} X \rightarrow \mathbb{P}^{2}\right\}
$$

$S:=$ double cover of \mathbb{P}^{2} branched over sextic curve.

Non-example $d=8$ continued

Let \mathcal{M} be the moduli space of lines in the quadric surface fibres, and let S be the moduli space of choices of rulings on each fibre.

$$
\mathcal{M}:=\left\{\text { Lines in fibres of } \pi: \mathrm{Bl}_{P} X \rightarrow \mathbb{P}^{2}\right\}
$$

$S:=$ double cover of \mathbb{P}^{2} branched over sextic curve.
\mathbb{P}^{1}-bundle $\mathcal{M} \rightarrow S$ has a Brauer class $\operatorname{Br} \in H^{2}\left(\mathcal{O}_{S}^{*}\right)$.

Non-example $d=8$ continued

Let \mathcal{M} be the moduli space of lines in the quadric surface fibres, and let S be the moduli space of choices of rulings on each fibre.

$$
\mathcal{M}:=\left\{\text { Lines in fibres of } \pi: \mathrm{Bl}_{P} X \rightarrow \mathbb{P}^{2}\right\}
$$

$S:=$ double cover of \mathbb{P}^{2} branched over sextic curve.
\mathbb{P}^{1}-bundle $\mathcal{M} \rightarrow S$ has a Brauer class $\operatorname{Br} \in H^{2}\left(\mathcal{O}_{S}^{*}\right)$.

- Obstruction to finding a line bundle $\mathcal{O}_{\mathcal{M}}(1)$ of degree one on the \mathbb{P}^{1} fibres,

Non-example $d=8$ continued

Let \mathcal{M} be the moduli space of lines in the quadric surface fibres, and let S be the moduli space of choices of rulings on each fibre.

$$
\mathcal{M}:=\left\{\text { Lines in fibres of } \pi: \mathrm{Bl}_{P} X \rightarrow \mathbb{P}^{2}\right\}
$$

$S:=$ double cover of \mathbb{P}^{2} branched over sextic curve.
\mathbb{P}^{1}-bundle $\mathcal{M} \rightarrow S$ has a Brauer class $\operatorname{Br} \in H^{2}\left(\mathcal{O}_{S}^{*}\right)$.

- Obstruction to finding a line bundle $\mathcal{O}_{\mathcal{M}}(1)$ of degree one on the \mathbb{P}^{1} fibres,
- Obstruction to finding a vector bundle $E \rightarrow S$ such that $\mathcal{M}=\mathbb{P}(E) \rightarrow S$,

Non-example $d=8$ continued

Let \mathcal{M} be the moduli space of lines in the quadric surface fibres, and let S be the moduli space of choices of rulings on each fibre.

$$
\mathcal{M}:=\left\{\text { Lines in fibres of } \pi: \mathrm{Bl}_{P} X \rightarrow \mathbb{P}^{2}\right\}
$$

$S:=$ double cover of \mathbb{P}^{2} branched over sextic curve.
\mathbb{P}^{1}-bundle $\mathcal{M} \rightarrow S$ has a Brauer class $\operatorname{Br} \in H^{2}\left(\mathcal{O}_{S}^{*}\right)$.

- Obstruction to finding a line bundle $\mathcal{O}_{\mathcal{M}}(1)$ of degree one on the \mathbb{P}^{1} fibres,
- Obstruction to finding a vector bundle $E \rightarrow S$ such that $\mathcal{M}=\mathbb{P}(E) \rightarrow S$,
- Obstruction to finding a rational section of $\mathcal{M} \rightarrow S$.

Non-example $d=8$ continued

Let \mathcal{M} be the moduli space of lines in the quadric surface fibres, and let S be the moduli space of choices of rulings on each fibre.

$$
\mathcal{M}:=\left\{\text { Lines in fibres of } \pi: \mathrm{Bl}_{P} X \rightarrow \mathbb{P}^{2}\right\}
$$

$S:=$ double cover of \mathbb{P}^{2} branched over sextic curve.
\mathbb{P}^{1}-bundle $\mathcal{M} \rightarrow S$ has a Brauer class $\operatorname{Br} \in H^{2}\left(\mathcal{O}_{S}^{*}\right)$.

- Obstruction to finding a line bundle $\mathcal{O}_{\mathcal{M}}(1)$ of degree one on the \mathbb{P}^{1} fibres,
- Obstruction to finding a vector bundle $E \rightarrow S$ such that $\mathcal{M}=\mathbb{P}(E) \rightarrow S$,
- Obstruction to finding a rational section of $\mathcal{M} \rightarrow S$.

When $\operatorname{Br} \neq 0, H_{\text {prim }}^{2}(S, \mathbb{Z}) \nrightarrow H_{\text {prim }}^{4}(X, \mathbb{Z})$ (unless work over $\mathbb{Z}\left[\frac{1}{2}\right]$ or \mathbb{Q}).

Non-example $d=8$ continued (continued)
If there exists another class $T^{\prime} \in H^{2,2}(X, \mathbb{Z})$ (as well as P and h^{2}) such that $\int_{Q} T^{\prime}=1$
(since $\int_{X} h^{2} \wedge\left(h^{2}-P\right)=2$ sufficient to ask that $\int_{X} T^{\prime} \wedge\left(h^{2}-P\right)$ is odd)

Non-example $d=8$ continued (continued)

If there exists another class $T^{\prime} \in H^{2,2}(X, \mathbb{Z})$ (as well as P and h^{2}) such that $\int_{Q} T^{\prime}=1$
(since $\int_{X} h^{2} \wedge\left(h^{2}-P\right)=2$ sufficient to ask that $\int_{X} T^{\prime} \wedge\left(h^{2}-P\right)$ is odd) then by pushing and pulling from X to \mathcal{M} gives divisor on \mathcal{M} with degree 1 on \mathbb{P}^{1} fibres.
$\Longleftrightarrow \mathrm{Br}=0$ and the quadric surface bundle $\mathrm{BI}_{P} X \rightarrow \mathbb{P}^{2}$ has a section.

Non-example $d=8$ continued (continued)

If there exists another class $T^{\prime} \in H^{2,2}(X, \mathbb{Z})$ (as well as P and h^{2}) such that $\int_{Q} T^{\prime}=1$
(since $\int_{X} h^{2} \wedge\left(h^{2}-P\right)=2$ sufficient to ask that $\int_{X} T^{\prime} \wedge\left(h^{2}-P\right)$ is odd) then by pushing and pulling from X to \mathcal{M} gives divisor on \mathcal{M} with degree 1 on \mathbb{P}^{1} fibres.
$\Longleftrightarrow \mathrm{Br}=0$ and the quadric surface bundle $\mathrm{BI}_{P} X \rightarrow \mathbb{P}^{2}$ has a section.

Stereographic projection from this section

$$
\Longrightarrow X->\left(\mathbb{P}^{2} \text {-bundle over } \mathbb{P}^{2}\right) \Longrightarrow X \text { rational. }
$$

Non-example $d=8$ continued (continued)

If there exists another class $T^{\prime} \in H^{2,2}(X, \mathbb{Z})$ (as well as P and h^{2}) such that $\int_{Q} T^{\prime}=1$
(since $\int_{X} h^{2} \wedge\left(h^{2}-P\right)=2$ sufficient to ask that $\int_{X} T^{\prime} \wedge\left(h^{2}-P\right)$ is odd) then by pushing and pulling from X to \mathcal{M} gives divisor on \mathcal{M} with degree 1 on \mathbb{P}^{1} fibres.
$\Longleftrightarrow \mathrm{Br}=0$ and the quadric surface bundle $\mathrm{BI}_{P} X \rightarrow \mathbb{P}^{2}$ has a section.

Stereographic projection from this section

$$
\Longrightarrow X->\left(\mathbb{P}^{2} \text {-bundle over } \mathbb{P}^{2}\right) \Longrightarrow X \text { rational. }
$$

(Eg if X contains 2 planes P, P^{\prime} then $X \leftrightarrow->P \times P^{\prime}$ as line from $p \in P$ to $p^{\prime} \in P^{\prime}$ intersects X in a third point.)

Non-example $d=8$ continued (continued)

If there exists another class $T^{\prime} \in H^{2,2}(X, \mathbb{Z})$ (as well as P and h^{2}) such that $\int_{Q} T^{\prime}=1$
(since $\int_{X} h^{2} \wedge\left(h^{2}-P\right)=2$ sufficient to ask that $\int_{X} T^{\prime} \wedge\left(h^{2}-P\right)$ is odd) then by pushing and pulling from X to \mathcal{M} gives divisor on \mathcal{M} with degree 1 on \mathbb{P}^{1} fibres.
$\Longleftrightarrow \mathrm{Br}=0$ and the quadric surface bundle $\mathrm{Bl}_{P} X \rightarrow \mathbb{P}^{2}$ has a section.

Stereographic projection from this section

$$
\Longrightarrow X->\left(\mathbb{P}^{2} \text {-bundle over } \mathbb{P}^{2}\right) \Longrightarrow X \text { rational. }
$$

(Eg if X contains 2 planes P, P^{\prime} then $X \leftrightarrow->P \times P^{\prime}$ as line from $p \in P$ to $p^{\prime} \in P^{\prime}$ intersects X in a third point.)
But $d=8$ is not on the list ($*$) ?

Example $d=8$ and $d \in(*)$

In fact $d=8$ and $\mathrm{Br}=0\left(\Longleftrightarrow \exists T^{\prime}\right.$ with $\left.T^{\prime} \cdot\left(h^{2}-P\right)=1\right) \Longleftrightarrow$
$\exists T \in\left\langle h^{2}, P, T^{\prime}\right\rangle$ such that $d=\operatorname{disc}\left\langle h^{2}, T\right\rangle$ satisfies $(*)$.

Example $d=8$ and $d \in(*)$

In fact $d=8$ and $\mathrm{Br}=0\left(\Longleftrightarrow \exists T^{\prime}\right.$ with $\left.T^{\prime} \cdot\left(h^{2}-P\right)=1\right) \Longleftrightarrow$

$$
\exists T \in\left\langle h^{2}, P, T^{\prime}\right\rangle \text { such that } d=\operatorname{disc}\left\langle h^{2}, T\right\rangle \text { satisfies }(*) .
$$

That is $X \in N L_{8} \cap N L_{d}$.

Example $d=8$ and $d \in(*)$

In fact $d=8$ and $\mathrm{Br}=0\left(\Longleftrightarrow \exists T^{\prime}\right.$ with $\left.T^{\prime} \cdot\left(h^{2}-P\right)=1\right) \Longleftrightarrow$

$$
\exists T \in\left\langle h^{2}, P, T^{\prime}\right\rangle \text { such that } d=\operatorname{disc}\left\langle h^{2}, T\right\rangle \text { satisfies }(*) .
$$

That is $X \in N L_{8} \cap N L_{d}$.
And all $N L_{d}$ intersect $N L_{8}$ for d satisfying (*).

And now we have $H_{\text {prim }}^{2}(S, \mathbb{Z}) \hookrightarrow H_{\text {prim }}^{4}(X, \mathbb{Z})$ and rationality.

Rationality conjecture

Harris and Hassett (cautiously) asked whether X might be rational if and only if

$$
\left\langle h^{2}, T\right\rangle^{\perp} \cong H_{\text {prim }}^{2}(S, \mathbb{Z})
$$

for some polarised K3 surface (S, L) and class

$$
T \in H_{\mathrm{prim}}^{2,2}(X, \mathbb{Z})
$$

(whose discriminant d would then satisfy $(*)$).

Rationality conjecture

Harris and Hassett (cautiously) asked whether X might be rational if and only if

$$
\left\langle h^{2}, T\right\rangle^{\perp} \cong H_{\text {prim }}^{2}(S, \mathbb{Z})
$$

for some polarised K3 surface (S, L) and class

$$
T \in H_{\text {prim }}^{2,2}(X, \mathbb{Z})
$$

(whose discriminant d would then satisfy $(*)$).
Rough idea: $X<->\mathbb{P}^{4}$ must blow up a surface somewhere, and that will give a correspondence to a K3 surface S.

Rationality conjecture

Harris and Hassett (cautiously) asked whether X might be rational if and only if

$$
\left\langle h^{2}, T\right\rangle^{\perp} \cong H_{\text {prim }}^{2}(S, \mathbb{Z})
$$

for some polarised K3 surface (S, L) and class

$$
T \in H_{\mathrm{prim}}^{2,2}(X, \mathbb{Z})
$$

(whose discriminant d would then satisfy $(*)$).
Rough idea: $X<->\mathbb{P}^{4}$ must blow up a surface somewhere, and that will give a correspondence to a K3 surface S.

There is one thing better than correspondences:
Fourier-Mukai kernels.
Kuznetsov categorifies Hassett's approach, in some sense.

Kuznetsov's approach through derived categories

$$
D(X)=\left\langle\mathcal{A}_{X}, \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle,
$$

where

$$
\begin{aligned}
\mathcal{A}_{X} & :=\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle^{\perp} \\
& =\left\{E \in D(X): R \operatorname{Hom}\left(\mathcal{O}_{X}(i), E\right)=0 \text { for } i=0,1,2\right\} .
\end{aligned}
$$

Kuznetsov's approach through derived categories

$$
D(X)=\left\langle\mathcal{A}_{X}, \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle
$$

where

$$
\begin{aligned}
\mathcal{A}_{X} & :=\left\langle\mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle^{\perp} \\
& =\left\{E \in D(X): R \operatorname{Hom}\left(\mathcal{O}_{X}(i), E\right)=0 \text { for } i=0,1,2\right\} .
\end{aligned}
$$

$\mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)$ form an exceptional collection so can use
Gram-Schmidt to project any $E \in D(X)$ into \mathcal{A}_{X}.
(Replace E by cone of $\operatorname{RHom}(\mathcal{O}(i), E) \otimes \mathcal{O}(i) \rightarrow E$, etc.)

$$
\mathcal{A}_{X} \underset{\pi_{\mathcal{A}}}{\rightleftarrows} D(X)
$$

\mathcal{A}_{X} is a noncommutative K 3 surface

\mathcal{A}_{X} is a 2-dimensional Calabi-Yau category (it has Serre functor [2])

$$
R H o m(E, F)^{*} \cong R H o m(F, E)[2]
$$

with the same sized Hochschild (co)homology as $D(K 3)$.

\mathcal{A}_{X} is a noncommutative K 3 surface

\mathcal{A}_{X} is a 2-dimensional Calabi-Yau category (it has Serre functor [2])

$$
R H o m(E, F)^{*} \cong R H o m(F, E)[2]
$$

with the same sized Hochschild (co)homology as $D(K 3)$.
(It is also a deformation of $D(K 3)$, but in general does not contain point classes a such that $\langle a, a\rangle=0$.)

\mathcal{A}_{X} is a noncommutative K 3 surface

\mathcal{A}_{X} is a 2-dimensional Calabi-Yau category (it has Serre functor [2])

$$
R \operatorname{Hom}(E, F)^{*} \cong R \operatorname{Hom}(F, E)[2]
$$

with the same sized Hochschild (co)homology as $D(K 3)$.
(It is also a deformation of $D(K 3)$, but in general does not contain point classes a such that $\langle a, a\rangle=0$.)

It is a noncommutative K3 surface, in the sense of Kontsevich. (Mirror LG model $Y \rightarrow \mathbb{C}$ has 4 singular fibres: 3 odps and one with singular set $K 3$.)

\mathcal{A}_{X} is a noncommutative K 3 surface

\mathcal{A}_{X} is a 2-dimensional Calabi-Yau category (it has Serre functor [2])

$$
R \operatorname{Hom}(E, F)^{*} \cong R \operatorname{Hom}(F, E)[2]
$$

with the same sized Hochschild (co)homology as $D(K 3)$.
(It is also a deformation of $D(K 3)$, but in general does not contain point classes a such that $\langle a, a\rangle=0$.)

It is a noncommutative K3 surface, in the sense of Kontsevich. (Mirror LG model $Y \rightarrow \mathbb{C}$ has 4 singular fibres: 3 odps and one with singular set $K 3$.)

This "explains" the Beauville-Donagi holomorphic symplectic form on the Fano variety $F(X)$ of lines in X :
$F(X)$ is a moduli of objects $\pi_{\mathcal{A}}\left(\mathscr{I}_{L}\right) \in \mathcal{A}_{X}$ so inherits Mukai's symplectic structure coming from the trivialisation of the Serre functor (i.e. the holomorphic 2-form).

\mathcal{A}_{X} is a noncommutative K 3 surface

\mathcal{A}_{X} is a 2-dimensional Calabi-Yau category (it has Serre functor [2])

$$
R \operatorname{Hom}(E, F)^{*} \cong R \operatorname{Hom}(F, E)[2]
$$

with the same sized Hochschild (co)homology as $D(K 3)$.
(It is also a deformation of $D(K 3)$, but in general does not contain point classes a such that $\langle a, a\rangle=0$.)

It is a noncommutative K3 surface, in the sense of Kontsevich. (Mirror LG model $Y \rightarrow \mathbb{C}$ has 4 singular fibres: 3 odps and one with singular set $K 3$.)

This "explains" the Beauville-Donagi holomorphic symplectic form on the Fano variety $F(X)$ of lines in X :
$F(X)$ is a moduli of objects $\pi_{\mathcal{A}}\left(\mathscr{I}_{L}\right) \in \mathcal{A}_{X}$ so inherits Mukai's symplectic structure coming from the trivialisation of the Serre functor (i.e. the holomorphic 2-form).

Kuznetsov's conjecture

We call \mathcal{A}_{X} geometric if it is $\cong D(K 3)$.

Kuznetsov's conjecture

We call \mathcal{A}_{X} geometric if it is $\cong D(K 3)$.
Conjecture (Kuznetsov)
X rational $\Longleftrightarrow \mathcal{A}_{X}$ geometric.
Same intuition as before: rational map will blow up an S, introducing $D(S)$ into $D(X)$.

Kuznetsov's conjecture

We call \mathcal{A}_{X} geometric if it is $\cong D(K 3)$.
Conjecture (Kuznetsov)
X rational $\Longleftrightarrow \mathcal{A}_{X}$ geometric.
Same intuition as before: rational map will blow up an S, introducing $D(S)$ into $D(X)$.
Kuznetsov shows that the known rational cubics X indeed have \mathcal{A}_{X} geometric, i.e. $D(S) \hookrightarrow D(X)$.
Noone has yet proved a single cubic X to be irrational.
(But: Francois Greer and Jun Li ?)

$d=8$ again

Recall $P \subset X$, and the fibrations

$d=8$ again

Recall $P \subset X$, and the fibrations
$Q \xrightarrow{\iota} \mathrm{Bl}_{P} X$

$S=\{$ rulings of fibres $\}$

$$
\mathbb{P}^{2}
$$

$S \ni s$ parameterises the sheaves $\iota_{*} \mathscr{I}_{L}$ on X.
(L any line in the ruling corresponding to the point $s \in S$.)

$d=8$ again

Recall $P \subset X$, and the fibrations

$S=\{$ rulings of fibres $\}$
\mathbb{P}^{2}
\mathbb{P}^{2}
$S \ni s$ parameterises the sheaves $\iota_{*} \mathscr{I}_{L}$ on X. (L any line in the ruling corresponding to the point $s \in S$.) In fact S is moduli space of objects $\pi_{\mathcal{A}}\left(\iota_{*} \mathscr{I}_{L}\right) \in \mathcal{A}_{X}$.

$d=8$ again

Recall $P \subset X$, and the fibrations

$S \ni s$ parameterises the sheaves $\iota_{*} \mathscr{I}_{L}$ on X. (L any line in the ruling corresponding to the point $s \in S$.)

In fact S is moduli space of objects $\pi_{\mathcal{A}}\left(\iota_{*} \mathscr{I}_{L}\right) \in \mathcal{A}_{X}$. Universal object $U \in D(X \times S, B r)$ twisted by $\operatorname{Br} \in H^{2}\left(\mathcal{O}_{S}^{*}\right)$.

$d=8$ again

Recall $P \subset X$, and the fibrations

$S \ni s$ parameterises the sheaves $\iota_{*} \mathscr{I}_{L}$ on X.
(L any line in the ruling corresponding to the point $s \in S$.)
In fact S is moduli space of objects $\pi_{\mathcal{A}}\left(\iota_{*} \mathscr{I}_{L}\right) \in \mathcal{A}_{X}$. Universal object $U \in D(X \times S, B r)$ twisted by $\operatorname{Br} \in H^{2}\left(\mathcal{O}_{S}^{*}\right)$.
Theorem (Kuznetsov)
Using U as a Fourier-Mukai kernel gives an equivalence $D(S, B r) \rightarrow \mathcal{A}_{X} \subset D(X)$.

$d=8$ again

Recall $P \subset X$, and the fibrations

$S \ni s$ parameterises the sheaves $\iota_{*} \mathscr{I}_{L}$ on X.
(L any line in the ruling corresponding to the point $s \in S$.)
In fact S is moduli space of objects $\pi_{\mathcal{A}}\left(\iota_{*} \mathscr{I}_{L}\right) \in \mathcal{A}_{X}$. Universal object $U \in D(X \times S, B r)$ twisted by $\operatorname{Br} \in H^{2}\left(\mathcal{O}_{S}^{*}\right)$.
Theorem (Kuznetsov)
Using U as a Fourier-Mukai kernel gives an equivalence $D(S, B r) \rightarrow \mathcal{A}_{X} \subset D(X)$.

So X geometric if $\mathrm{Br}=0$, which we saw meant $X \in N L_{8} \cap N L_{d}$ for some $d \in(*)$.

Hassett = Kuznetsov ?

We would like to show that the two rationality conjectures are the same. That is,

$$
X \in N L_{d} \text { for } d \text { satisfying }(*) \Longleftrightarrow \mathcal{A}_{X} \text { geometric, }
$$

or equivalently

$$
H_{\text {prim }}^{2}(S) \hookrightarrow H_{\text {prim }}^{4}(X) \quad \Longleftrightarrow \quad D(S) \hookrightarrow D(X)
$$

Hassett = Kuznetsov ?

We would like to show that the two rationality conjectures are the same. That is,

$$
X \in N L_{d} \text { for } d \text { satisfying }(*) \Longleftrightarrow \mathcal{A}_{X} \text { geometric, }
$$

or equivalently

$$
H_{\text {prim }}^{2}(S) \hookrightarrow H_{\text {prim }}^{4}(X) \quad \Longleftrightarrow \quad D(S) \hookrightarrow D(X)
$$

We prove this generically.
Theorem
The Kuznetsov locus (of X with geometric \mathcal{A}_{X}) is a dense Zariski open subset of the Hassett locus (of $N L_{d}$ divisors, d satisfying $(*)$).

Hassett = Kuznetsov ?

We would like to show that the two rationality conjectures are the same. That is,

$$
X \in N L_{d} \text { for } d \text { satisfying }(*) \Longleftrightarrow \mathcal{A}_{X} \text { geometric, }
$$

or equivalently

$$
H_{\text {prim }}^{2}(S) \hookrightarrow H_{\text {prim }}^{4}(X) \quad \Longleftrightarrow \quad D(S) \hookrightarrow D(X)
$$

We prove this generically.
Theorem
The Kuznetsov locus (of X with geometric \mathcal{A}_{X}) is a dense Zariski open subset of the Hassett locus (of $N L_{d}$ divisors, d satisfying (*)).

Expect loci are equal, but taking closure of above result tricky. (Limits of FM kernels.)

Algebraic cycles

Taking limits of algebraic cycles is easy, however.
(The Hilbert scheme is proper.)
Corollary
Given any X in Hassett's locus, his Hodge isometry

$$
H_{\text {prim }}^{2}(S, \mathbb{Z})(-1) \longrightarrow\left\langle h^{2}, T\right\rangle \subset H_{\text {prim }}^{4}(X, \mathbb{Z})
$$

is induced by an algebraic cycle $Z \in A^{3}(S \times X) \otimes \mathbb{Q}$.

Algebraic cycles

Taking limits of algebraic cycles is easy, however.
(The Hilbert scheme is proper.)
Corollary
Given any X in Hassett's locus, his Hodge isometry

$$
H_{\text {prim }}^{2}(S, \mathbb{Z})(-1) \longrightarrow\left\langle h^{2}, T\right\rangle \subset H_{\text {prim }}^{4}(X, \mathbb{Z})
$$

is induced by an algebraic cycle $Z \in A^{3}(S \times X) \otimes \mathbb{Q}$.
We can strengthen this slightly.
Theorem
Fix any cubic X and $K 3$ surface S. If a Hodge class
$Z \in H^{3,3}(S \times X, \mathbb{Q})$ induces a Hodge isometry of integral
transcendental lattices

$$
T(S)(-1) \xrightarrow{\sim} T(X)
$$

then Z is algebraic.

Sketch of proof

- Reinterpret Hassett's cohomological condition in K-theory.

Sketch of proof

- Reinterpret Hassett's cohomological condition in K-theory.
- d satisfies $(*) \Longleftrightarrow \exists a, b \in K\left(\mathcal{A}_{X}\right)$ such that a is pointlike and b is linelike: $\langle a, a\rangle=0,\langle a, b\rangle=1,\langle b, b\rangle=2$. (Think of $a=\left[\mathcal{O}_{\text {point }}\right], b=\left[\mathcal{O}_{S}\right]$ in $\mathrm{K}(\mathrm{D}(\mathrm{S}))$.)

Sketch of proof

- Reinterpret Hassett's cohomological condition in K-theory.
- d satisfies $(*) \Longleftrightarrow \exists a, b \in K\left(\mathcal{A}_{X}\right)$ such that a is pointlike and b is linelike: $\langle a, a\rangle=0,\langle a, b\rangle=1,\langle b, b\rangle=2$. (Think of $a=\left[\mathcal{O}_{\text {point }}\right], \quad b=\left[\mathcal{O}_{S}\right]$ in $\mathrm{K}(\mathrm{D}(\mathrm{S}))$.)
- This proves the easy direction Kuznetsov \Rightarrow Hassett.

Sketch of proof

- Reinterpret Hassett's cohomological condition in K-theory.
- d satisfies $(*) \Longleftrightarrow \exists a, b \in K\left(\mathcal{A}_{X}\right)$ such that a is pointlike and b is linelike: $\langle a, a\rangle=0,\langle a, b\rangle=1,\langle b, b\rangle=2$. (Think of $a=\left[\mathcal{O}_{\text {point }}\right], \quad b=\left[\mathcal{O}_{S}\right]$ in $\mathrm{K}(\mathrm{D}(\mathrm{S}))$.)
- This proves the easy direction Kuznetsov \Rightarrow Hassett.
- Conversely, fix $X \in N L_{d}$ with $d \in(*)$. Then this is the hint that \mathcal{A}_{X} contains points!

Sketch of proof

- Reinterpret Hassett's cohomological condition in K-theory.
- d satisfies $(*) \Longleftrightarrow \exists a, b \in K\left(\mathcal{A}_{X}\right)$ such that a is pointlike and b is linelike: $\langle a, a\rangle=0,\langle a, b\rangle=1,\langle b, b\rangle=2$. (Think of $a=\left[\mathcal{O}_{\text {point }}\right], \quad b=\left[\mathcal{O}_{S}\right]$ in $\mathrm{K}(\mathrm{D}(\mathrm{S}))$.)
- This proves the easy direction Kuznetsov \Rightarrow Hassett.
- Conversely, fix $X \in N L_{d}$ with $d \in(*)$. Then this is the hint that \mathcal{A}_{X} contains points!
- The K3 surface S we want is "the" moduli space of these points - i.e. (stable) objects of class a.

Sketch of proof

- Reinterpret Hassett's cohomological condition in K-theory.
- d satisfies $(*) \Longleftrightarrow \exists a, b \in K\left(\mathcal{A}_{X}\right)$ such that a is pointlike and b is linelike: $\langle a, a\rangle=0,\langle a, b\rangle=1,\langle b, b\rangle=2$. (Think of $a=\left[\mathcal{O}_{\text {point }}\right], \quad b=\left[\mathcal{O}_{S}\right]$ in $\mathrm{K}(\mathrm{D}(\mathrm{S}))$.)
- This proves the easy direction Kuznetsov \Rightarrow Hassett.
- Conversely, fix $X \in N L_{d}$ with $d \in(*)$. Then this is the hint that \mathcal{A}_{X} contains points!
- The K3 surface S we want is "the" moduli space of these points - i.e. (stable) objects of class a.
- Can't form such a moduli space, so we proceed by deformation theory starting at points of $N L_{d} \cap N L_{8}$, which we understand.

Sketch of proof

- Reinterpret Hassett's cohomological condition in K-theory.
- d satisfies $(*) \Longleftrightarrow \exists a, b \in K\left(\mathcal{A}_{X}\right)$ such that a is pointlike and b is linelike: $\langle a, a\rangle=0,\langle a, b\rangle=1,\langle b, b\rangle=2$. (Think of $a=\left[\mathcal{O}_{\text {point }}\right], b=\left[\mathcal{O}_{S}\right]$ in $K(D(S))$.)
- This proves the easy direction Kuznetsov \Rightarrow Hassett.
- Conversely, fix $X \in N L_{d}$ with $d \in(*)$. Then this is the hint that \mathcal{A}_{X} contains points!
- The K3 surface S we want is "the" moduli space of these points - i.e. (stable) objects of class a.
- Can't form such a moduli space, so we proceed by deformation theory starting at points of $N L_{d} \cap N L_{8}$, which we understand.
- Prove that $N L_{d} \cap N L_{8} \neq \emptyset$.

Sketch of proof II

- For $X \in N L_{d} \cap N L_{8}$ the Brauer class vanishes, so Kuznetsov gives us $\mathcal{A}_{X} \cong D(S)$.

Sketch of proof II

- For $X \in N L_{d} \cap N L_{8}$ the Brauer class vanishes, so Kuznetsov gives us $\mathcal{A}_{X} \cong D(S)$.
- This is the "wrong" equivalence for $N L_{d}$: it expresses S as a moduli space of objects which do not deform along $N L_{d}$. (They only deform along $N L_{8}$.)

Sketch of proof II

- For $X \in N L_{d} \cap N L_{8}$ the Brauer class vanishes, so Kuznetsov gives us $\mathcal{A}_{X} \cong D(S)$.
- This is the "wrong" equivalence for $N L_{d}$: it expresses S as a moduli space of objects which do not deform along $N L_{d}$. (They only deform along $N L_{8}$.)
- But we have gained something: we're now in $D(S)$ instead of abstract \mathcal{A}_{X}. So we have Mukai!

Sketch of proof II

- For $X \in N L_{d} \cap N L_{8}$ the Brauer class vanishes, so Kuznetsov gives us $\mathcal{A}_{X} \cong D(S)$.
- This is the "wrong" equivalence for $N L_{d}$: it expresses S as a moduli space of objects which do not deform along $N L_{d}$. (They only deform along $N L_{8}$.)
- But we have gained something: we're now in $D(S)$ instead of abstract \mathcal{A}_{X}. So we have Mukai!
- Mukai-Orlov: \exists a moduli space \mathcal{M} of stable objects of class a. It is nonempty, $\langle a, a\rangle+2=2$ dimensional, holomorphic symplectic, compact and fine (because $\exists b$ with $\langle a, b\rangle=1$).

Sketch of proof II

- For $X \in N L_{d} \cap N L_{8}$ the Brauer class vanishes, so Kuznetsov gives us $\mathcal{A}_{X} \cong D(S)$.
- This is the "wrong" equivalence for $N L_{d}$: it expresses S as a moduli space of objects which do not deform along $N L_{d}$. (They only deform along $N L_{8}$.)
- But we have gained something: we're now in $D(S)$ instead of abstract \mathcal{A}_{X}. So we have Mukai!
- Mukai-Orlov: \exists a moduli space \mathcal{M} of stable objects of class a. It is nonempty, $\langle a, a\rangle+2=2$ dimensional, holomorphic symplectic, compact and fine (because $\exists b$ with $\langle a, b\rangle=1$).
- So \mathcal{M} is a K 3 surface with universal object on $S \times \mathcal{M}$ giving $D(S) \cong D(\mathcal{M})$.

Sketch of proof II

- For $X \in N L_{d} \cap N L_{8}$ the Brauer class vanishes, so Kuznetsov gives us $\mathcal{A}_{X} \cong D(S)$.
- This is the "wrong" equivalence for $N L_{d}$: it expresses S as a moduli space of objects which do not deform along $N L_{d}$. (They only deform along $N L_{8}$.)
- But we have gained something: we're now in $D(S)$ instead of abstract \mathcal{A}_{X}. So we have Mukai!
- Mukai-Orlov: \exists a moduli space \mathcal{M} of stable objects of class a. It is nonempty, $\langle a, a\rangle+2=2$ dimensional, holomorphic symplectic, compact and fine (because $\exists b$ with $\langle a, b\rangle=1$).
- So \mathcal{M} is a K3 surface with universal object on $S \times \mathcal{M}$ giving $D(S) \cong D(\mathcal{M})$.
- The resulting equivalence $\mathcal{A}_{X} \cong D(\mathcal{M})$ is the right one for $N L_{d}$! (It expresses \mathcal{M} as a moduli space of objects of type a, and a deforms along $N L_{d}$.)

Sketch of proof III

- Finally deform X into $N L_{d}$ from $N L_{d} \cap N L_{8}$, and deform \mathcal{M} with it (as an abstract K3, via Hassett's result and Torelli).

Sketch of proof III

- Finally deform X into $N L_{d}$ from $N L_{d} \cap N L_{8}$, and deform \mathcal{M} with it (as an abstract K3, via Hassett's result and Torelli).
- Need to show the FM kernel $U \in D(\mathcal{M} \times X)$ deforms to all orders. (Since $N L_{d}$ irreducible this shows it deforms to a dense Zariski open. The FM functor being full and faithful is also an open condition.)

Deformation theory

T^{1}-lifting \Longrightarrow reduce to first order deformation theory. Then refine K3 ideas of Toda and Huybrechts-Macrì-Stellari.

Deformation theory

T^{1}-lifting \Longrightarrow reduce to first order deformation theory. Then refine K3 ideas of Toda and Huybrechts-Macrì-Stellari.
Using our Fourier-Mukai functor $D(\mathcal{M}) \rightarrow \mathcal{A}_{X}$ to identify \mathcal{A}_{X} with $D(\mathcal{M})$, our functor becomes id : $D(\mathcal{M}) \longrightarrow D(\mathcal{M})$

Deformation theory

T^{1}-lifting \Longrightarrow reduce to first order deformation theory.
Then refine K3 ideas of Toda and Huybrechts-Macrì-Stellari.
Using our Fourier-Mukai functor $D(\mathcal{M}) \rightarrow \mathcal{A}_{X}$ to identify \mathcal{A}_{X} with $D(\mathcal{M})$, our functor becomes id : $D(\mathcal{M}) \longrightarrow D(\mathcal{M})$ represented by the Fourier-Mukai kernel

$$
\mathcal{O}_{\Delta} \in D(\mathcal{M} \times \mathcal{M})
$$

Deformation theory

T^{1}-lifting \Longrightarrow reduce to first order deformation theory.
Then refine K3 ideas of Toda and Huybrechts-Macrì-Stellari.
Using our Fourier-Mukai functor $D(\mathcal{M}) \rightarrow \mathcal{A}_{X}$ to identify \mathcal{A}_{X} with $D(\mathcal{M})$, our functor becomes id : $D(\mathcal{M}) \longrightarrow D(\mathcal{M})$ represented by the Fourier-Mukai kernel

$$
\mathcal{O}_{\Delta} \in D(\mathcal{M} \times \mathcal{M})
$$

As we deform X (i.e. \mathcal{A}_{X}) and \mathcal{M}, the obstruction to deforming our Fourier-Mukai kernel therefore lies in

$$
\operatorname{Ext}_{\mathcal{M} \times \mathcal{M}}^{2}\left(\mathcal{O}_{\Delta}, \mathcal{O}_{\Delta}\right) \cong H^{2}(\mathcal{M}, \mathbb{C})
$$

Deformation theory

T^{1}-lifting \Longrightarrow reduce to first order deformation theory. Then refine K3 ideas of Toda and Huybrechts-Macrì-Stellari.
Using our Fourier-Mukai functor $D(\mathcal{M}) \rightarrow \mathcal{A}_{X}$ to identify \mathcal{A}_{X} with $D(\mathcal{M})$, our functor becomes id : $D(\mathcal{M}) \longrightarrow D(\mathcal{M})$ represented by the Fourier-Mukai kernel

$$
\mathcal{O}_{\Delta} \in D(\mathcal{M} \times \mathcal{M})
$$

As we deform X (i.e. \mathcal{A}_{X}) and \mathcal{M}, the obstruction to deforming our Fourier-Mukai kernel therefore lies in

$$
\operatorname{Ext}_{\mathcal{M} \times \mathcal{M}}^{2}\left(\mathcal{O}_{\Delta}, \mathcal{O}_{\Delta}\right) \cong H^{2}(\mathcal{M}, \mathbb{C})
$$

Identify this obstruction with

$$
\kappa_{\mathcal{M}}-\kappa_{X}
$$

$\kappa_{\mathcal{M}} \in H^{1,1}(\mathcal{M})$ is the Kodaira-Spencer class of the deformation of \mathcal{M} (contracted with $\sigma_{\mathcal{M}}^{2,0}$), and $\kappa_{X} \in H^{2,2}(X) \supset H^{1,1}(M)$ is the same for X.

Addendum

More classically, Kuznetsov's conjecture should say that X is rational if and only if $F(X)$ is (birational to) a moduli space of sheaves on a K3 surface.

Addendum

More classically, Kuznetsov's conjecture should say that X is rational if and only if $F(X)$ is (birational to) a moduli space of sheaves on a K3 surface.

Recent results of Galkin-Shender suggest that this should be modified to X is rational if and only if $F(X)$ is birational to a $\operatorname{Hilb}^{2}(K 3)$.

Addendum

More classically, Kuznetsov's conjecture should say that X is rational if and only if $F(X)$ is (birational to) a moduli space of sheaves on a K3 surface.

Recent results of Galkin-Shender suggest that this should be modified to X is rational if and only if $F(X)$ is birational to a $\operatorname{Hilb}^{2}(K 3)$.

There is a Hassett/Addington cohomological condition for this too:

$$
(* *) \quad d=\frac{2 n^{2}+2 n+2}{a^{2}} \text { for some } n, a \in \mathbb{Z} \text {. }
$$

And $(* *) \Rightarrow(*)$ but $(*) \nRightarrow(* *)$.
In particular, the derived category would then having nothing to do with rationality.

