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Group growth

G a group.

S = {1, s±11 , . . . , s±1k } a finite symmetric generating set.

Sn denotes the n-th fold product set Sn := S · . . . · S

How does the cardinality of Sn grow with n ?



Growth of matrix groups

Suppose G = GLd(C), and S ⊂ GLd(C)
We denote the rate of exponential growth by

ρ(S) := lim
n→+∞

|Sn|1/n

G is said to have exponential growth if ρ(S) > 1 (this is
independent of the choice of S).
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ρ(S) := lim
n→+∞

|Sn|1/n

G is said to have exponential growth if ρ(S) > 1 (this is
independent of the choice of S).

Let Uppd(C) 6 GLd(C) be the unipotent upper triangular
subgroup:

Uppd(C) = {g ∈ GLd(C); gii = 1, gij = 0 if i > j}.

Easy fact: if S ⊂ Uppd(C) then |Sn| = O(nO(1)).
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Growth of matrix groups

Theorem (Tits 1972)

For S ⊂ GLd(C), the following are equivalent:

1. ρ(S) = 1

2. ∃C > 0 s.t. |Sn| = O(nC ),

3. the finite index subgroup of 〈S〉 is isomorphic to a subgroup
of Uppd(C).

−→ a consequence of the Tits alternative and its proof.



Uniform growth

How does ρ(S) depend on S ?

Gromov’s question: fix Γ = 〈S〉, vary S among generating subsets,
is ρ(S) bounded away from 1 ?

Eskin-Mozes-Oh 2001 : answered this affirmatively for
Γ 6 GLd(C), by showing that unless ρ(S) = 1, ∃N = N(Γ) ∈ N
s.t. for all generating subsets S of Γ, SN contains generators a, b
of a free sub-semigroup. Thus:

∀n, |SNn| > 2n −→ ρ(S) > 2
1
N .

B.+Gelander 2005: improved this showing the we can get the
subgroup 〈a, b〉 to be free.
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Uniform growth conjecture

Conjecture (Uniform growth conjecture)

Given d ∈ N, there is ε(d) > 0 such that for every finite symmetric
S ⊂ GLd(C),

I either ρ(S) = 1

I or ρ(S) > 1 + ε.
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A example in the affine group

For λ ∈ C×, let

Sλ := {1,
(
λ 1
0 1

)±1
,

(
λ −1
0 1

)±1
} ⊂ GL2

• Sλ generates a group of affine transformations of C, x 7→ λx + 1
and x 7→ λx − 1.
• it has polynomial growth iff λ is a root of unity.

Easy observation:

I if λ is not a root of a polynomial with coefficients in
{−1, 0, 1}, then ρ(Sλ) = 2,

I if it is, then ρ(Sλ) := lim |Sn
λ |1/n 6 Mλ

where Mλ is the Mahler measure of λ.
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Mahler measure and Lehmer conjecture

Let λ ∈ Q∗ be an algebraic number, and

πλ := adX
d + . . .+ a1X + a0

its minimal polynomial in Z[X ]. Factorize it as

πλ(X ) = ad

d∏
1

(X − xi )

The Mahler measure of πλ is the quantity:

Mλ := |ad |
∏

max{1, |xi |}.



Mahler measure and Lehmer conjecture

The Mahler measure of πλ is the quantity:

Mλ := |ad |
∏

max{1, |xi |}.

Lehmer’s conjecture (1930s): ∃ε > 0 s.t. ∀λ ∈ Q∗,

I either Mλ = 1 and λ is a root of unity,
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Mahler measure and Lehmer conjecture

Lehmer’s conjecture (1930s): ∃ε > 0 s.t. ∀λ ∈ Q∗,

I either Mλ = 1 and λ is a root of unity,

I or Mλ > 1 + ε.

→ the smallest known Mahler measure > 1 is that of the
polynomial X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1 and is
approximately 1, 17628...

If λ is not an algebraic unit, or not Galois conjugate to λ−1, then
Mλ is bounded away from 1. Same if λ is totally real, or has small
Galois group (Amoroso-David).



Mahler measure and Lehmer conjecture

Lehmer’s conjecture (1930s): ∃ε > 0 s.t. ∀λ ∈ Q∗,

I either Mλ = 1 and λ is a root of unity,

I or Mλ > 1 + ε.

→ the smallest known Mahler measure > 1 is that of the
polynomial X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1 and is
approximately 1, 17628...

If λ is not an algebraic unit, or not Galois conjugate to λ−1, then
Mλ is bounded away from 1. Same if λ is totally real, or has small
Galois group (Amoroso-David).



Mahler measure and Lehmer conjecture

Lehmer’s conjecture (1930s): ∃ε > 0 s.t. ∀λ ∈ Q∗,

I either Mλ = 1 and λ is a root of unity,

I or Mλ > 1 + ε.

→ the smallest known Mahler measure > 1 is that of the
polynomial X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1 and is
approximately 1, 17628...

If λ is not an algebraic unit, or not Galois conjugate to λ−1, then
Mλ is bounded away from 1. Same if λ is totally real, or has small
Galois group (Amoroso-David).



Mahler measure and Lehmer conjecture

Lehmer’s conjecture (1930s): ∃ε > 0 s.t. ∀λ ∈ Q∗,

I either Mλ = 1 and λ is a root of unity,

I or Mλ > 1 + ε.

Suppose λ is an algebraic integer.

If all conjugates of λ except λ have modulus < 1, then λ is real
> 1 and is called a Pisot number. Then Mλ = λ and is known to
be bounded away from 1 (Siegel).

If all conjugates of λ except λ have modulus 6 1, with at least one
of modulus 1, then λ is real > 1 and is called a Salem number.
Then Mλ = λ, but the conjecture is open for Salem numbers.



Mahler measure and Lehmer conjecture

Lehmer’s conjecture (1930s): ∃ε > 0 s.t. ∀λ ∈ Q∗,

I either Mλ = 1 and λ is a root of unity,

I or Mλ > 1 + ε.

Suppose λ is an algebraic integer.

If all conjugates of λ except λ have modulus < 1, then λ is real
> 1 and is called a Pisot number. Then Mλ = λ and is known to
be bounded away from 1 (Siegel).

If all conjugates of λ except λ have modulus 6 1, with at least one
of modulus 1, then λ is real > 1 and is called a Salem number.
Then Mλ = λ, but the conjecture is open for Salem numbers.



Back to the Uniform Growth Conjecture

Conjecture (Uniform growth conjecture)

Given d ∈ N, there is ε(d) > 0 such that for every finite symmetric
S ⊂ GLd(C),

I either ρ(S) = 1
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Semisimple Lehmer

Theorem (B. 2008)

If S ⊂ GLd(Q) is finite, one can define a “non-commutative
Mahler measure” of S as

MS :=
∏
v

(lim
n
||Sn||

1
n
v ),

and prove that ∃ε = ε(d) > 0 s.t.

MS > 1 + ε,

provided 〈S〉 is not solvable (up to finite index).

Corollary

The uniform growth conjecture is true assuming 〈S〉 is not solvable
(up to finite index).

−→ so remains the solvable case...
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Lower bound on the growth exponent

Recall

Sλ := {1,
(
λ 1
0 1

)±1
,

(
λ −1
0 1

)±1
} ⊂ GL2

Theorem (B.+Varjú 2015)

For every λ ∈ Q,

(min{2,Mλ})0.44 6 ρ(Sλ) 6 min{2,Mλ}.

Rk: ρ(Sλ) < 2 iff λ is a root of a polynomial with coefficients in

{−1, 0, 1}.

Corollary

The uniform growth conjecture is equivalent to the Lehmer
conjecture.
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Lehmer and finite fields

Reducing mod p in the previous theorem, we can derive:

Corollary (B+V)

The Lehmer conjecture is equivalent to the following counting
problem in finite fields:
There exists ε > 0 and functions p(n) ∈ N and ω(n) ∈ N s.t.
∀n ∈ N, for every prime p > p(n) and every x ∈ F∗p,

order(x) > ω(n)⇒ |Sn
x | > (1 + ε)n.

−→ related pb: how fast can you obtain all of Fp starting from 1
and applying at each step either a translation by 1 or a
multiplication by x ?
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Random walk entropy and growth

Proof of the thm:

How to lower bound the growth rate ρ(Sλ) ?

naive way: pick a Galois conjugate of modulus > 1, take a power
λk with |λk | > 2, then the two transformations x 7→ λkx + 1 and
x 7→ λkx − 1 generate a free semi-group −→ get a lower bound of
the growth.

−→ problem: k may need to be very large, and in fact ∃λn ∈ Q
s.t. Sn

λn
contains no pairs of generators of a free sub-semigroup...

−→ idea: use entropy.
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Random walk entropy and growth

Let ξ0, ξ1, . . . , ξn, . . . be iid coin flips ξ0 = ±1 with probability 1
2 .

Given λ ∈ C, form

X
(n)
λ := ξ0 + ξ1λ+ . . .+ ξn−1λ

n−1.

The entropy H(X
(n)
λ ) satisfies:

H(X
(n)
λ ) 6 log |Supp(X

(n)
λ )| = log |Sn

λ |.

In particular we have:

hλ := lim
n

H(X
(n)
λ )

n
6 ρ(Sλ).



Random walk entropy and growth

Let ξ0, ξ1, . . . , ξn, . . . be iid coin flips ξ0 = ±1 with probability 1
2 .

Given λ ∈ C, form

X
(n)
λ := ξ0 + ξ1λ+ . . .+ ξn−1λ

n−1.

The entropy H(X
(n)
λ ) satisfies:

H(X
(n)
λ ) 6 log |Supp(X

(n)
λ )| = log |Sn

λ |.

In particular we have:

hλ := lim
n

H(X
(n)
λ )

n
6 ρ(Sλ).



Random walk entropy and growth

Let ξ0, ξ1, . . . , ξn, . . . be iid coin flips ξ0 = ±1 with probability 1
2 .

Given λ ∈ C, form

X
(n)
λ := ξ0 + ξ1λ+ . . .+ ξn−1λ

n−1.

The entropy H(X
(n)
λ ) satisfies:

H(X
(n)
λ ) 6 log |Supp(X

(n)
λ )| = log |Sn

λ |.

In particular we have:

hλ := lim
n

H(X
(n)
λ )

n
6 ρ(Sλ).



Random walk entropy and growth

Let ξ0, ξ1, . . . , ξn, . . . be iid coin flips ξ0 = ±1 with probability 1
2 .

Given λ ∈ C, form

X
(n)
λ := ξ0 + ξ1λ+ . . .+ ξn−1λ

n−1.

The entropy H(X
(n)
λ ) satisfies:

H(X
(n)
λ ) 6 log |Supp(X

(n)
λ )| = log |Sn

λ |.

In particular we have:

hλ := lim
n

H(X
(n)
λ )

n
6 ρ(Sλ).



Random walk entropy and growth

In particular we have:

hλ := lim
n

H(X
(n)
λ )

n
6 ρ(Sλ).

We prove:

Theorem
For every λ ∈ Q \ {0},

(min{1, log2Mλ})0.44 6 hλ 6 min{1, log2Mλ}.



Bernoulli convolutions
If λ has modulus < 1, then the series converges:

X (∞) =
∑
i>0

ξiλ
i ,

The limit law is a Bernoulli convolution with parameter λ.
It is self-similar: X (∞) = X (n) + λnX

′(∞).

H(X (n)) ' H(X (∞);λn) (1)

'
n∑
1

H(X (∞);λi |λi−1) (2)

'
n∑
1

H(X (i−1) + λi−1X (∞);λi |λi−1) (3)

>
n∑
1

H(λi−1X (∞);λi |λi−1) (4)

' nH(X (∞);λ|1) > nH(ξ0;λ|1) (5)
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>
n∑
1

H(λi−1X (∞);λi |λi−1) (4)

' nH(X (∞);λ|1) > nH(ξ0;λ|1) (5)



Bernoulli convolutions

Taking the limit as n→∞ we get:

hλ � | log λ|.

good but not enough: we want the Mahler measure:
−→ idea: perform the above analysis in the geometric embedding
of Q(λ) in Cd , where d is the number of conjugates of modulus
< 1.

issues: (a) need an estimate independent of d ; (b) no canonical
way to discretize the space.

Nevertheless this can be done using multivariate gaussians in lieu
of intervals as a means to discretize:

H(X ;A) := H(X + AG )− H(AG )

for A ∈ Md(R) and G = normalized in Rd .
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Taking the limit as n→∞ we get:

hλ � | log λ|.

good but not enough: we want the Mahler measure:
−→ idea: perform the above analysis in the geometric embedding
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The subadditivity of this gaussian entropies is guaranteed by the
submodularity property of the entropy:
If X ,Y ,Z are independent random variables in Rd , then

H(X + Y + Z ) + H(Y ) 6 H(X + Y ) + H(Y + Z ).



Bernoulli convolutions for real parameter

Now take λ ∈ (0, 1). Recall:

X
(∞)
λ =

∑
i>0

ξiλ
i ,

Erdös: how is the regularity of the law µλ of X
(∞)
λ depending on λ.

I µλ is either singular or absolutely continuous (self-similarity).

I µλ is singular if λ ∈ (0, 12) or if λ−1 is Pisot (only examples
known in (12 , 1).)

I µλ is absolutely continuous for Lebesgue almost all λ near one
(Erdös) and in fact on all (12 , 1) (Solomyak), and actually the
singular λ have Hausdorff dimension zero (Hochman,Shmerkin
2014).
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Bernoulli convolutions for real parameter λ ∈ (1
2 , 1)

Hochman (2014) obtained a formula for the dimension of µλ. He
showed that unless λ satisfies a strong diophantine condition, then

dimµλ = min{1, hλ
log λ−1

}.

En := {polynomials of degree 6 n and coefficients in − 1, 0, 1}

Diophantine condition: ∀n,∃Pn ∈ En s.t. Pn(λ)→ 0 exponentially
fast (but 6= 0).

Corollary (Hochman)

If the roots of all polynomials in En are exponentially separated,
then dimµλ = 1 for all λ /∈ Q.
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Bernoulli convolutions for real parameter λ ∈ (1
2 , 1)

Theorem (B+V 2016)

If dimµλ < 1, then λ admits extremely good algebraic
approximations, i.e. given A > 1 there are arbitrarily large d ∈ N
such that

min
α∈Ed ,dimµα<1

|λ− α| < exp(−dA).

Corollary

Many explicit transcendental numbers (e.g. λ = ln 2, e−
1
2 , π4 ) have

dimµλ = 1.

Corollary

The set of algebraic singular λ is dense in the set of singular λ.
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Bernoulli convolutions for real parameter λ ∈ (1
2 , 1)

Recall that Pisot numbers form a closed set (Salem 1940’s).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ, then
they are the only singular λ.

Corollary

If Lehmer holds, then dimµλ = 1 for all λ in an interval near 1.

−→ reduces the dimension problem to algebraic numbers, where via
Hochman’s formula, the question is reduced to evaluating the discrete
entropy hλ.

−→ recent work by Péter Varjú goes further in the algebraic case getting

µλ to be absolutely continuous for many algebraic λ.
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−→ recent work by Péter Varjú goes further in the algebraic case getting

µλ to be absolutely continuous for many algebraic λ.



Bernoulli convolutions for real parameter λ ∈ (1
2 , 1)

Recall that Pisot numbers form a closed set (Salem 1940’s).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ, then
they are the only singular λ.

Corollary

If Lehmer holds, then dimµλ = 1 for all λ in an interval near 1.

−→ reduces the dimension problem to algebraic numbers, where via
Hochman’s formula, the question is reduced to evaluating the discrete
entropy hλ.
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The End!


