Entropy, Mahler Measure and Bernoulli Convolutions

Emmanuel Breuillard (joint with Péter Varjú)

Analysis and Beyond, celebrating Jean Bourgain, IAS Princeton, May 24th, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

G a group.

 $S = \{1, s_1^{\pm 1}, \dots, s_k^{\pm 1}\}$ a finite symmetric generating set.

 S^n denotes the *n*-th fold product set $S^n := S \cdot \ldots \cdot S$

How does the cardinality of S^n grow with n?

Suppose $G = GL_d(\mathbb{C})$, and $S \subset GL_d(\mathbb{C})$ We denote the rate of exponential growth by

$$\rho(S) := \lim_{n \to +\infty} |S^n|^{1/n}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Suppose $G = GL_d(\mathbb{C})$, and $S \subset GL_d(\mathbb{C})$ We denote the rate of exponential growth by

$$\rho(S) := \lim_{n \to +\infty} |S^n|^{1/n}$$

G is said to have exponential growth if $\rho(S) > 1$ (this is independent of the choice of S).

Suppose $G = \operatorname{GL}_d(\mathbb{C})$, and $S \subset G$.

We denote the rate of exponential growth by

$$\rho(S) := \lim_{n \to +\infty} |S^n|^{1/n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose $G = GL_d(\mathbb{C})$, and $S \subset G$.

We denote the rate of exponential growth by

$$\rho(S) := \lim_{n \to +\infty} |S^n|^{1/n}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G is said to have exponential growth if $\rho(S) > 1$ (this is independent of the choice of S).

Suppose $G = GL_d(\mathbb{C})$, and $S \subset G$.

We denote the rate of exponential growth by

$$\rho(S) := \lim_{n \to +\infty} |S^n|^{1/n}$$

G is said to have exponential growth if $\rho(S) > 1$ (this is independent of the choice of *S*).

Let $Upp_d(\mathbb{C}) \leq GL_d(\mathbb{C})$ be the unipotent upper triangular subgroup:

$$Upp_d(\mathbb{C}) = \{g \in GL_d(\mathbb{C}); g_{ii} = 1, g_{ij} = 0 \text{ if } i > j\}.$$

Easy fact: if $S \subset Upp_d(\mathbb{C})$ then $|S^n| = O(n^{O(1)}).$

Theorem (Tits 1972) For $S \subset GL_d(\mathbb{C})$, the following are equivalent: 1. $\rho(S) = 1$ 2. $\exists C > 0 \text{ s.t. } |S^n| = O(n^C)$, 3. the finite index subgroup of $\langle S \rangle$ is isomorphic to a subgroup

of $\mathsf{Upp}_d(\mathbb{C})$.

 \longrightarrow a consequence of the Tits alternative and its proof.

How does $\rho(S)$ depend on S ?

How does $\rho(S)$ depend on S ?

Gromov's question: fix $\Gamma = \langle S \rangle$, vary S among generating subsets, is $\rho(S)$ bounded away from 1 ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How does $\rho(S)$ depend on S ?

Gromov's question: fix $\Gamma = \langle S \rangle$, vary S among generating subsets, is $\rho(S)$ bounded away from 1 ?

Eskin-Mozes-Oh 2001 : answered this affirmatively for $\Gamma \leq GL_d(\mathbb{C})$, by showing that unless $\rho(S) = 1$, $\exists N = N(\Gamma) \in \mathbb{N}$ s.t. for all generating subsets S of Γ , S^N contains generators a, b of a free sub-semigroup. Thus:

$$\forall n, |S^{Nn}| \ge 2^n \longrightarrow \rho(S) \ge 2^{\frac{1}{N}}.$$

How does $\rho(S)$ depend on S ?

Gromov's question: fix $\Gamma = \langle S \rangle$, vary S among generating subsets, is $\rho(S)$ bounded away from 1 ?

Eskin-Mozes-Oh 2001 : answered this affirmatively for $\Gamma \leq GL_d(\mathbb{C})$, by showing that unless $\rho(S) = 1$, $\exists N = N(\Gamma) \in \mathbb{N}$ s.t. for all generating subsets S of Γ , S^N contains generators a, b of a free sub-semigroup. Thus:

$$\forall n, |S^{Nn}| \ge 2^n \longrightarrow \rho(S) \ge 2^{\frac{1}{N}}.$$

B.+Gelander 2005: improved this showing the we can get the subgroup $\langle a, b \rangle$ to be free.

Uniform growth conjecture

Conjecture (Uniform growth conjecture)

Given $d \in \mathbb{N}$, there is $\varepsilon(d) > 0$ such that for every finite symmetric $S \subset GL_d(\mathbb{C})$,

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- either $\rho(S) = 1$
- or ρ(S) > 1 + ε.

Uniform growth conjecture

Conjecture (Uniform growth conjecture)

Given $d \in \mathbb{N}$, there is $\varepsilon(d) > 0$ such that for every finite symmetric $S \subset GL_d(\mathbb{C})$,

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- either $\rho(S) = 1$
- or ρ(S) > 1 + ε.

A example in the affine group

For $\lambda \in \mathbb{C}^{\times},$ let

$$\mathcal{S}_{\lambda} := \{1, \left(egin{array}{cc} \lambda & 1 \ 0 & 1 \end{array}
ight)^{\pm 1}, \left(egin{array}{cc} \lambda & -1 \ 0 & 1 \end{array}
ight)^{\pm 1}\} \subset \mathsf{GL}_2$$

• S_{λ} generates a group of affine transformations of \mathbb{C} , $x \mapsto \lambda x + 1$ and $x \mapsto \lambda x - 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• it has polynomial growth iff λ is a root of unity.

A example in the affine group

For $\lambda \in \mathbb{C}^{\times}$, let

$$\mathcal{S}_{\lambda} := \{1, \left(egin{array}{cc} \lambda & 1 \ 0 & 1 \end{array}
ight)^{\pm 1}, \left(egin{array}{cc} \lambda & -1 \ 0 & 1 \end{array}
ight)^{\pm 1}\} \subset \mathsf{GL}_2$$

• S_{λ} generates a group of affine transformations of \mathbb{C} , $x \mapsto \lambda x + 1$ and $x \mapsto \lambda x - 1$.

 \bullet it has polynomial growth iff λ is a root of unity.

Easy observation:

• if λ is not a root of a polynomial with coefficients in $\{-1, 0, 1\}$, then $\rho(S_{\lambda}) = 2$,

• if it is, then $ho(S_{\lambda}) := \lim |S_{\lambda}^n|^{1/n} \leqslant M_{\lambda}$

where M_{λ} is the Mahler measure of λ .

Let $\lambda \in \overline{\mathbb{Q}}^*$ be an algebraic number, and

$$\pi_{\lambda} := a_d X^d + \ldots + a_1 X + a_0$$

its minimal polynomial in $\mathbb{Z}[X]$. Factorize it as

$$\pi_{\lambda}(X) = a_d \prod_{1}^{d} (X - x_i)$$

The Mahler measure of π_{λ} is the quantity:

$$M_{\lambda} := |a_d| \prod \max\{1, |x_i|\}.$$

The Mahler measure of π_{λ} is the quantity:

$$M_{\lambda} := |a_d| \prod \max\{1, |x_i|\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lehmer's conjecture (1930s): $\exists \varepsilon > 0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^*$,

• either $M_{\lambda} = 1$ and λ is a root of unity,

• or
$$M_{\lambda} > 1 + \varepsilon$$
.

The Mahler measure of π_{λ} is the quantity:

$$M_{\lambda} := |a_d| \prod \max\{1, |x_i|\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lehmer's conjecture (1930s): $\exists \varepsilon > 0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^*$,

• either $M_{\lambda} = 1$ and λ is a root of unity,

• or
$$M_{\lambda} > 1 + \varepsilon$$
.

Lehmer's conjecture (1930s): $\exists \varepsilon > 0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^*$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- either $M_{\lambda} = 1$ and λ is a root of unity,
- or $M_{\lambda} > 1 + \varepsilon$.

Lehmer's conjecture (1930s): $\exists \varepsilon > 0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^*$,

• either $M_{\lambda} = 1$ and λ is a root of unity,

• or
$$M_{\lambda} > 1 + \varepsilon$$
.

 \rightarrow the smallest known Mahler measure >1 is that of the polynomial $X^{10}+X^9-X^7-X^6-X^5-X^4-X^3+X+1$ and is approximately 1,17628...

Lehmer's conjecture (1930s): $\exists \varepsilon > 0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^*$,

- either $M_{\lambda} = 1$ and λ is a root of unity,
- or $M_{\lambda} > 1 + \varepsilon$.

 \rightarrow the smallest known Mahler measure > 1 is that of the polynomial $X^{10} + X^9 - X^7 - X^6 - X^5 - X^4 - X^3 + X + 1$ and is approximately 1,17628...

If λ is not an algebraic unit, or not Galois conjugate to λ^{-1} , then M_{λ} is bounded away from 1. Same if λ is totally real, or has *small* Galois group (Amoroso-David).

Lehmer's conjecture (1930s): $\exists \varepsilon > 0 \text{ s.t. } \forall \lambda \in \overline{\mathbb{Q}}^*$,

- either $M_{\lambda} = 1$ and λ is a root of unity,
- or $M_{\lambda} > 1 + \varepsilon$.

Suppose λ is an algebraic integer.

If all conjugates of λ except λ have modulus < 1, then λ is real > 1 and is called a Pisot number. Then $M_{\lambda} = \lambda$ and is known to be bounded away from 1 (Siegel).

Lehmer's conjecture (1930s): $\exists \varepsilon > 0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^*$,

- either $M_{\lambda} = 1$ and λ is a root of unity,
- or $M_{\lambda} > 1 + \varepsilon$.

Suppose λ is an algebraic integer.

If all conjugates of λ except λ have modulus < 1, then λ is real > 1 and is called a Pisot number. Then $M_{\lambda} = \lambda$ and is known to be bounded away from 1 (Siegel).

If all conjugates of λ except λ have modulus ≤ 1 , with at least one of modulus 1, then λ is real > 1 and is called a Salem number. Then $M_{\lambda} = \lambda$, but the conjecture is open for Salem numbers.

Back to the Uniform Growth Conjecture

Conjecture (Uniform growth conjecture)

Given $d \in \mathbb{N}$, there is $\varepsilon(d) > 0$ such that for every finite symmetric $S \subset GL_d(\mathbb{C})$,

• either $\rho(S) = 1$

Back to the Uniform Growth Conjecture

Conjecture (Uniform growth conjecture)

Given $d \in \mathbb{N}$, there is $\varepsilon(d) > 0$ such that for every finite symmetric $S \subset GL_d(\mathbb{C})$,

• either $\rho(S) = 1$

Recall that for $S = S_{\lambda} \subset GL_2(\mathbb{C})$ we had $\rho(S_{\lambda}) \leqslant M_{\lambda}$.

Immediate consequence:

The Uniform Growth Conjecture implies the Lehmer Conjecture.

Semisimple Lehmer

Theorem (B. 2008) If $S \subset GL_d(\overline{\mathbb{Q}})$ is finite, one can define a "non-commutative Mahler measure" of S as

$$M_{\mathcal{S}} := \prod_{v} (\lim_{n} ||\mathcal{S}^{n}||_{v}^{\frac{1}{n}}),$$

and prove that $\exists \varepsilon = \varepsilon(d) > 0$ s.t.

 $M_S > 1 + \varepsilon$,

provided $\langle S \rangle$ is not solvable (up to finite index).

Semisimple Lehmer

Theorem (B. 2008) If $S \subset GL_d(\overline{\mathbb{Q}})$ is finite, one can define a "non-commutative Mahler measure" of S as

$$M_{\mathcal{S}} := \prod_{v} (\lim_{n} ||\mathcal{S}^{n}||_{v}^{\frac{1}{n}}),$$

and prove that $\exists \varepsilon = \varepsilon(d) > 0$ s.t.

 $M_S > 1 + \varepsilon$,

provided $\langle S \rangle$ is not solvable (up to finite index).

Corollary

The uniform growth conjecture is true assuming $\langle S \rangle$ is not solvable (up to finite index).

Semisimple Lehmer

Theorem (B. 2008) If $S \subset GL_d(\overline{\mathbb{Q}})$ is finite, one can define a "non-commutative Mahler measure" of S as

$$M_{\mathcal{S}} := \prod_{v} (\lim_{n} ||\mathcal{S}^{n}||_{v}^{\frac{1}{n}}),$$

and prove that $\exists \varepsilon = \varepsilon(d) > 0$ s.t.

 $M_S > 1 + \varepsilon$,

provided $\langle S \rangle$ is not solvable (up to finite index).

Corollary

The uniform growth conjecture is true assuming $\langle S \rangle$ is not solvable (up to finite index).

 \longrightarrow so remains the solvable case...

Lower bound on the growth exponent

Recall

$$S_{\lambda} := \{1, \left(egin{array}{cc} \lambda & 1 \\ 0 & 1 \end{array}
ight)^{\pm 1}, \left(egin{array}{cc} \lambda & -1 \\ 0 & 1 \end{array}
ight)^{\pm 1}\} \subset \mathsf{GL}_2$$

Theorem (B.+Varjú 2015) For every $\lambda \in \overline{\mathbb{Q}}$,

 $(\min\{2, M_{\lambda}\})^{0.44} \leqslant \rho(S_{\lambda}) \leqslant \min\{2, M_{\lambda}\}.$

Lower bound on the growth exponent

Recall

$$S_{\lambda} := \{1, \left(egin{array}{cc} \lambda & 1 \\ 0 & 1 \end{array}
ight)^{\pm 1}, \left(egin{array}{cc} \lambda & -1 \\ 0 & 1 \end{array}
ight)^{\pm 1}\} \subset \mathsf{GL}_2$$

Theorem (B.+Varjú 2015) For every $\lambda \in \overline{\mathbb{Q}}$,

$$(\min\{2, M_{\lambda}\})^{0.44} \leqslant \rho(S_{\lambda}) \leqslant \min\{2, M_{\lambda}\}.$$

<u>Rk:</u> $\rho(S_{\lambda}) < 2$ iff λ is a root of a polynomial with coefficients in $\{-1, 0, 1\}$.

Corollary The uniform growth conjecture is equivalent to the Lehmer conjecture.

Lehmer and finite fields

Reducing mod p in the previous theorem, we can derive:

Corollary (B+V)

The Lehmer conjecture is equivalent to the following counting problem in finite fields:

There exists $\varepsilon > 0$ and functions $p(n) \in \mathbb{N}$ and $\omega(n) \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$, for every prime p > p(n) and every $x \in \mathbb{F}_{p}^{*}$,

$$order(x) > \omega(n) \Rightarrow |S_x^n| > (1 + \varepsilon)^n.$$

Lehmer and finite fields

Reducing mod p in the previous theorem, we can derive:

Corollary (B+V)

The Lehmer conjecture is equivalent to the following counting problem in finite fields:

There exists $\varepsilon > 0$ and functions $p(n) \in \mathbb{N}$ and $\omega(n) \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$, for every prime p > p(n) and every $x \in \mathbb{F}_{p}^{*}$,

$$order(x) > \omega(n) \Rightarrow |S_x^n| > (1 + \varepsilon)^n.$$

 \longrightarrow related pb: how fast can you obtain all of \mathbb{F}_p starting from 1 and applying at each step either a translation by 1 or a multiplication by x?

Random walk entropy and growth

Proof of the thm:

How to lower bound the growth rate $\rho(S_{\lambda})$?

・ロト・日本・モト・モート ヨー うへで

Random walk entropy and growth

Proof of the thm:

How to lower bound the growth rate $\rho(S_{\lambda})$?

naive way: pick a Galois conjugate of modulus > 1, take a power λ^k with $|\lambda^k| > 2$, then the two transformations $x \mapsto \lambda^k x + 1$ and $x \mapsto \lambda^k x - 1$ generate a free semi-group \longrightarrow get a lower bound of the growth.

Random walk entropy and growth

Proof of the thm:

How to lower bound the growth rate $\rho(S_{\lambda})$?

naive way: pick a Galois conjugate of modulus > 1, take a power λ^k with $|\lambda^k| > 2$, then the two transformations $x \mapsto \lambda^k x + 1$ and $x \mapsto \lambda^k x - 1$ generate a free semi-group \longrightarrow get a lower bound of the growth.

 $\xrightarrow{} \underline{\text{problem:}} k \text{ may need to be very large, and in fact } \exists \lambda_n \in \overline{\mathbb{Q}} \\ \text{s.t. } \overline{S_{\lambda_n}^n} \text{ contains no pairs of generators of a free sub-semigroup...}$
Proof of the thm:

How to lower bound the growth rate $\rho(S_{\lambda})$?

naive way: pick a Galois conjugate of modulus > 1, take a power λ^k with $|\lambda^k| > 2$, then the two transformations $x \mapsto \lambda^k x + 1$ and $x \mapsto \lambda^k x - 1$ generate a free semi-group \longrightarrow get a lower bound of the growth.

 \longrightarrow problem: k may need to be very large, and in fact $\exists \lambda_n \in \overline{\mathbb{Q}}$ s.t. $\overline{S_{\lambda_n}^n}$ contains no pairs of generators of a free sub-semigroup...

 \longrightarrow idea: use entropy.

Let $\xi_0, \xi_1, \ldots, \xi_n, \ldots$ be iid coin flips $\xi_0 = \pm 1$ with probability $\frac{1}{2}$.

Let $\xi_0, \xi_1, \dots, \xi_n, \dots$ be iid coin flips $\xi_0 = \pm 1$ with probability $\frac{1}{2}$. Given $\lambda \in \mathbb{C}$, form

$$X_{\lambda}^{(n)} := \xi_0 + \xi_1 \lambda + \ldots + \xi_{n-1} \lambda^{n-1}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Let $\xi_0, \xi_1, \dots, \xi_n, \dots$ be iid coin flips $\xi_0 = \pm 1$ with probability $\frac{1}{2}$. Given $\lambda \in \mathbb{C}$, form

$$X_{\lambda}^{(n)} := \xi_0 + \xi_1 \lambda + \ldots + \xi_{n-1} \lambda^{n-1}.$$

The entropy $H(X_{\lambda}^{(n)})$ satisfies:

$$H(X_{\lambda}^{(n)}) \leqslant \log |\operatorname{Supp}(X_{\lambda}^{(n)})| = \log |S_{\lambda}^{n}|.$$

Let $\xi_0, \xi_1, \dots, \xi_n, \dots$ be iid coin flips $\xi_0 = \pm 1$ with probability $\frac{1}{2}$. Given $\lambda \in \mathbb{C}$, form

$$X_{\lambda}^{(n)} := \xi_0 + \xi_1 \lambda + \ldots + \xi_{n-1} \lambda^{n-1}.$$

The entropy $H(X_{\lambda}^{(n)})$ satisfies:

$$H(X_{\lambda}^{(n)}) \leqslant \log |\operatorname{Supp}(X_{\lambda}^{(n)})| = \log |S_{\lambda}^{n}|.$$

In particular we have:

$$h_{\lambda} := \lim_{n} \frac{H(X_{\lambda}^{(n)})}{n} \leqslant \rho(S_{\lambda}).$$

In particular we have:

$$h_{\lambda} := \lim_{n} \frac{H(X_{\lambda}^{(n)})}{n} \leqslant \rho(S_{\lambda}).$$

We prove:

Theorem For every $\lambda \in \overline{\mathbb{Q}} \setminus \{0\}$,

 $(\min\{1, \log_2 M_\lambda\})^{0.44} \leqslant h_\lambda \leqslant \min\{1, \log_2 M_\lambda\}.$

If λ has modulus < 1, then the series converges:

$$X^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

If λ has modulus < 1, then the series converges:

$$X^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The limit law is a Bernoulli convolution with parameter λ .

If λ has modulus < 1, then the series converges:

$$X^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The limit law is a Bernoulli convolution with parameter λ . It is self-similar: $X^{(\infty)} = X^{(n)} + \lambda^n X^{\prime(\infty)}$.

If λ has modulus < 1, then the series converges:

$$X^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

The limit law is a Bernoulli convolution with parameter λ . It is self-similar: $X^{(\infty)} = X^{(n)} + \lambda^n X^{\prime(\infty)}$.

$$H(X^{(n)}) \simeq H(X^{(\infty)};\lambda^n)$$
(1)

If λ has modulus < 1, then the series converges:

$$X^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

The limit law is a Bernoulli convolution with parameter λ . It is self-similar: $X^{(\infty)} = X^{(n)} + \lambda^n X^{\prime(\infty)}$.

$$H(X^{(n)}) \simeq H(X^{(\infty)}; \lambda^n)$$
(1)

$$\simeq \sum_{1}^{n} H(X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(2)

If λ has modulus < 1, then the series converges:

$$X^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

The limit law is a Bernoulli convolution with parameter λ . It is self-similar: $X^{(\infty)} = X^{(n)} + \lambda^n X^{\prime(\infty)}$.

$$H(X^{(n)}) \simeq H(X^{(\infty)}; \lambda^n)$$
(1)

$$\simeq \sum_{1}^{n} H(X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(2)

$$\simeq \sum_{1}^{n} H(X^{(i-1)} + \lambda^{i-1} X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(3)

If λ has modulus < 1, then the series converges:

$$X^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

The limit law is a Bernoulli convolution with parameter λ . It is self-similar: $X^{(\infty)} = X^{(n)} + \lambda^n X'^{(\infty)}$.

$$H(X^{(n)}) \simeq H(X^{(\infty)}; \lambda^n)$$
(1)

$$\simeq \sum_{1}^{n} H(X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(2)

$$\simeq \sum_{1}^{n} H(X^{(i-1)} + \lambda^{i-1} X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(3)

$$\geq \sum_{1}^{n} H(\lambda^{i-1} X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(4)

If λ has modulus < 1, then the series converges:

$$X^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

The limit law is a Bernoulli convolution with parameter λ . It is self-similar: $X^{(\infty)} = X^{(n)} + \lambda^n X'^{(\infty)}$.

$$H(X^{(n)}) \simeq H(X^{(\infty)}; \lambda^n)$$
(1)

$$\simeq \sum_{1}^{n} H(X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(2)

$$\simeq \sum_{1}^{n} H(X^{(i-1)} + \lambda^{i-1} X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(3)

$$\geq \sum_{1}^{n} H(\lambda^{i-1} X^{(\infty)}; \lambda^{i} | \lambda^{i-1})$$
(4)

$$\simeq nH(X^{(\infty)};\lambda|1) \ge nH(\xi_0;\lambda|1)$$
(5)

Taking the limit as $n \to \infty$ we get:

 $h_{\lambda} \gg |\log \lambda|.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Taking the limit as $n \to \infty$ we get:

 $h_{\lambda} \gg |\log \lambda|.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

good but not enough: we want the Mahler measure:

Taking the limit as $n \to \infty$ we get:

$h_{\lambda} \gg |\log \lambda|.$

good but not enough: we want the Mahler measure: \rightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^d , where d is the number of conjugates of modulus < 1.

Taking the limit as $n \to \infty$ we get:

 $h_{\lambda} \gg |\log \lambda|.$

good but not enough: we want the Mahler measure: \rightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^d , where d is the number of conjugates of modulus < 1.

issues: (a) need an estimate independent of d;

Taking the limit as $n \to \infty$ we get:

 $h_{\lambda} \gg |\log \lambda|.$

good but not enough: we want the Mahler measure: \rightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^d , where d is the number of conjugates of modulus < 1.

issues: (a) need an estimate independent of d; (b) no canonical way to discretize the space.

Taking the limit as $n \to \infty$ we get:

 $h_{\lambda} \gg |\log \lambda|.$

good but not enough: we want the Mahler measure: \rightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^d , where d is the number of conjugates of modulus < 1.

issues: (a) need an estimate independent of d; (b) no canonical way to discretize the space.

Nevertheless this can be done using *multivariate gaussians* in lieu of intervals as a means to discretize:

$$H(X; A) := H(X + AG) - H(AG)$$

for $A \in M_d(\mathbb{R})$ and G = normalized in \mathbb{R}^d .

Taking the limit as $n \to \infty$ we get:

 $h_{\lambda} \gg |\log \lambda|.$

good but not enough: we want the Mahler measure: \rightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^d , where d is the number of conjugates of modulus < 1.

issues: (a) need an estimate independent of d; (b) no canonical way to discretize the space.

The subadditivity of this gaussian entropies is guaranteed by the submodularity property of the entropy: If X, Y, Z are independent random variables in \mathbb{R}^d , then

$$H(X+Y+Z)+H(Y)\leqslant H(X+Y)+H(Y+Z).$$

Now take $\lambda \in (0, 1)$. Recall:

$$X_{\lambda}^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Now take $\lambda \in (0, 1)$. Recall:

$$X_{\lambda}^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

Erdös: how is the regularity of the law μ_{λ} of $X_{\lambda}^{(\infty)}$ depending on λ .

Now take $\lambda \in (0, 1)$. Recall:

$$X_{\lambda}^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

Erdös: how is the regularity of the law μ_{λ} of $X_{\lambda}^{(\infty)}$ depending on λ .

• μ_{λ} is either singular or absolutely continuous (self-similarity).

Now take $\lambda \in (0, 1)$. Recall:

$$X_{\lambda}^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

Erdös: how is the regularity of the law μ_{λ} of $X_{\lambda}^{(\infty)}$ depending on λ .

- μ_{λ} is either singular or absolutely continuous (self-similarity).
- μ_λ is singular if λ ∈ (0, ¹/₂) or if λ⁻¹ is Pisot (only examples known in (¹/₂, 1).)

Now take $\lambda \in (0, 1)$. Recall:

$$X_{\lambda}^{(\infty)} = \sum_{i \ge 0} \xi_i \lambda^i,$$

Erdös: how is the regularity of the law μ_{λ} of $X_{\lambda}^{(\infty)}$ depending on λ .

- μ_{λ} is either singular or absolutely continuous (self-similarity).
- μ_λ is singular if λ ∈ (0, ¹/₂) or if λ⁻¹ is Pisot (only examples known in (¹/₂, 1).)
- μ_λ is absolutely continuous for Lebesgue almost all λ near one (Erdös) and in fact on all (¹/₂, 1) (Solomyak), and actually the singular λ have Hausdorff dimension zero (Hochman,Shmerkin 2014).

Hochman (2014) obtained a formula for the dimension of μ_{λ} . He showed that unless λ satisfies a strong diophantine condition, then

$$\dim \mu_{\lambda} = \min\{1, \frac{h_{\lambda}}{\log \lambda^{-1}}\}.$$

Hochman (2014) obtained a formula for the dimension of μ_{λ} . He showed that unless λ satisfies a strong diophantine condition, then

$$\dim \mu_{\lambda} = \min\{1, \frac{h_{\lambda}}{\log \lambda^{-1}}\}.$$

 $E_n := \{ \text{polynomials of degree } \leqslant n \text{ and coefficients in } -1, 0, 1 \}$

Diophantine condition: $\forall n, \exists P_n \in E_n \text{ s.t. } P_n(\lambda) \to 0$ exponentially fast (but $\neq 0$).

Corollary (Hochman)

If the roots of all polynomials in E_n are exponentially separated, then dim $\mu_{\lambda} = 1$ for all $\lambda \notin \overline{\mathbb{Q}}$.

Theorem (B+V 2016)

If dim $\mu_{\lambda} < 1$, then λ admits extremely good algebraic approximations, i.e. given A > 1 there are arbitrarily large $d \in \mathbb{N}$ such that

$$\min_{\alpha \in E_d, \dim \mu_\alpha < 1} |\lambda - \alpha| < \exp(-d^A).$$

Theorem (B+V 2016)

If dim $\mu_{\lambda} < 1$, then λ admits extremely good algebraic approximations, i.e. given A > 1 there are arbitrarily large $d \in \mathbb{N}$ such that

$$\min_{\alpha \in \mathsf{E}_{\mathsf{d}}, \dim \mu_{\alpha} < 1} |\lambda - \alpha| < \exp(-\mathsf{d}^{\mathsf{A}}).$$

Corollary

Many explicit transcendental numbers (e.g. $\lambda = \ln 2, e^{-\frac{1}{2}}, \frac{\pi}{4}$) have dim $\mu_{\lambda} = 1$.

Theorem (B+V 2016)

If dim $\mu_{\lambda} < 1$, then λ admits extremely good algebraic approximations, i.e. given A > 1 there are arbitrarily large $d \in \mathbb{N}$ such that

$$\min_{\alpha \in \mathsf{E}_{\mathsf{d}}, \dim \mu_{\alpha} < 1} |\lambda - \alpha| < \exp(-\mathsf{d}^{\mathsf{A}}).$$

Corollary

Many explicit transcendental numbers (e.g. $\lambda = \ln 2, e^{-\frac{1}{2}}, \frac{\pi}{4}$) have dim $\mu_{\lambda} = 1$.

Corollary

The set of algebraic singular λ is dense in the set of singular λ .

Recall that Pisot numbers form a closed set (Salem 1940's).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ , then they are the only singular λ .

Recall that Pisot numbers form a closed set (Salem 1940's).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ , then they are the only singular λ .

Corollary

If Lehmer holds, then dim $\mu_{\lambda} = 1$ for all λ in an interval near 1.

Recall that Pisot numbers form a closed set (Salem 1940's).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ , then they are the only singular λ .

Corollary

If Lehmer holds, then dim $\mu_{\lambda} = 1$ for all λ in an interval near 1.

 \rightarrow reduces the dimension problem to algebraic numbers, where via Hochman's formula, the question is reduced to evaluating the discrete entropy h_{λ} .

Recall that Pisot numbers form a closed set (Salem 1940's).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ , then they are the only singular λ .

Corollary

If Lehmer holds, then dim $\mu_{\lambda} = 1$ for all λ in an interval near 1.

 \rightarrow reduces the dimension problem to algebraic numbers, where via Hochman's formula, the question is reduced to evaluating the discrete entropy h_{λ} .

 \longrightarrow recent work by Péter Varjú goes further in the algebraic case getting μ_{λ} to be absolutely continuous for many algebraic λ .

The End!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?