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Intro to Approximation Algorithms

Approximation Algorithms and Hardness of Approximation:

- Many optimization tasks of interest are believed to be
impossible to solve exactly (by polytime algorithms) but can
be solved approximately.

- Which optimization problems admit polynomial time
algorithms computing a solution optimal (multiplicatively)
within an absolute constant?

- What do such algorithms typically look like?
(Today: Convex Programming)

- Can one prove a certain algorithm achieves the optimal
constant? (Assuming P 6= NP or similar hypotheses)
(related to Probabilistically Checkable Proofs)
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Example: Max-Cut in a Graph

MAX-CUT: Given a graph G = (V , E ) as input, partition the
vertices so that the maximum number of edges cross the
partition.

Simple 2-approximation algorithm: partitioning randomly will
cut at least (1− o(1))|E |/2 edges with high probability.

∼ 1.14-approximation is possible using Convex Programming!

This Convex Programming algorithm achieves the optimal
constant assuming the Unique Games Conjecture
[Khot, Kindler, Mossel , O’Donnell, Oleszkiewicz]
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Convex Relaxation + Rounding Paradigm

Given combinatorial optimization problem.

(1) "Relax" problem to convex program.
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Interlude: Convex Relaxation

sup
x∈S1

〈a, x〉 ≤ sup
x∈S2

〈a, x〉

Relax the complicated set S1 to a larger convex set S2 (with a
membership oracle).
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Convex Relaxation + Rounding Paradigm

Given combinatorial optimization problem.

(1) "Relax" problem to convex program.

(2) Compute the exactly optimal solution to
the relaxation.

(3) Map solution back to original region
(Rounding Algorithm)

Often the best polytime approximation
algorithm. (Under complexity assumptions.)



6/13

Convex Relaxation + Rounding Paradigm

Given combinatorial optimization problem.

(1) "Relax" problem to convex program.

(2) Compute the exactly optimal solution to
the relaxation.

(3) Map solution back to original region
(Rounding Algorithm)

Often the best polytime approximation
algorithm. (Under complexity assumptions.)



6/13

Convex Relaxation + Rounding Paradigm

Given combinatorial optimization problem.

(1) "Relax" problem to convex program.

(2) Compute the exactly optimal solution to
the relaxation.

(3) Map solution back to original region
(Rounding Algorithm)

Often the best polytime approximation
algorithm. (Under complexity assumptions.)



7/13

Convex Vector Relaxation for MAX-CUT

MAX-CUT reformulation:

OPT = sup
∑
ij∈E

(1− xixj)/2 s.t. ∀i , xi ∈ {±1}

Natural Vector Relaxation:

CP = sup
∑
ij∈E

(1− 〈ui , uj〉)/2 s.t. ∀i , ‖ui‖2 = 1,

= sup 〈D − A,X〉/2 s.t. X � 0, ∀i , Xi,i = 1
(Substituting Xi,j := 〈ui , uj〉)

Rounding Algorithm: Choose a random hyperplane through the
origin and partition vectors according to it.

[Goemans Williamson 97]: Achieves ∼ 1.14 approximation
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Optimality of Relaxation + Rounding Paradigm

[Raghavendra 08]
- Given a Constraint Satisfaction Problem.

- A natural Convex Programming relaxation is the best
polytime apx. alg. under Khot’s Unique Games Conjecture.
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My Interests: Quadratic Maximization

Goal: Polynomial time Approximation Algorithm

Input: A ∈ Rn×n and an oracle computing the norm (‖ · ‖X ,Rn).

Compute in polynomial time (approximately):

sup
‖x‖X≤1

〈x , Ax〉 =
∑
i ,j

Ai ,j · xi · xj Quadratic Maximization

Very rich class. Captures tractable and highly intractable problems
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Examples of Quadratic Maximization

- `2: Maximum Eigenvalue. Exactly computable.

- `∞ for Laplacian A: MAX-CUT in a Graph.
∼ 1.14 Apx. [Goemans Williamson 97]

- `∞: Grothendieck’s Inequality. O(1) Apx.
[Grothendieck 53] . . . [Braverman (Makarychev)2 Naor 11].

- `p for p < 2: Related to Hypercontractivity. nΩ(1) is best Apx.

- (Schatten) S∞: O(1) Apx.
Non-commutative Grothendieck Inequality, Quantum
Information Theory, etc.
[Pisier 78, Haagerup 87] [Naor Regev Vidick 12].
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Questions of Interest

Goal: Extend Theory of Approximation Algorithms to Quadratic
Maximization.

Hope: Theory can be used for both Algorithmic and Impossibility
results for Continuous/Combinatorial Optimization.
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- How does Approximability depend on Geometry of X? When
do O(1) Approximation Algorithms exist?

- When is Convex Programming the Optimal Algorithm?
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Recent Joint work with Euiwoong Lee and Assaf Naor

Generic Framework for Quadratic Maximization:

- Encompasses situations where O(1)-approximation algorithms
were known.

- A rich family of new examples where O(1)-approximation is
possible.

- Characterization (under complexity assumptions) for special
families:
(a) Norms invariant to permutations and sign-flips
(b) Unitarily Invariant Matrix Norms.
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Thank You. Questions?


