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Hassett:
There exists a codimension-1 locus of “special ” cubics which look
like a K3 to Hodge theory.

Kuznetsov:
There exists a locus of cubics which look like a K3 to the derived
category.

Conjecturally both equivalent to the rationality X oo //___ P4 of the
cubic X . We will illustrate this with examples.

At the end of the talk we show these loci are (almost) the same.
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Cubic fourfolds

I X ⊂ P5 smooth cubic fourfold
I Moduli space H0(OP5(3))

/
GL(6,C) 20-dimensional

I Hodge diamond
1
1

0 1 21 1 0
1
1

I Primitive cohomology 0 1 20 1 0 Signature (20,2)
I Generator σ3,1 ∈ H3,1(X ) defines period point in H4(X ,C)

⇒ Torelli theorem (Voisin).
I cf. H2(K3 surface S) 1 20 1 Signature (3,19)
I Generator σ2,0 ∈ H2,0(S) defines period point in H2(S ,C)

⇒ Torelli theorem (Pjateckĭi-Šapiro–Šafarevič, Burns–Rapoport).

Not same unless pass to codimension-1 sub-Hodge structure of
signature (2, 19) in both cases.
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I Generically H1,1(S ,Z) := H1,1(S) ∩ H2(S ,Z) = 0.

I NLd is locus of K3 surfaces where a class c1(L) ∈ H2(S ,Z)
(of degree d = c1(L)2) becomes of type (1,1).
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I Moduli space of polarised K3 surfaces of degree d .

Cubic fourfolds

I Generically H2,2
prim(X ,Z) = 0.

I NLd is locus of cubics where a class T ∈ H4(S ,Z)
(of discriminant d = disc 〈h2, T 〉) becomes of type (2,2).

I NLd is a divisor, cut out by the one equation
∫
T σ3,1 = 0.

I Moduli space of special cubics fourfolds of discriminant d .
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Theorem (Hassett)

Fix a special cubic fourfold (X , T ) of discriminant d = disc 〈h2, T 〉.
There exists a polarised K3 surface (S , L) such that

H2
prim(S ,Z)(−1) ∼= 〈h2, T 〉⊥

if and only if

(∗) d even, not divisible by 4,9, nor any prime 6n + 5.

That is d = (6), 14, 26, 38, . . . . This is then deg(L) also.
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Examples
Hassett’s theorem produces abstract K3 surfaces by Torelli. But
there exist geometric constructions for small d .

Example “d = 6 ”; Cubic fourfolds containing an odp p ∈ X

I Let P4 = {Lines L ⊂ P5 through p}
I Generic L hits X in 3 − 2 = 1 more point q ∈ X

I Gives birational map π : X //__ P4, q 7→ L
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π : Blp X → P4 blows down universal line (a P1-bundle) over

S := {Lines L ⊂ X through p} ⊂ P4,

which is a (2,3) intersection in P4 – i.e. a K3 surface!

So
Blp X ∼= BlS P

4

giving a correspondence between X and S . Eventually this yields

H2
prim(S ,Z) ↪→ H4(X ,Z)

as 〈h2, T 〉⊥.

(The correspondence in X × S actually gives a Fourier-Mukai
kernel in D(X × S) yielding D(S) ↪→ D(X ) – see later.)
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Pf (4, 6) ⊂ P14 = P
(
Λ2C6∗)

is the Pfaffian variety of 2-forms of rank ≤ 4 on C6.

It is a cubic hypersurface {ω : ω ∧ ω ∧ ω = 0}.

Its projective dual is

Gr (2, 6) ⊂
(
P14
)∗

= P
(
Λ2C6

)
.

Intersecting the former with a P5 ⊂ P14 gives a Pfaffian cubic
X ⊂ P5.
Intersecting the latter with the dual P8 = (P5)⊥ ⊂

(
P14
)∗

gives a
K3 surface S .

This gives a correspondence ⊂ X × S (and FM kernel in
D(X × S)) giving

H2
prim(S ,Z) ↪→ H4(X ,Z).

Pfaffian cubics are also all rational.
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d = 8 not on list (∗).
Cubic X containing a plane P ⊂ X ⊂ P5. (disc 〈h2, P〉 = 8.)
Defines another plane

P2 :=
{
3-planes P ⊂ P3 ⊂ P5

}

Such a 3-plane intersects X in a singular cubic surface P ∪ Q.

⇒ P2 family of quadric surfaces Q; in fact

BlP X → P2

is a quadric surface fibration, generic fibre P1 × P1, singular fibres
(cone over a conic) over discriminant sextic curve ⊂ P2.



Non-example d = 8 continued

Let M be the moduli space of lines in the quadric surface fibres,
and let S be the moduli space of choices of rulings on each fibre.



Non-example d = 8 continued

Let M be the moduli space of lines in the quadric surface fibres,
and let S be the moduli space of choices of rulings on each fibre.

M :=
{
Lines in fibres of π : BlP X → P2

}
,

S := double cover of P2 branched over sextic curve.



Non-example d = 8 continued

Let M be the moduli space of lines in the quadric surface fibres,
and let S be the moduli space of choices of rulings on each fibre.

M :=
{
Lines in fibres of π : BlP X → P2

}
,

S := double cover of P2 branched over sextic curve.

P1-bundle M → S has a Brauer class Br ∈ H2(O∗
S).



Non-example d = 8 continued

Let M be the moduli space of lines in the quadric surface fibres,
and let S be the moduli space of choices of rulings on each fibre.

M :=
{
Lines in fibres of π : BlP X → P2

}
,

S := double cover of P2 branched over sextic curve.

P1-bundle M → S has a Brauer class Br ∈ H2(O∗
S).

I Obstruction to finding a line bundle OM(1) of degree one on
the P1 fibres,



Non-example d = 8 continued

Let M be the moduli space of lines in the quadric surface fibres,
and let S be the moduli space of choices of rulings on each fibre.

M :=
{
Lines in fibres of π : BlP X → P2

}
,

S := double cover of P2 branched over sextic curve.

P1-bundle M → S has a Brauer class Br ∈ H2(O∗
S).

I Obstruction to finding a line bundle OM(1) of degree one on
the P1 fibres,

I Obstruction to finding a vector bundle E → S such that
M = P(E ) → S ,



Non-example d = 8 continued

Let M be the moduli space of lines in the quadric surface fibres,
and let S be the moduli space of choices of rulings on each fibre.

M :=
{
Lines in fibres of π : BlP X → P2

}
,

S := double cover of P2 branched over sextic curve.

P1-bundle M → S has a Brauer class Br ∈ H2(O∗
S).

I Obstruction to finding a line bundle OM(1) of degree one on
the P1 fibres,

I Obstruction to finding a vector bundle E → S such that
M = P(E ) → S ,

I Obstruction to finding a rational section of M → S .



Non-example d = 8 continued

Let M be the moduli space of lines in the quadric surface fibres,
and let S be the moduli space of choices of rulings on each fibre.

M :=
{
Lines in fibres of π : BlP X → P2

}
,

S := double cover of P2 branched over sextic curve.

P1-bundle M → S has a Brauer class Br ∈ H2(O∗
S).

I Obstruction to finding a line bundle OM(1) of degree one on
the P1 fibres,

I Obstruction to finding a vector bundle E → S such that
M = P(E ) → S ,

I Obstruction to finding a rational section of M → S .

When Br 6= 0, H2
prim(S ,Z) 6↪→ H4

prim(X ,Z) (unless work over Z
[

1
2

]
or Q).
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If there exists another class T ′ ∈ H2,2(X ,Z) (as well as P and h2)
such that

∫
Q T ′ = 1

(since
∫

X
h2 ∧ (h2 − P) = 2 sufficient to ask that

∫
X

T ′ ∧ (h2 − P) is odd)

then by pushing and pulling from X to M gives divisor on M with
degree 1 on P1 fibres.

⇐⇒ Br= 0 and the quadric surface bundle BlP X → P2 has a
section.

Stereographic projection from this section

=⇒ X //__
(
P2 -bundle over P2

)
=⇒ X rational.

(Eg if X contains 2 planes P , P ′ then X oo //___ P × P ′ as line from
p ∈ P to p′ ∈ P ′ intersects X in a third point.)

But d = 8 is not on the list (∗) ?
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In fact d = 8 and Br= 0 ( ⇐⇒ ∃T ′ with T ′.(h2 − P) = 1) ⇐⇒

∃T ∈ 〈h2, P , T ′〉 such that d = disc 〈h2, T 〉 satisfies (∗).

That is X ∈ NL8 ∩ NLd .
And all NLd intersect NL8 for d satisfying (∗).

And now we have H2
prim(S ,Z) ↪→ H4

prim(X ,Z) and rationality.
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Harris and Hassett (cautiously) asked whether X might be rational
if and only if

〈h2, T 〉⊥ ∼= H2
prim(S ,Z)

for some polarised K3 surface (S , L) and class

T ∈ H2,2
prim(X ,Z)

(whose discriminant d would then satisfy (∗)).

Rough idea: X oo //___ P4 must blow up a surface somewhere, and
that will give a correspondence to a K3 surface S .

There is one thing better than correspondences:
Fourier-Mukai kernels.

Kuznetsov categorifies Hassett’s approach, in some sense.
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〈
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〉
,

where

AX := 〈OX ,OX (1),OX (2)〉⊥

=
{
E ∈ D(X ) : RHom(OX (i), E ) = 0 for i = 0, 1, 2

}
.

OX ,OX (1),OX (2) form an exceptional collection so can use
Gram-Schmidt to project any E ∈ D(X ) into AX .
(Replace E by cone of RHom(O(i), E ) ⊗O(i) → E , etc.)

AX
� � // D(X )

πA
oo
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Kuznetsov’s conjecture

We call AX geometric if it is ∼= D(K3).

Conjecture (Kuznetsov)

X rational ⇐⇒ AX geometric.

Same intuition as before: rational map will blow up an S ,
introducing D(S) into D(X ).

Kuznetsov shows that the known rational cubics X indeed have
AX geometric, i.e. D(S) ↪→ D(X ).

Noone has yet proved a single cubic X to be irrational.
(But: Francois Greer and Jun Li ?)
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d = 8 again

Recall P ⊂ X , and the fibrations

Q
� � ι // BlP X

��

S =
{
rulings of fibres

}

����
P2 P2

S 3 s parameterises the sheaves ι∗IL on X .
(L any line in the ruling corresponding to the point s ∈ S .)

In fact S is moduli space of objects πA(ι∗IL) ∈ AX .
Universal object U ∈ D(X × S , Br) twisted by Br ∈ H2(O∗

S).

Theorem (Kuznetsov)

Using U as a Fourier-Mukai kernel gives an equivalence
D(S , Br) → AX ⊂ D(X ).

So X geometric if Br = 0, which we saw meant X ∈ NL8 ∩ NLd

for some d ∈ (∗).
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Hassett = Kuznetsov ?

We would like to show that the two rationality conjectures are the
same. That is,

X ∈ NLd for d satisfying (∗) ⇐⇒ AX geometric,

or equivalently

H2
prim(S) ↪→ H4

prim(X ) ⇐⇒ D(S) ↪→ D(X ).

We prove this generically.

Theorem
The Kuznetsov locus (of X with geometric AX ) is a dense Zariski
open subset of the Hassett locus (of NLd divisors, d satisfying (∗)).

Expect loci are equal, but taking closure of above result tricky.
(Limits of FM kernels.)
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Corollary

Given any X in Hassett’s locus, his Hodge isometry
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Algebraic cycles
Taking limits of algebraic cycles is easy, however.
(The Hilbert scheme is proper.)

Corollary

Given any X in Hassett’s locus, his Hodge isometry

H2
prim(S ,Z)(−1) −→ 〈h2, T 〉 ⊂ H4

prim(X ,Z)

is induced by an algebraic cycle Z ∈ A3(S × X ) ⊗Q.

We can strengthen this slightly.

Theorem
Fix any cubic X and K3 surface S. If a Hodge class
Z ∈ H3,3(S × X ,Q) induces a Hodge isometry of integral
transcendental lattices

T (S)(−1)
∼

−→ T (X )

then Z is algebraic.



Sketch of proof

I Reinterpret Hassett’s cohomological condition in K-theory.



Sketch of proof

I Reinterpret Hassett’s cohomological condition in K-theory.

I d satisfies (∗) ⇐⇒ ∃ a, b ∈ K (AX ) such that a is pointlike
and b is linelike: 〈a, a〉 = 0, 〈a, b〉 = 1, 〈b, b〉 = 2.
(Think of a = [Opoint], b = [OS ] in K(D(S)).)



Sketch of proof

I Reinterpret Hassett’s cohomological condition in K-theory.

I d satisfies (∗) ⇐⇒ ∃ a, b ∈ K (AX ) such that a is pointlike
and b is linelike: 〈a, a〉 = 0, 〈a, b〉 = 1, 〈b, b〉 = 2.
(Think of a = [Opoint], b = [OS ] in K(D(S)).)

I This proves the easy direction Kuznetsov ⇒ Hassett.



Sketch of proof

I Reinterpret Hassett’s cohomological condition in K-theory.

I d satisfies (∗) ⇐⇒ ∃ a, b ∈ K (AX ) such that a is pointlike
and b is linelike: 〈a, a〉 = 0, 〈a, b〉 = 1, 〈b, b〉 = 2.
(Think of a = [Opoint], b = [OS ] in K(D(S)).)

I This proves the easy direction Kuznetsov ⇒ Hassett.

I Conversely, fix X ∈ NLd with d ∈ (∗). Then this is the hint
that AX contains points!



Sketch of proof

I Reinterpret Hassett’s cohomological condition in K-theory.

I d satisfies (∗) ⇐⇒ ∃ a, b ∈ K (AX ) such that a is pointlike
and b is linelike: 〈a, a〉 = 0, 〈a, b〉 = 1, 〈b, b〉 = 2.
(Think of a = [Opoint], b = [OS ] in K(D(S)).)

I This proves the easy direction Kuznetsov ⇒ Hassett.

I Conversely, fix X ∈ NLd with d ∈ (∗). Then this is the hint
that AX contains points!

I The K3 surface S we want is “the” moduli space of these
points – i.e. (stable) objects of class a.



Sketch of proof

I Reinterpret Hassett’s cohomological condition in K-theory.

I d satisfies (∗) ⇐⇒ ∃ a, b ∈ K (AX ) such that a is pointlike
and b is linelike: 〈a, a〉 = 0, 〈a, b〉 = 1, 〈b, b〉 = 2.
(Think of a = [Opoint], b = [OS ] in K(D(S)).)

I This proves the easy direction Kuznetsov ⇒ Hassett.

I Conversely, fix X ∈ NLd with d ∈ (∗). Then this is the hint
that AX contains points!

I The K3 surface S we want is “the” moduli space of these
points – i.e. (stable) objects of class a.

I Can’t form such a moduli space, so we proceed by deformation
theory starting at points of NLd ∩ NL8, which we understand.



Sketch of proof

I Reinterpret Hassett’s cohomological condition in K-theory.

I d satisfies (∗) ⇐⇒ ∃ a, b ∈ K (AX ) such that a is pointlike
and b is linelike: 〈a, a〉 = 0, 〈a, b〉 = 1, 〈b, b〉 = 2.
(Think of a = [Opoint], b = [OS ] in K(D(S)).)

I This proves the easy direction Kuznetsov ⇒ Hassett.

I Conversely, fix X ∈ NLd with d ∈ (∗). Then this is the hint
that AX contains points!

I The K3 surface S we want is “the” moduli space of these
points – i.e. (stable) objects of class a.

I Can’t form such a moduli space, so we proceed by deformation
theory starting at points of NLd ∩ NL8, which we understand.

I Prove that NLd ∩ NL8 6= ∅.
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I For X ∈ NLd ∩ NL8 the Brauer class vanishes, so Kuznetsov
gives us AX

∼= D(S).

I This is the “wrong” equivalence for NLd : it expresses S as a
moduli space of objects which do not deform along NLd .
(They only deform along NL8.)

I But we have gained something: we’re now in D(S) instead of
abstract AX . So we have Mukai!

I Mukai-Orlov: ∃ a moduli space M of stable objects of class a.
It is nonempty, 〈a, a〉 + 2 = 2 dimensional, holomorphic
symplectic, compact and fine (because ∃ b with 〈a, b〉 = 1).

I So M is a K3 surface with universal object on S ×M giving
D(S) ∼= D(M).

I The resulting equivalence AX
∼= D(M) is the right one for

NLd ! (It expresses M as a moduli space of objects of type a,
and a deforms along NLd .)
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Sketch of proof III

I Finally deform X into NLd from NLd ∩ NL8, and deform M
with it (as an abstract K3, via Hassett’s result and Torelli).

I Need to show the FM kernel U ∈ D(M× X ) deforms to all
orders. (Since NLd irreducible this shows it deforms to a
dense Zariski open. The FM functor being full and faithful is
also an open condition.)



Deformation theory

T 1-lifting =⇒ reduce to first order deformation theory.
Then refine K3 ideas of Toda and Huybrechts-Macr̀ı-Stellari.



Deformation theory

T 1-lifting =⇒ reduce to first order deformation theory.
Then refine K3 ideas of Toda and Huybrechts-Macr̀ı-Stellari.

Using our Fourier-Mukai functor D(M) → AX to identify AX with
D(M), our functor becomes id : D(M) −→ D(M)



Deformation theory

T 1-lifting =⇒ reduce to first order deformation theory.
Then refine K3 ideas of Toda and Huybrechts-Macr̀ı-Stellari.

Using our Fourier-Mukai functor D(M) → AX to identify AX with
D(M), our functor becomes id : D(M) −→ D(M) represented by
the Fourier-Mukai kernel

OΔ ∈ D(M×M).



Deformation theory

T 1-lifting =⇒ reduce to first order deformation theory.
Then refine K3 ideas of Toda and Huybrechts-Macr̀ı-Stellari.

Using our Fourier-Mukai functor D(M) → AX to identify AX with
D(M), our functor becomes id : D(M) −→ D(M) represented by
the Fourier-Mukai kernel

OΔ ∈ D(M×M).

As we deform X (i.e. AX ) and M, the obstruction to deforming
our Fourier-Mukai kernel therefore lies in

Ext2M×M(OΔ,OΔ) ∼= H2(M,C).



Deformation theory

T 1-lifting =⇒ reduce to first order deformation theory.
Then refine K3 ideas of Toda and Huybrechts-Macr̀ı-Stellari.

Using our Fourier-Mukai functor D(M) → AX to identify AX with
D(M), our functor becomes id : D(M) −→ D(M) represented by
the Fourier-Mukai kernel

OΔ ∈ D(M×M).

As we deform X (i.e. AX ) and M, the obstruction to deforming
our Fourier-Mukai kernel therefore lies in

Ext2M×M(OΔ,OΔ) ∼= H2(M,C).

Identify this obstruction with

κM − κX .

κM ∈ H1,1(M) is the Kodaira-Spencer class of the deformation of
M (contracted with σ2,0

M ), and κX ∈ H2,2(X ) ⊃ H1,1(M) is the
same for X .
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Addendum

More classically, Kuznetsov’s conjecture should say that
X is rational if and only if F (X ) is (birational to) a moduli space
of sheaves on a K3 surface.

Recent results of Galkin-Shender suggest that this should be
modified to X is rational if and only if F (X ) is birational to a
Hilb2(K3).

There is a Hassett/Addington cohomological condition for this too:

(∗∗) d = 2n2+2n+2
a2 for some n, a ∈ Z.

And (∗∗) ⇒ (∗) but (∗) 6⇒ (∗∗).

In particular, the derived category would then having nothing to do
with rationality.


