Entropy, Mahler Measure and Bernoulli Convolutions

Emmanuel Breuillard (joint with Péter Varjú)

Analysis and Beyond, celebrating Jean Bourgain, IAS Princeton, May 24th, 2016

Group growth

G a group.
$S=\left\{1, s_{1}^{ \pm 1}, \ldots, s_{k}^{ \pm 1}\right\}$ a finite symmetric generating set.
S^{n} denotes the n-th fold product set $S^{n}:=S \cdot \ldots \cdot S$
How does the cardinality of S^{n} grow with n ?

Growth of matrix groups

Suppose $G=\mathrm{GL}_{d}(\mathbb{C})$, and $S \subset \mathrm{GL}_{d}(\mathbb{C})$
We denote the rate of exponential growth by

$$
\rho(S):=\lim _{n \rightarrow+\infty}\left|S^{n}\right|^{1 / n}
$$

Growth of matrix groups

Suppose $G=\mathrm{GL}_{d}(\mathbb{C})$, and $S \subset \mathrm{GL}_{d}(\mathbb{C})$
We denote the rate of exponential growth by

$$
\rho(S):=\lim _{n \rightarrow+\infty}\left|S^{n}\right|^{1 / n}
$$

G is said to have exponential growth if $\rho(S)>1$ (this is independent of the choice of S).

Growth of matrix groups

Suppose $G=G L_{d}(\mathbb{C})$, and $S \subset G$.
We denote the rate of exponential growth by

$$
\rho(S):=\lim _{n \rightarrow+\infty}\left|S^{n}\right|^{1 / n}
$$

Growth of matrix groups

Suppose $G=G L_{d}(\mathbb{C})$, and $S \subset G$.
We denote the rate of exponential growth by

$$
\rho(S):=\lim _{n \rightarrow+\infty}\left|S^{n}\right|^{1 / n}
$$

G is said to have exponential growth if $\rho(S)>1$ (this is independent of the choice of S).

Growth of matrix groups

Suppose $G=G L_{d}(\mathbb{C})$, and $S \subset G$.
We denote the rate of exponential growth by

$$
\rho(S):=\lim _{n \rightarrow+\infty}\left|S^{n}\right|^{1 / n}
$$

G is said to have exponential growth if $\rho(S)>1$ (this is independent of the choice of S).

Let $U_{p p_{d}}(\mathbb{C}) \leqslant \mathrm{GL}_{d}(\mathbb{C})$ be the unipotent upper triangular subgroup:

$$
U_{p p_{d}}(\mathbb{C})=\left\{g \in \mathrm{GL}_{d}(\mathbb{C}) ; g_{i i}=1, g_{i j}=0 \text { if } i>j\right\}
$$

Easy fact: if $S \subset U p p_{d}(\mathbb{C})$ then $\left|S^{n}\right|=O\left(n^{O(1)}\right)$.

Growth of matrix groups

Theorem (Tits 1972)
For $S \subset \mathrm{GL}_{d}(\mathbb{C})$, the following are equivalent:

1. $\rho(S)=1$
2. $\exists C>0$ s.t. $\left|S^{n}\right|=O\left(n^{C}\right)$,
3. the finite index subgroup of $\langle S\rangle$ is isomorphic to a subgroup of $U p p_{d}(\mathbb{C})$.
\longrightarrow a consequence of the Tits alternative and its proof.

Uniform growth

How does $\rho(S)$ depend on S ?

Uniform growth

How does $\rho(S)$ depend on S ?
Gromov's question: fix $\Gamma=\langle S\rangle$, vary S among generating subsets, is $\rho(S)$ bounded away from 1 ?

Uniform growth

How does $\rho(S)$ depend on S ?
Gromov's question: fix $\Gamma=\langle S\rangle$, vary S among generating subsets, is $\rho(S)$ bounded away from 1 ?

Eskin-Mozes-Oh 2001 : answered this affirmatively for $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{C})$, by showing that unless $\rho(S)=1, \exists N=N(\Gamma) \in \mathbb{N}$ s.t. for all generating subsets S of Γ, S^{N} contains generators a, b of a free sub-semigroup. Thus:

$$
\forall n,\left|S^{N n}\right| \geqslant 2^{n} \longrightarrow \rho(S) \geqslant 2^{\frac{1}{N}}
$$

Uniform growth

How does $\rho(S)$ depend on S ?
Gromov's question: fix $\Gamma=\langle S\rangle$, vary S among generating subsets, is $\rho(S)$ bounded away from 1 ?

Eskin-Mozes-Oh 2001: answered this affirmatively for $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{C})$, by showing that unless $\rho(S)=1, \exists N=N(\Gamma) \in \mathbb{N}$ s.t. for all generating subsets S of Γ, S^{N} contains generators a, b of a free sub-semigroup. Thus:

$$
\forall n,\left|S^{N n}\right| \geqslant 2^{n} \longrightarrow \rho(S) \geqslant 2^{\frac{1}{N}}
$$

B.+Gelander 2005: improved this showing the we can get the subgroup $\langle a, b\rangle$ to be free.

Uniform growth conjecture

Conjecture (Uniform growth conjecture)
Given $d \in \mathbb{N}$, there is $\varepsilon(d)>0$ such that for every finite symmetric $S \subset \mathrm{GL}_{d}(\mathbb{C})$,

- either $\rho(S)=1$
- or $\rho(S)>1+\varepsilon$.

Uniform growth conjecture

Conjecture (Uniform growth conjecture)
Given $d \in \mathbb{N}$, there is $\varepsilon(d)>0$ such that for every finite symmetric $S \subset \mathrm{GL}_{d}(\mathbb{C})$,

- either $\rho(S)=1$
- or $\rho(S)>1+\varepsilon$.

A example in the affine group

For $\lambda \in \mathbb{C}^{\times}$, let

$$
S_{\lambda}:=\left\{1,\left(\begin{array}{cc}
\lambda & 1 \\
0 & 1
\end{array}\right)^{ \pm 1},\left(\begin{array}{cc}
\lambda & -1 \\
0 & 1
\end{array}\right)^{ \pm 1}\right\} \subset \mathrm{GL}_{2}
$$

- S_{λ} generates a group of affine transformations of $\mathbb{C}, x \mapsto \lambda x+1$ and $x \mapsto \lambda x-1$.
- it has polynomial growth iff λ is a root of unity.

A example in the affine group

For $\lambda \in \mathbb{C}^{\times}$, let

$$
S_{\lambda}:=\left\{1,\left(\begin{array}{cc}
\lambda & 1 \\
0 & 1
\end{array}\right)^{ \pm 1},\left(\begin{array}{cc}
\lambda & -1 \\
0 & 1
\end{array}\right)^{ \pm 1}\right\} \subset \mathrm{GL}_{2}
$$

- S_{λ} generates a group of affine transformations of $\mathbb{C}, x \mapsto \lambda x+1$ and $x \mapsto \lambda x-1$.
- it has polynomial growth iff λ is a root of unity.

Easy observation:

- if λ is not a root of a polynomial with coefficients in $\{-1,0,1\}$, then $\rho\left(S_{\lambda}\right)=2$,
- if it is, then $\rho\left(S_{\lambda}\right):=\lim \left|S_{\lambda}^{n}\right|^{1 / n} \leqslant M_{\lambda}$ where M_{λ} is the Mahler measure of λ.

Mahler measure and Lehmer conjecture

Let $\lambda \in \overline{\mathbb{Q}}^{*}$ be an algebraic number, and

$$
\pi_{\lambda}:=a_{d} X^{d}+\ldots+a_{1} X+a_{0}
$$

its minimal polynomial in $\mathbb{Z}[X]$. Factorize it as

$$
\pi_{\lambda}(X)=a_{d} \prod_{1}^{d}\left(X-x_{i}\right)
$$

The Mahler measure of π_{λ} is the quantity:

$$
M_{\lambda}:=\left|a_{d}\right| \prod \max \left\{1,\left|x_{i}\right|\right\}
$$

Mahler measure and Lehmer conjecture

The Mahler measure of π_{λ} is the quantity:

$$
M_{\lambda}:=\left|a_{d}\right| \prod \max \left\{1,\left|x_{i}\right|\right\}
$$

Lehmer's conjecture (1930s): $\exists \varepsilon>0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^{*}$,

- either $M_{\lambda}=1$ and λ is a root of unity,
- or $M_{\lambda}>1+\varepsilon$.

Mahler measure and Lehmer conjecture

The Mahler measure of π_{λ} is the quantity:

$$
M_{\lambda}:=\left|a_{d}\right| \prod \max \left\{1,\left|x_{i}\right|\right\}
$$

Lehmer's conjecture (1930s): $\exists \varepsilon>0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^{*}$,

- either $M_{\lambda}=1$ and λ is a root of unity,
- or $M_{\lambda}>1+\varepsilon$.

Mahler measure and Lehmer conjecture

Lehmer's conjecture (1930s): $\exists \varepsilon>0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^{*}$,

- either $M_{\lambda}=1$ and λ is a root of unity,
- or $M_{\lambda}>1+\varepsilon$.

Mahler measure and Lehmer conjecture

Lehmer's conjecture (1930s): $\exists \varepsilon>0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^{*}$,

- either $M_{\lambda}=1$ and λ is a root of unity,
- or $M_{\lambda}>1+\varepsilon$.
\rightarrow the smallest known Mahler measure >1 is that of the
polynomial $X^{10}+X^{9}-X^{7}-X^{6}-X^{5}-X^{4}-X^{3}+X+1$ and is approximately $1,17628 \ldots$

Mahler measure and Lehmer conjecture

Lehmer's conjecture (1930s): $\exists \varepsilon>0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^{*}$,

- either $M_{\lambda}=1$ and λ is a root of unity,
- or $M_{\lambda}>1+\varepsilon$.
\rightarrow the smallest known Mahler measure >1 is that of the
polynomial $X^{10}+X^{9}-X^{7}-X^{6}-X^{5}-X^{4}-X^{3}+X+1$ and is approximately $1,17628 \ldots$

If λ is not an algebraic unit, or not Galois conjugate to λ^{-1}, then M_{λ} is bounded away from 1 . Same if λ is totally real, or has small Galois group (Amoroso-David).

Mahler measure and Lehmer conjecture

Lehmer's conjecture (1930s): $\exists \varepsilon>0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^{*}$,

- either $M_{\lambda}=1$ and λ is a root of unity,
- or $M_{\lambda}>1+\varepsilon$.

Suppose λ is an algebraic integer.
If all conjugates of λ except λ have modulus <1, then λ is real
>1 and is called a Pisot number. Then $M_{\lambda}=\lambda$ and is known to be bounded away from 1 (Siegel).

Mahler measure and Lehmer conjecture

Lehmer's conjecture (1930s): $\exists \varepsilon>0$ s.t. $\forall \lambda \in \overline{\mathbb{Q}}^{*}$,

- either $M_{\lambda}=1$ and λ is a root of unity,
- or $M_{\lambda}>1+\varepsilon$.

Suppose λ is an algebraic integer.
If all conjugates of λ except λ have modulus <1, then λ is real
>1 and is called a Pisot number. Then $M_{\lambda}=\lambda$ and is known to be bounded away from 1 (Siegel).

If all conjugates of λ except λ have modulus $\leqslant 1$, with at least one of modulus 1 , then λ is real >1 and is called a Salem number.
Then $M_{\lambda}=\lambda$, but the conjecture is open for Salem numbers.

Back to the Uniform Growth Conjecture

Conjecture (Uniform growth conjecture)
Given $d \in \mathbb{N}$, there is $\varepsilon(d)>0$ such that for every finite symmetric $S \subset \mathrm{GL}_{d}(\mathbb{C})$,

- either $\rho(S)=1$
- or $\rho(S)>1+\varepsilon$.

Back to the Uniform Growth Conjecture

Conjecture (Uniform growth conjecture)
Given $d \in \mathbb{N}$, there is $\varepsilon(d)>0$ such that for every finite symmetric $S \subset \mathrm{GL}_{d}(\mathbb{C})$,

- either $\rho(S)=1$
- or $\rho(S)>1+\varepsilon$.

Recall that for $S=S_{\lambda} \subset \mathrm{GL}_{2}(\mathbb{C})$ we had $\rho\left(S_{\lambda}\right) \leqslant M_{\lambda}$.
Immediate consequence:
The Uniform Growth Conjecture implies the Lehmer Conjecture.

Semisimple Lehmer

Theorem (B. 2008)
If $S \subset \mathrm{GL}_{d}(\overline{\mathbb{Q}})$ is finite, one can define a "non-commutative Mahler measure" of S as

$$
M_{S}:=\prod_{v}\left(\lim _{n}\left\|S^{n}\right\|^{\frac{1}{v}}\right)
$$

and prove that $\exists \varepsilon=\varepsilon(d)>0$ s.t.

$$
M_{S}>1+\varepsilon,
$$

provided $\langle S\rangle$ is not solvable (up to finite index).

Semisimple Lehmer

Theorem (B. 2008)
If $S \subset \mathrm{GL}_{d}(\overline{\mathbb{Q}})$ is finite, one can define a "non-commutative Mahler measure" of S as

$$
M_{S}:=\prod_{v}\left(\lim _{n}\left\|S^{n}\right\|^{\frac{1}{v}}\right)
$$

and prove that $\exists \varepsilon=\varepsilon(d)>0$ s.t.

$$
M_{S}>1+\varepsilon,
$$

provided $\langle S\rangle$ is not solvable (up to finite index).
Corollary
The uniform growth conjecture is true assuming $\langle S\rangle$ is not solvable (up to finite index).

Semisimple Lehmer

Theorem (B. 2008)
If $S \subset \mathrm{GL}_{d}(\overline{\mathbb{Q}})$ is finite, one can define a "non-commutative Mahler measure" of S as

$$
M_{S}:=\prod_{v}\left(\lim _{n}\left\|S^{n}\right\|^{\frac{1}{v}}\right)
$$

and prove that $\exists \varepsilon=\varepsilon(d)>0$ s.t.

$$
M_{S}>1+\varepsilon,
$$

provided $\langle S\rangle$ is not solvable (up to finite index).
Corollary
The uniform growth conjecture is true assuming $\langle S\rangle$ is not solvable (up to finite index).
\longrightarrow so remains the solvable case...

Lower bound on the growth exponent

Recall

$$
S_{\lambda}:=\left\{1,\left(\begin{array}{cc}
\lambda & 1 \\
0 & 1
\end{array}\right)^{ \pm 1},\left(\begin{array}{cc}
\lambda & -1 \\
0 & 1
\end{array}\right)^{ \pm 1}\right\} \subset \mathrm{GL}_{2}
$$

Theorem (B.+Varjú 2015)
For every $\lambda \in \overline{\mathbb{Q}}$,

$$
\left(\min \left\{2, M_{\lambda}\right\}\right)^{0.44} \leqslant \rho\left(S_{\lambda}\right) \leqslant \min \left\{2, M_{\lambda}\right\} .
$$

Lower bound on the growth exponent

Recall

$$
S_{\lambda}:=\left\{1,\left(\begin{array}{cc}
\lambda & 1 \\
0 & 1
\end{array}\right)^{ \pm 1},\left(\begin{array}{cc}
\lambda & -1 \\
0 & 1
\end{array}\right)^{ \pm 1}\right\} \subset \mathrm{GL}_{2}
$$

Theorem (B.+Varjú 2015)
For every $\lambda \in \overline{\mathbb{Q}}$,

$$
\left(\min \left\{2, M_{\lambda}\right\}\right)^{0.44} \leqslant \rho\left(S_{\lambda}\right) \leqslant \min \left\{2, M_{\lambda}\right\} .
$$

Rk: $\rho\left(S_{\lambda}\right)<2$ iff λ is a root of a polynomial with coefficients in $\{-1,0,1\}$.

Corollary
The uniform growth conjecture is equivalent to the Lehmer conjecture.

Lehmer and finite fields

Reducing $\bmod p$ in the previous theorem, we can derive:

Corollary ($\mathrm{B}+\mathrm{V}$)

The Lehmer conjecture is equivalent to the following counting problem in finite fields:
There exists $\varepsilon>0$ and functions $p(n) \in \mathbb{N}$ and $\omega(n) \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$, for every prime $p>p(n)$ and every $x \in \mathbb{F}_{p}^{*}$,

$$
\operatorname{order}(x)>\omega(n) \Rightarrow\left|S_{x}^{n}\right|>(1+\varepsilon)^{n} .
$$

Lehmer and finite fields

Reducing mod p in the previous theorem, we can derive:

Corollary ($\mathrm{B}+\mathrm{V}$)

The Lehmer conjecture is equivalent to the following counting problem in finite fields:
There exists $\varepsilon>0$ and functions $p(n) \in \mathbb{N}$ and $\omega(n) \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$, for every prime $p>p(n)$ and every $x \in \mathbb{F}_{p}^{*}$,

$$
\operatorname{order}(x)>\omega(n) \Rightarrow\left|S_{x}^{n}\right|>(1+\varepsilon)^{n} .
$$

\longrightarrow related pb : how fast can you obtain all of \mathbb{F}_{p} starting from 1 and applying at each step either a translation by 1 or a multiplication by x ?

Random walk entropy and growth

Proof of the thm:
How to lower bound the growth rate $\rho\left(S_{\lambda}\right)$?

Random walk entropy and growth

Proof of the thm:

How to lower bound the growth rate $\rho\left(S_{\lambda}\right)$?
naive way: pick a Galois conjugate of modulus >1, take a power λ^{k} with $\left|\lambda^{k}\right|>2$, then the two transformations $x \mapsto \lambda^{k} x+1$ and $x \mapsto \lambda^{k} x-1$ generate a free semi-group \longrightarrow get a lower bound of the growth.

Random walk entropy and growth

Proof of the thm:

How to lower bound the growth rate $\rho\left(S_{\lambda}\right)$?
naive way: pick a Galois conjugate of modulus >1, take a power λ^{k} with $\left|\lambda^{k}\right|>2$, then the two transformations $x \mapsto \lambda^{k} x+1$ and $x \mapsto \lambda^{k} x-1$ generate a free semi-group \longrightarrow get a lower bound of the growth.
\longrightarrow problem: k may need to be very large, and in fact $\exists \lambda_{n} \in \overline{\mathbb{Q}}$

Random walk entropy and growth

Proof of the thm:
How to lower bound the growth rate $\rho\left(S_{\lambda}\right)$?
naive way: pick a Galois conjugate of modulus >1, take a power λ^{k} with $\left|\lambda^{k}\right|>2$, then the two transformations $x \mapsto \lambda^{k} x+1$ and $x \mapsto \lambda^{k} x-1$ generate a free semi-group \longrightarrow get a lower bound of the growth.
\longrightarrow problem: k may need to be very large, and in fact $\exists \lambda_{n} \in \overline{\mathbb{Q}}$

\longrightarrow idea: use entropy.

Random walk entropy and growth

Let $\xi_{0}, \xi_{1}, \ldots, \xi_{n}, \ldots$ be iid coin flips $\xi_{0}= \pm 1$ with probability $\frac{1}{2}$.

Random walk entropy and growth

Let $\xi_{0}, \xi_{1}, \ldots, \xi_{n}, \ldots$ be iid coin flips $\xi_{0}= \pm 1$ with probability $\frac{1}{2}$.
Given $\lambda \in \mathbb{C}$, form

$$
X_{\lambda}^{(n)}:=\xi_{0}+\xi_{1} \lambda+\ldots+\xi_{n-1} \lambda^{n-1}
$$

Random walk entropy and growth

Let $\xi_{0}, \xi_{1}, \ldots, \xi_{n}, \ldots$ be iid coin flips $\xi_{0}= \pm 1$ with probability $\frac{1}{2}$.
Given $\lambda \in \mathbb{C}$, form

$$
X_{\lambda}^{(n)}:=\xi_{0}+\xi_{1} \lambda+\ldots+\xi_{n-1} \lambda^{n-1}
$$

The entropy $H\left(X_{\lambda}^{(n)}\right)$ satisfies:

$$
H\left(X_{\lambda}^{(n)}\right) \leqslant \log \left|\operatorname{Supp}\left(X_{\lambda}^{(n)}\right)\right|=\log \left|S_{\lambda}^{n}\right| .
$$

Random walk entropy and growth

Let $\xi_{0}, \xi_{1}, \ldots, \xi_{n}, \ldots$ be iid coin flips $\xi_{0}= \pm 1$ with probability $\frac{1}{2}$.
Given $\lambda \in \mathbb{C}$, form

$$
X_{\lambda}^{(n)}:=\xi_{0}+\xi_{1} \lambda+\ldots+\xi_{n-1} \lambda^{n-1}
$$

The entropy $H\left(X_{\lambda}^{(n)}\right)$ satisfies:

$$
H\left(X_{\lambda}^{(n)}\right) \leqslant \log \left|\operatorname{Supp}\left(X_{\lambda}^{(n)}\right)\right|=\log \left|S_{\lambda}^{n}\right| .
$$

In particular we have:

$$
h_{\lambda}:=\lim _{n} \frac{H\left(X_{\lambda}^{(n)}\right)}{n} \leqslant \rho\left(S_{\lambda}\right) .
$$

Random walk entropy and growth

In particular we have:

$$
h_{\lambda}:=\lim _{n} \frac{H\left(X_{\lambda}^{(n)}\right)}{n} \leqslant \rho\left(S_{\lambda}\right) .
$$

We prove:
Theorem
For every $\lambda \in \overline{\mathbb{Q}} \backslash\{0\}$,
$\left(\min \left\{1, \log _{2} M_{\lambda}\right\}\right)^{0.44} \leqslant h_{\lambda} \leqslant \min \left\{1, \log _{2} M_{\lambda}\right\}$.

Bernoulli convolutions

If λ has modulus <1, then the series converges:

$$
X^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

Bernoulli convolutions

If λ has modulus <1, then the series converges:

$$
X^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

The limit law is a Bernoulli convolution with parameter λ.

Bernoulli convolutions

If λ has modulus <1, then the series converges:

$$
X^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

The limit law is a Bernoulli convolution with parameter λ. It is self-similar: $X^{(\infty)}=X^{(n)}+\lambda^{n} X^{\prime}(\infty)$.

Bernoulli convolutions

If λ has modulus <1, then the series converges:

$$
X^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

The limit law is a Bernoulli convolution with parameter λ. It is self-similar: $X^{(\infty)}=X^{(n)}+\lambda^{n} X^{\prime}(\infty)$.

$$
\begin{equation*}
H\left(X^{(n)}\right) \simeq H\left(X^{(\infty)} ; \lambda^{n}\right) \tag{1}
\end{equation*}
$$

Bernoulli convolutions

If λ has modulus <1, then the series converges:

$$
X^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

The limit law is a Bernoulli convolution with parameter λ. It is self-similar: $X^{(\infty)}=X^{(n)}+\lambda^{n} X^{\prime}(\infty)$.

$$
\begin{align*}
H\left(X^{(n)}\right) & \simeq H\left(X^{(\infty)} ; \lambda^{n}\right) \tag{1}\\
& \simeq \sum_{1}^{n} H\left(X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{2}
\end{align*}
$$

Bernoulli convolutions

If λ has modulus <1, then the series converges:

$$
X^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

The limit law is a Bernoulli convolution with parameter λ. It is self-similar: $X^{(\infty)}=X^{(n)}+\lambda^{n} X^{\prime}(\infty)$.

$$
\begin{align*}
H\left(X^{(n)}\right) & \simeq H\left(X^{(\infty)} ; \lambda^{n}\right) \tag{1}\\
& \simeq \sum_{1}^{n} H\left(X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{2}\\
& \simeq \sum_{1}^{n} H\left(X^{(i-1)}+\lambda^{i-1} X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{3}
\end{align*}
$$

Bernoulli convolutions

If λ has modulus <1, then the series converges:

$$
X^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

The limit law is a Bernoulli convolution with parameter λ. It is self-similar: $X^{(\infty)}=X^{(n)}+\lambda^{n} X^{\prime}(\infty)$.

$$
\begin{align*}
H\left(X^{(n)}\right) & \simeq H\left(X^{(\infty)} ; \lambda^{n}\right) \tag{1}\\
& \simeq \sum_{1}^{n} H\left(X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{2}\\
& \simeq \sum_{1}^{n} H\left(X^{(i-1)}+\lambda^{i-1} X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{3}\\
& \geqslant \sum_{1}^{n} H\left(\lambda^{i-1} X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{4}
\end{align*}
$$

Bernoulli convolutions

If λ has modulus <1, then the series converges:

$$
X^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

The limit law is a Bernoulli convolution with parameter λ. It is self-similar: $X^{(\infty)}=X^{(n)}+\lambda^{n} X^{\prime}(\infty)$.

$$
\begin{align*}
H\left(X^{(n)}\right) & \simeq H\left(X^{(\infty)} ; \lambda^{n}\right) \tag{1}\\
& \simeq \sum_{1}^{n} H\left(X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{2}\\
& \simeq \sum_{1}^{n} H\left(X^{(i-1)}+\lambda^{i-1} X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{3}\\
& \geqslant \sum_{1}^{n} H\left(\lambda^{i-1} X^{(\infty)} ; \lambda^{i} \mid \lambda^{i-1}\right) \tag{4}\\
& \simeq n H\left(X^{(\infty)} ; \lambda \mid 1\right) \geqslant n H\left(\xi_{0} ; \lambda \mid 1\right) \tag{5}
\end{align*}
$$

Bernoulli convolutions

Taking the limit as $n \rightarrow \infty$ we get:

$$
h_{\lambda} \gg|\log \lambda| .
$$

Bernoulli convolutions

Taking the limit as $n \rightarrow \infty$ we get:

$$
h_{\lambda} \gg|\log \lambda| .
$$

good but not enough: we want the Mahler measure:

Bernoulli convolutions

Taking the limit as $n \rightarrow \infty$ we get:

$$
h_{\lambda} \gg|\log \lambda| .
$$

good but not enough: we want the Mahler measure:
\longrightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^{d}, where d is the number of conjugates of modulus
<1.

Bernoulli convolutions

Taking the limit as $n \rightarrow \infty$ we get:

$$
h_{\lambda} \gg|\log \lambda| .
$$

good but not enough: we want the Mahler measure:
\longrightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^{d}, where d is the number of conjugates of modulus <1.
issues: (a) need an estimate independent of d;

Bernoulli convolutions

Taking the limit as $n \rightarrow \infty$ we get:

$$
h_{\lambda} \gg|\log \lambda| .
$$

good but not enough: we want the Mahler measure:
\longrightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^{d}, where d is the number of conjugates of modulus <1.
issues: (a) need an estimate independent of d; (b) no canonical way to discretize the space.

Bernoulli convolutions

Taking the limit as $n \rightarrow \infty$ we get:

$$
h_{\lambda} \gg|\log \lambda| .
$$

good but not enough: we want the Mahler measure:
\longrightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^{d}, where d is the number of conjugates of modulus <1.
issues: (a) need an estimate independent of d; (b) no canonical way to discretize the space.

Nevertheless this can be done using multivariate gaussians in lieu of intervals as a means to discretize:

$$
H(X ; A):=H(X+A G)-H(A G)
$$

for $A \in M_{d}(\mathbb{R})$ and $G=$ normalized in \mathbb{R}^{d}.

Bernoulli convolutions

Taking the limit as $n \rightarrow \infty$ we get:

$$
h_{\lambda} \gg|\log \lambda| .
$$

good but not enough: we want the Mahler measure:
\longrightarrow idea: perform the above analysis in the geometric embedding of $\mathbb{Q}(\lambda)$ in \mathbb{C}^{d}, where d is the number of conjugates of modulus <1.
issues: (a) need an estimate independent of d; (b) no canonical way to discretize the space.

The subadditivity of this gaussian entropies is guaranteed by the submodularity property of the entropy: If X, Y, Z are independent random variables in \mathbb{R}^{d}, then

$$
H(X+Y+Z)+H(Y) \leqslant H(X+Y)+H(Y+Z)
$$

Bernoulli convolutions for real parameter

Now take $\lambda \in(0,1)$. Recall:

$$
X_{\lambda}^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i},
$$

Bernoulli convolutions for real parameter

Now take $\lambda \in(0,1)$. Recall:

$$
X_{\lambda}^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i},
$$

Erdös: how is the regularity of the law μ_{λ} of $X_{\lambda}^{(\infty)}$ depending on λ.

Bernoulli convolutions for real parameter

Now take $\lambda \in(0,1)$. Recall:

$$
X_{\lambda}^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

Erdös: how is the regularity of the law μ_{λ} of $X_{\lambda}^{(\infty)}$ depending on λ.

- μ_{λ} is either singular or absolutely continuous (self-similarity).

Bernoulli convolutions for real parameter

Now take $\lambda \in(0,1)$. Recall:

$$
X_{\lambda}^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

Erdös: how is the regularity of the law μ_{λ} of $X_{\lambda}^{(\infty)}$ depending on λ.

- μ_{λ} is either singular or absolutely continuous (self-similarity).
- μ_{λ} is singular if $\lambda \in\left(0, \frac{1}{2}\right)$ or if λ^{-1} is Pisot (only examples known in ($\frac{1}{2}, 1$).)

Bernoulli convolutions for real parameter

Now take $\lambda \in(0,1)$. Recall:

$$
X_{\lambda}^{(\infty)}=\sum_{i \geqslant 0} \xi_{i} \lambda^{i}
$$

Erdös: how is the regularity of the law μ_{λ} of $X_{\lambda}^{(\infty)}$ depending on λ.

- μ_{λ} is either singular or absolutely continuous (self-similarity).
- μ_{λ} is singular if $\lambda \in\left(0, \frac{1}{2}\right)$ or if λ^{-1} is Pisot (only examples known in $\left(\frac{1}{2}, 1\right)$.)
- μ_{λ} is absolutely continuous for Lebesgue almost all λ near one (Erdös) and in fact on all $\left(\frac{1}{2}, 1\right)$ (Solomyak), and actually the singular λ have Hausdorff dimension zero (Hochman,Shmerkin 2014).

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Hochman (2014) obtained a formula for the dimension of μ_{λ}. He showed that unless λ satisfies a strong diophantine condition, then

$$
\operatorname{dim} \mu_{\lambda}=\min \left\{1, \frac{h_{\lambda}}{\log \lambda^{-1}}\right\}
$$

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Hochman (2014) obtained a formula for the dimension of μ_{λ}. He showed that unless λ satisfies a strong diophantine condition, then

$$
\operatorname{dim} \mu_{\lambda}=\min \left\{1, \frac{h_{\lambda}}{\log \lambda^{-1}}\right\}
$$

$E_{n}:=\{$ polynomials of degree $\leqslant n$ and coefficients in $-1,0,1\}$
Diophantine condition: $\forall n, \exists P_{n} \in E_{n}$ s.t. $P_{n}(\lambda) \rightarrow 0$ exponentially fast (but $\neq 0$).
Corollary (Hochman)
If the roots of all polynomials in E_{n} are exponentially separated, then $\operatorname{dim} \mu_{\lambda}=1$ for all $\lambda \notin \overline{\mathbb{Q}}$.

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Theorem ($\mathrm{B}+\mathrm{V}$ 2016)

If $\operatorname{dim} \mu_{\lambda}<1$, then λ admits extremely good algebraic approximations, i.e. given $A>1$ there are arbitrarily large $d \in \mathbb{N}$ such that

$$
\min _{\alpha \in E_{d}, \operatorname{dim} \mu_{\alpha}<1}|\lambda-\alpha|<\exp \left(-d^{A}\right)
$$

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Theorem (B+V 2016)

If $\operatorname{dim} \mu_{\lambda}<1$, then λ admits extremely good algebraic approximations, i.e. given $A>1$ there are arbitrarily large $d \in \mathbb{N}$ such that

$$
\min _{\alpha \in E_{d}, \operatorname{dim} \mu_{\alpha}<1}|\lambda-\alpha|<\exp \left(-d^{A}\right)
$$

Corollary
Many explicit transcendental numbers (e.g. $\lambda=\ln 2, e^{-\frac{1}{2}}, \frac{\pi}{4}$) have $\operatorname{dim} \mu_{\lambda}=1$.

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Theorem ($\mathrm{B}+\mathrm{V}$ 2016)

If $\operatorname{dim} \mu_{\lambda}<1$, then λ admits extremely good algebraic approximations, i.e. given $A>1$ there are arbitrarily large $d \in \mathbb{N}$ such that

$$
\min _{\alpha \in E_{d}, \operatorname{dim} \mu_{\alpha}<1}|\lambda-\alpha|<\exp \left(-d^{A}\right)
$$

Corollary
Many explicit transcendental numbers (e.g. $\lambda=\ln 2, e^{-\frac{1}{2}}, \frac{\pi}{4}$) have $\operatorname{dim} \mu_{\lambda}=1$.

Corollary
The set of algebraic singular λ is dense in the set of singular λ.

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Recall that Pisot numbers form a closed set (Salem 1940's).
Corollary
If the inverse Pisot numbers are the only algebraic singular λ, then they are the only singular λ.

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Recall that Pisot numbers form a closed set (Salem 1940's).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ, then they are the only singular λ.

Corollary
If Lehmer holds, then $\operatorname{dim} \mu_{\lambda}=1$ for all λ in an interval near 1 .

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Recall that Pisot numbers form a closed set (Salem 1940's).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ, then they are the only singular λ.

Corollary

If Lehmer holds, then $\operatorname{dim} \mu_{\lambda}=1$ for all λ in an interval near 1 .
\longrightarrow reduces the dimension problem to algebraic numbers, where via Hochman's formula, the question is reduced to evaluating the discrete entropy h_{λ}.

Bernoulli convolutions for real parameter $\lambda \in\left(\frac{1}{2}, 1\right)$

Recall that Pisot numbers form a closed set (Salem 1940's).

Corollary

If the inverse Pisot numbers are the only algebraic singular λ, then they are the only singular λ.

Corollary

If Lehmer holds, then $\operatorname{dim} \mu_{\lambda}=1$ for all λ in an interval near 1 .
\longrightarrow reduces the dimension problem to algebraic numbers, where via Hochman's formula, the question is reduced to evaluating the discrete entropy h_{λ}.
\longrightarrow recent work by Péter Varjú goes further in the algebraic case getting μ_{λ} to be absolutely continuous for many algebraic λ.

The End!

