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Group growth

G a group.
S=A{1, sfﬂ, e ,skﬂ} a finite symmetric generating set.
5™ denotes the n-th fold product set S":=S5-...-5

How does the cardinality of S” grow with n ?
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Growth of matrix groups

Suppose G = GL4(C), and S C G.

We denote the rate of exponential growth by

p(S) = lim |S"|Y/"

n—-+o00

G is said to have exponential growth if p(S) > 1 (this is
independent of the choice of S).

Let Uppy(C) < GL4(C) be the unipotent upper triangular
subgroup:

Uppd(C) = {g € GL4(C); gii = 1,85 = 0 if i > j}.
Easy fact: if S C Uppg(C) then |S"| = O(n®M).



Growth of matrix groups

Theorem (Tits 1972)
For S C GL4(C), the following are equivalent:

1. p(S)=1
2. 3C >0 s.t. |S"| = O(n©),
3,

the finite index subgroup of (S) is isomorphic to a subgroup
of Upp,4(C).

— a consequence of the Tits alternative and its proof.
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How does p(S) depend on S 7

Gromov's question: fix ' = (S), vary S among generating subsets,
is p(S) bounded away from 1 7

Eskin-Mozes-Oh 2001 : answered this affirmatively for

I < GL4(C), by showing that unless p(S) =1, 3N = N(I') € N
s.t. for all generating subsets S of I', SN contains generators a, b
of a free sub-semigroup. Thus:

=

Vn,|SNP| > 2" — p(S) = 2w,

B.+Gelander 2005: improved this showing the we can get the
subgroup (a, b) to be free.
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and x — Ax — L.
e it has polynomial growth iff X is a root of unity.



A example in the affine group

For A € C*, let

+1 +1
Al A =1
5,\.—{1,(0 1) ,<0 1) }CGLQ
e S, generates a group of affine transformations of C, x — Ax + 1
and x — Ax — L.
e it has polynomial growth iff X is a root of unity.

Easy observation:

» if X is not a root of a polynomial with coefficients in
{—1,0,1}, then p(S)) =2,
> if it is, then p(Sy) := lim |SP|Y/" < M,

where M) is the Mahler measure of .



Mahler measure and Lehmer conjecture

Let A € @* be an algebraic number, and
T 1= adXd+...+31X+ao

its minimal polynomial in Z[X]. Factorize it as
0| (e

The of my is the quantity:

My := |aq4| Hmax{l, |xi|}-
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Mahler measure and Lehmer conjecture

Lehmer's conjecture (1930s): 3¢ > 0s.t. YA€ Q",

> either My =1 and A\ is a root of unity,
> or My >1+e¢.

— the smallest known Mahler measure > 1 is that of the
polynomial X104 X% — X7 — X6 — X5 - X% - X34 X +1andis
approximately 1,17628...

If X is not an algebraic unit, or not Galois conjugate to A~1, then
M, is bounded away from 1. Same if \ is totally real, or has small
Galois group (Amoroso-David).
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Mahler measure and Lehmer conjecture

Lehmer’s conjecture (1930s): 3¢ > 0st. VA€ Q',

» either My =1 and X is a root of unity,
» or My, >1+e.

Suppose A is an algebraic integer.

If all conjugates of A except A have modulus < 1, then X is real
> 1 and is called a Pisot number. Then M, = X and is known to
be bounded away from 1 (Siegel).

If all conjugates of A except A have modulus < 1, with at least one
of modulus 1, then X is real > 1 and is called a Salem number.
Then My = A, but the conjecture is open for Salem numbers.
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Back to the Uniform Growth Conjecture

Conjecture (Uniform growth conjecture)
Given d € N, there is (d) > 0 such that for every finite symmetric

S C GL4(C),
» either p(S) =1
» orp(S) >1+e.
Recall that for S = S\ C GLy(C) we had p(S)) < M.

Immediate consequence:

The Uniform Growth Conjecture implies the Lehmer Conjecture.



Semisimple Lehmer

Theorem (B. 2008)

If S C GL4(Q) is finite, one can define a “non-commutative
Mahler measure” of S as

1
Ms := [(im [15"1[¢).

v

and prove that 3¢ = ¢(d) > 0 s.t.
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provided (S) is not solvable (up to finite index).
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Semisimple Lehmer

Theorem (B. 2008)

If S C GL4(Q) is finite, one can define a “non-commutative
Mahler measure” of S as

1
Ms := [(im [15"1[¢).

v

and prove that 3¢ = ¢(d) > 0 s.t.

Ms >1+¢,
provided (S) is not solvable (up to finite index).

Corollary

The uniform growth conjecture is true assuming (S) is not solvable
(up to finite index).

—— so remains the solvable case...



Lower bound on the growth exponent
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Lower bound on the growth exponent

+1 +1
A -1
) (5 1) reee

Recall
A
5/\ T {1’ < O

Theorem (B.+Varji 2015)
For every \ € Q,

[EE I

(min{2, My })%** < p(Sy) < min{2, M, }.

Rk: p(S)) < 2iff A'is a root of a polynomial with coefficients in
{-1,0,1}.

Corollary

The uniform growth conjecture is equivalent to the Lehmer
conjecture.



Lehmer and finite fields

Reducing mod p in the previous theorem, we can derive:

Corollary (B+V)

The Lehmer conjecture is equivalent to the following counting
problem in finite fields:

There exists € > 0 and functions p(n) € N and w(n) € N s.t.
Vn € N, for every prime p > p(n) and every x € F%,

order(x) > w(n) = |S7]| > (1 +¢)".



Lehmer and finite fields

Reducing mod p in the previous theorem, we can derive:
Corollary (B+V)

The Lehmer conjecture is equivalent to the following counting
problem in finite fields:

There exists € > 0 and functions p(n) € N and w(n) € N s.t.
Vn € N, for every prime p > p(n) and every x € F%,

order(x) > w(n) = |S7] > (1 +¢)".

— related pb: how fast can you obtain all of IF,, starting from 1
and applying at each step either a translation by 1 or a
multiplication by x 7
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Random walk entropy and growth

Proof of the thm:

How to lower bound the growth rate p(Sy) ?

naive way: pick a Galois conjugate of modulus > 1, take a power
MK with [AX| > 2, then the two transformations x —+ A\¥x + 1 and
x — Mx — 1 generate a free semi-group — get a lower bound of
the growth.

— problem: k may need to be very large, and in fact 3\, € Q
s.t. 53 contains no pairs of generators of a free sub-semigroup...

— idea: use entropy.
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Random walk entropy and growth

Let &o,&1,...,&n, ... beiid coin flips &g = 41 with probability %
Given \ € C, form

XA(n) =& +EA+ ..+ AL
The entropy H(XA(")) satisfies:

H(X{"™) < log | Supp(X\"”)| = log|S].

In particular we have:

h>\ = lim
n



Random walk entropy and growth

In particular we have:

h>\ = lim
n

We prove:

Theorem
For every A € Q \ {0},

(min{1,logy M\})%** < hy < min{1,log, M, }.
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Bernoulli convolutions
If A has modulus < 1, then the series converges:

XD =3 &N,

i=0

The limit law is a Bernoulli convolution with parameter \.

It is self-similar: X () = x(n) 1 \nx'(c0)
HX™MY  ~  H(X(): \m)
D HXE NN
1

ZH(X(’ 1) )\l 1X >\|)\I 1)

12

R

WV

ZH C G UP !

R

nH( L) = nH(éo; A1)
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Bernoulli convolutions

Taking the limit as n — oo we get:

hy > ‘ Iog)\].

good but not enough: we want the Mahler measure:

— idea: perform the above analysis in the geometric embedding
of Q(A) in €9, where d is the number of conjugates of modulus
< 1.

issues: (a) need an estimate independent of d ; (b) no canonical
way to discretize the space.

Nevertheless this can be done using multivariate gaussians in lieu
of intervals as a means to discretize:

H(X; A) := H(X + AG) — H(AG)

for A€ My(R) and G = normalized in RY.



Bernoulli convolutions

Taking the limit as n — co we get:

hy > |log A|.

good but not enough: we want the Mahler measure:

— idea: perform the above analysis in the geometric embedding
of Q(A) in C9, where d is the number of conjugates of modulus
< 1.

issues: (a) need an estimate independent of d ; (b) no canonical
way to discretize the space.

The subadditivity of this gaussian entropies is guaranteed by the
submodularity property of the entropy:
If X, Y, Z are independent random variables in RY, then

HX+Y +Z)+ H(Y) <HX + Y) + H(Y + 2).
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Bernoulli convolutions for real parameter

Now take A € (0,1). Recall:

X\ = e,

=0
Erdos: how is the regularity of the law u) of X/SOO) depending on .

> iy is either singular or absolutely continuous (self-similarity).

>y is singular if A € (0, %) or if A1 is Pisot (only examples
known in (%,1))

> ) is absolutely continuous for Lebesgue almost all A near one
(Erdds) and in fact on all (3,1) (Solomyak), and actually the

singular A have Hausdorff dimension zero (Hochman,Shmerkin
2014).
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Bernoulli convolutions for real parameter A\ € (%, 1)

Hochman (2014) obtained a formula for the dimension of uy. He
showed that unless A satisfies a strong diophantine condition, then

dim p) = min{1, Iogh;\_l}.

E, := {polynomials of degree < n and coefficients in —1,0,1}

Diophantine condition: ¥n,3P, € E, s.t. P,(\) — 0 exponentially
fast (but # 0).
Corollary (Hochman)

If the roots of all polynomials in E, are exponentially separated,
then dim puy =1 for all A ¢ Q.
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Theorem (B+V 2016)

If dim py < 1, then A admits extremely good algebraic
approximations, i.e. given A > 1 there are arbitrarily large d € N
such that

i \A—al < —dA).
wee,min A —al <exp(=d7)

Corollary

Many explicit transcendental numbers (e.g. A =1In2, e_%, 7) have
dimuy = 1.

Corollary

The set of algebraic singular \ is dense in the set of singular \.
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Bernoulli convolutions for real parameter A\ € (%, 1)

Recall that Pisot numbers form a closed set (Salem 1940’s).

Corollary

If the inverse Pisot numbers are the only algebraic singular X\, then
they are the only singular \.

Corollary
If Lehmer holds, then dim uy =1 for all X in an interval near 1.

— reduces the dimension problem to algebraic numbers, where via
Hochman's formula, the question is reduced to evaluating the discrete
entropy hy.

— recent work by Péter Varju goes further in the algebraic case getting
1y to be absolutely continuous for many algebraic .



The End!



