Invariant Homotopy Theory in the Univalent Foundations

Guillaume Brunerie

Institute for Advanced Study

September 28th, 2016

Homotopy theory

Homotopy theory is the study of homotopy types ("spaces up to homotopy"), i.e.,

- topological spaces up to weak homotopy equivalences, or
- · CW-complexes up to homotopy equivalences, or
- simplicial sets up to weak equivalences.

There is a formal system introduced by Vladimir Voevodsky, the univalent foundations (UF), whose basic objects behave just like homotopy types:

- There is a model of UF in simplicial sets
- In UF we cannot distinguish between "(weakly) equivalent" types

Homotopy theory

Homotopy theory is the study of homotopy types ("spaces up to homotopy"), i.e.,

- · topological spaces up to weak homotopy equivalences, or
- · CW-complexes up to homotopy equivalences, or
- simplicial sets up to weak equivalences.

There is a formal system introduced by Vladimir Voevodsky, the univalent foundations (UF), whose basic objects behave just like homotopy types:

- There is a model of UF in simplicial sets
- In UF we cannot distinguish between "(weakly) equivalent" types

Invariant homotopy theory

Invariant homotopy theory (or synthetic homotopy theory) is the study of the basic objects of UF, with intuition coming from homotopy theory

- It is not the study of topological spaces, simplicial sets, etc
- It is the "direct" study of homotopy types
- In particular, everything is homotopy-invariant.

- No notion of subspace
 e.g. no complement of a point
- No notion of a map $f: E \to B$ being a fibration e.g. $\exp : \mathbb{R} \to \mathbb{S}^1$ homotopic to a constant map
- Quotients often do not work e.g. projective spaces
- Matrix groups are tricky
 e.g. SO(n), grassmanians
- Equality is tricky
- (optional but usually assumed)
 Intuitionistic logic, no excluded middle, no axiom of choice

- No notion of subspace
 e.g. no complement of a point
- No notion of a map $f: E \to B$ being a fibration e.g. $\exp: \mathbb{R} \to \mathbb{S}^1$ homotopic to a constant map
- Quotients often do not work e.g. projective spaces
- Matrix groups are tricky
 e.g. SO(n), grassmanians
- Equality is tricky
- (optional but usually assumed)
 Intuitionistic logic, no excluded middle, no axiom of choice

- No notion of subspace
 e.g. no complement of a point
- No notion of a map $f: E \to B$ being a fibration e.g. $\exp: \mathbb{R} \to \mathbb{S}^1$ homotopic to a constant map
- Quotients often do not work e.g. projective spaces
- Matrix groups are tricky
 e.g. SO(n), grassmanians
- Equality is tricky
- (optional but usually assumed)
 Intuitionistic logic, no excluded middle, no axiom of choice

- No notion of subspace
 e.g. no complement of a point
- No notion of a map $f: E \to B$ being a fibration e.g. $\exp : \mathbb{R} \to \mathbb{S}^1$ homotopic to a constant map
- Quotients often do not work e.g. projective spaces
- Matrix groups are tricky e.g. SO(n), grassmanians
- Equality is tricky
- (optional but usually assumed)
 Intuitionistic logic, no excluded middle, no axiom of choice

- No notion of subspace
 e.g. no complement of a point
- No notion of a map $f: E \to B$ being a fibration e.g. $\exp : \mathbb{R} \to \mathbb{S}^1$ homotopic to a constant map
- Quotients often do not work e.g. projective spaces
- Matrix groups are tricky
 e.g. SO(n), grassmanians
- Equality is tricky
- (optional but usually assumed)
 Intuitionistic logic, no excluded middle, no axiom of choice

- No notion of subspace
 e.g. no complement of a point
- No notion of a map $f: E \to B$ being a fibration e.g. $\exp : \mathbb{R} \to \mathbb{S}^1$ homotopic to a constant map
- Quotients often do not work e.g. projective spaces
- Matrix groups are tricky
 e.g. SO(n), grassmanians
- Equality is tricky
- (optional but usually assumed)
 Intuitionistic logic, no excluded middle, no axiom of choice

- Function spaces
- Path spaces
- Homotopy limits and homotopy colimits give many nice cell complexes, e.g. \mathbb{S}^n , $\mathbb{R}\mathsf{P}^n$ (Buchholtz, Rijke)
- Truncations give for instance π_k , K(G, n)
- Universes ("the (big) space of all (small) spaces")

- Function spaces
- Path spaces
- Homotopy limits and homotopy colimits give many nice cell complexes, e.g. \mathbb{S}^n , $\mathbb{R}\mathsf{P}^n$ (Buchholtz, Rijke)
- Truncations give for instance π_k , K(G, n)
- Universes ("the (big) space of all (small) spaces")

- Function spaces
- Path spaces
- Homotopy limits and homotopy colimits give many nice cell complexes, e.g. \mathbb{S}^n , $\mathbb{R}\mathsf{P}^n$ (Buchholtz, Rijke)
- Truncations give for instance π_k , K(G, n)
- Universes ("the (big) space of all (small) spaces")

- Function spaces
- Path spaces
- Homotopy limits and homotopy colimits give many nice cell complexes, e.g. \mathbb{S}^n , $\mathbb{R}\mathsf{P}^n$ (Buchholtz, Rijke)
- Truncations give for instance π_k , K(G, n)
- Universes ("the (big) space of all (small) spaces")

- Function spaces
- Path spaces
- Homotopy limits and homotopy colimits give many nice cell complexes, e.g. \mathbb{S}^n , $\mathbb{R}\mathsf{P}^n$ (Buchholtz, Rijke)
- Truncations give for instance π_k , K(G, n)
- Universes ("the (big) space of all (small) spaces")

Fibrations and the univalence axiom

Intuition

A fibration is a family of spaces parametrized by another space.

A fibration over B is a map $P: B \to \mathcal{U}$, where \mathcal{U} is a universe, and its fibers are the P(b).

If B is defined as a cell complex/homotopy colimit, we define such a map by giving the images of all of the cells. In particular we need:

Univalence axiom (Voevodsky)

A path in the universe is the same thing as a homotopy equivalence between its endpoints.

Fibrations and the univalence axiom

Intuition

A fibration is a family of spaces parametrized by another space.

A fibration over B is a map $P: B \to \mathcal{U}$, where \mathcal{U} is a universe, and its fibers are the P(b).

If B is defined as a cell complex/homotopy colimit, we define such a map by giving the images of all of the cells. In particular we need:

Univalence axiom (Voevodsky)

A path in the universe is the same thing as a homotopy equivalence between its endpoints.

Fibrations and the univalence axiom

Intuition

A fibration is a family of spaces parametrized by another space.

A fibration over B is a map $P: B \to \mathcal{U}$, where \mathcal{U} is a universe, and its fibers are the P(b).

If B is defined as a cell complex/homotopy colimit, we define such a map by giving the images of all of the cells. In particular we need:

Univalence axiom (Voevodsky)

A path in the universe is the same thing as a homotopy equivalence between its endpoints.

The universal cover of the circle

Definition

The circle \mathbb{S}^1 is generated by

base : \mathbb{S}^1 ,

loop : Path \mathbb{S}^1 (base, base).

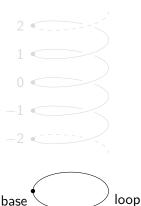
Definition

The universal cover of the circle is defined by

$$P: \mathbb{S}^1 \to \mathcal{U},$$

$$250) := \mathbb{Z}$$

$$ap_P(loop) := ua(n \mapsto n+1).$$



The universal cover of the circle

Definition

The circle \mathbb{S}^1 is generated by

base : \mathbb{S}^1 ,

loop : Path \mathbb{S}^1 (base, base).

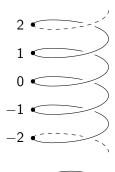
Definition

The universal cover of the circle is defined by

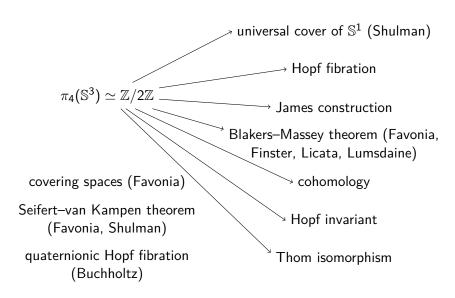
$$P: \mathbb{S}^1 \to \mathcal{U},$$

 $P(\mathsf{base}) := \mathbb{Z},$

 $ap_P(loop) := ua(n \mapsto n+1).$



Some results



Constructivity

Martin–Löf type theory is constructive: any proof of $\exists n : \mathbb{N}, P(n)$ gives an algorithm computing such an n.

Univalent foundations is still constructive, although this is work in progress and much less understood (Coquand et al.)

The proof of $\pi_4(\mathbb{S}^3) \simeq \mathbb{Z}/2\mathbb{Z}$ consists of

- a proof that $\exists n : \mathbb{N}, \pi_4(\mathbb{S}^3) \simeq \mathbb{Z}/n\mathbb{Z}$, and
- a proof that n = 2.

Constructivity

Martin–Löf type theory is constructive: any proof of $\exists n : \mathbb{N}, P(n)$ gives an algorithm computing such an n.

Univalent foundations is still constructive, although this is work in progress and much less understood (Coquand et al.)

The proof of $\pi_4(\mathbb{S}^3)\simeq \mathbb{Z}/2\mathbb{Z}$ consists of

- a proof that $\exists n : \mathbb{N}, \pi_4(\mathbb{S}^3) \simeq \mathbb{Z}/n\mathbb{Z}$, and
- a proof that n = 2.

Constructivity

Martin–Löf type theory is constructive: any proof of $\exists n : \mathbb{N}, P(n)$ gives an algorithm computing such an n.

Univalent foundations is still constructive, although this is work in progress and much less understood (Coquand et al.)

The proof of $\pi_4(\mathbb{S}^3)\simeq \mathbb{Z}/2\mathbb{Z}$ consists of

- a proof that $\exists n: \mathbb{N}, \pi_4(\mathbb{S}^3) \simeq \mathbb{Z}/n\mathbb{Z}$, and
- a proof that n=2.

Future directions

- Formalize the proof of $\pi_4(\mathbb{S}^3) \simeq \mathbb{Z}/2\mathbb{Z}$ in a proof assistant
- Understand better the constructivity properties of invariant homotopy theory and compute n=2
- Do more invariant homotopy theory, e.g., Bott periodicity, K-theory, spectral sequences, etc.

Future directions

- Formalize the proof of $\pi_4(\mathbb{S}^3) \simeq \mathbb{Z}/2\mathbb{Z}$ in a proof assistant
- Understand better the constructivity properties of invariant homotopy theory and compute n=2
- Do more invariant homotopy theory, e.g., Bott periodicity, K-theory, spectral sequences, etc.

Thank you for your attention