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Motivation

Prepare a macroscopic system at initial time with an inhomogeneous
temperature To(x). At some macroscopic time t, we expect that the

temperature T;(x) at x is given by the solution of the heat equation

(Fourier, 1822):

8. T = V[s(T)VT].

k(T) is the diffusion coefficient.




e It turns out that one dimensional systems (e.g. carbon nan-
otubes) can display anomalous energy diffusion if momentum is
conserved. The heat equation is no longer valid: the diffusion
coefficient is infinite.

e What shall replace the heat equation? There exists various con-
troversial discussions about this problem in the physics littera-

ture.



Microscopic models

QWO

Standard microscopic models of heat conduction are given by very
long (=infinite) chains of coupled oscillators, i.e. infinite
dimensional Hamiltonian system with Hamiltonian

H= Z{%z + V(rx)}, Ix = Qxt+1 = G-
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Conserved quantities

Conserved quantities:
1. Theenergy H=> e, e = %ﬁ + V(ry),
2. The total momentum > px,
3. The compression of the chain Y~ rc =>" (gx+1 — Gx)-

The problem of the existence (or not ) of other conserved

quantities is a challenging problem (ergodic problem).



Hydrodynamics: Euler equations

It is expected that in a Euler time scale the empirical energy ¢(t, x),
the empirical momentum p(t, x) and the empirical compression t(t, x)
are given by a system of compressible Euler equations (hyperbolic

system of conservation laws):

8tt = axp7
O¢p = Oy, T:=71(t,e — %2)

61_-8 = 8X(p7'),



Nonlinear fluctuating hydrodynamics predictions

Recently, Spohn used the theory of nonlinear fluctuating hydrody-
namics to predict the behavior of the long time behavior of the

time-space correlation functions of the conserved fields g(x,t) =

(r(£), Px(1), ex(t))
Soar (X, t) = (8a(X, t)8ar(0,0))7 5 — (8a)r,6{(8ar) v

where (-); 3 is the (product) equilibrium Gibbs measure at tempera-

ture 57! and pressure T

<'>Tﬂ ~ eXp{*ﬂ Z(ex + fo)}dfdp'



Nonlinear fluctuating hydrodynamics predictions

e The long time behavior of the correlation functions of the con-
served fields depends on explicit relations between thermody-

namic parameters (KPZ universality class and others).

e |t is a macroscopic theory based on the validity of the hydrody-
namics in the Euler time scale after some corse-graining proce-

dure.

e Mutatis mutandis, it can be applied also for any conservative
model whose conserved fields evolve in the Euler time scale
according to a system of n =2,3... conservation laws. Similar

universality classes appear.



Harmonic chain with bulk noise

e A rigorous proof of such predictions from Hamiltonian micro-
scopic dynamics is out of the range of actual mathematics.

e Following ideas of [Olla-Varadhan-Yau'93] and [Fritz-Funaki-
Lebowitz'94] we consider chains of oscillators perturbed by a

bulk stochastic noise such that in the hyperbolic time scale Eu-

ler equations are valid.



o We start with a harmonic chain {(r«(t), px(t)); x € Z} and we

use an equivalent dynamical variable {n,(t); x € Z} defined by

Tx = Px;  T2x+1 = Ix-

e Newton's equations are

dnx = (Mx+1 — Nx—1)dt, x € Z.

e Noise: On each bond {x,x + 1} we have a Poisson process
(clock). All are independent. When the clock of {x,x + 1}
rings, 7x is exchanged with 7,11. The dynamics between two
successive rings of the clocks is given by the Hamiltonian dy-

namics.



e We obtain in this way a Markov process which conserves the
total energy
_ _ 2 _ [
HeSe=Y =X {45}
XEZL XEZ XEZL
e The noise destroys the conservation of the momentum and the

conservation of the compression field.

e Nevertheless, the “volume” field 7, is conserved.



o Theenergy >, 12 and the volume > 7, are the only conserved
quantities of the model (in a suitable sense which can be made

precize).
e The Gibbs equilibrium measures (-) 3 are parameterized by two

parameters (7, 3) € R x [0,00) and are product of Gaussians

<'>T,B ~ exp{—03 Z(ﬁ§ + 71x) }dn.



Theorem (B., Stoltz'11)

In the Euler time scale, the empirical volume field v(t, x) and the

empirical energy field ¢(t, x) evolve according to

Ot = 2040,

Bte = (9X02.

The proof is based on the ideas introduced in
[Olla-Varadhan-Yau'93] and [Fritz-Funaki-Lebowitz'94]. The

theorem is clearly false without the presence of the noise.



e We define

50 = { (10~ 3) m(x - B))_,

e The case 7 # 0 can be recovered by considering the dynamics



Theorem (B., Gongalves, Jara'l4)

Let f,g : R — R be smooth functions of compact support. Then,

n||—>mool Z f( ) Sz (x—y) = 62 //f g(y)Pe(x—y)dxdy,

X,YEZL

where {P¢(x); x € R, t > 0} is the fundamental solution of the

fractional heat equation

Oru = —%{(—A)W“ —V(-2a)Y* .



e One can also show that the correlation function of the volume
field evolve in a diffusive time scale and that the limit is given

by the fundamental solution of the standard heat equation.

e These results confirm the predictions of the nonlinear fluctuating

hydrodynamics for this particular case.



|deas of the proof (3 = 1)

e The energy field is defined as

SE( \f Z F(5) (/2 (y %)

YEZ

e The quadratic field is defined as

1
0 > h(LE) 2 (¥)0p/2(2).

y#z€Z



By It6 calculus,

dS{(f) = —2Q{(f' ® &)dt + %St”(f”)dt + martingale.

dQ7(h) = Qf (Lph)dt — 257 ([e - Vh](x, x))dt
+ % Q7 (0yh(x,x) @ &§)dt + martingale.
where (¢ ® §)(x,y) = p(x)d(x = y) (distribution) and e = (1, 1).

The linear operator L, is defined by

Loh = n"Y2Ah+2n'%(e - V)h.
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dSP(f) ~ —2Q{(f' ® &)dt + ﬁSt”(f”)dt + martingale.

dQ7(h) = Qf (Lph)dt — 257 ([e - Vh](x, x))dt
+ % Q7 (8yh(x,x) ® §)dt + martingale.
where (¢ ® §)(x,y) = p(x)d(x = y) (distribution) and e = (1, 1).

The linear operator L, is defined by
Loh = n"Y2Ah+2n'%(e - V)h.

Choose h,, such that L,h, = 2f' ® ¢ and add the two equations.



Up to small terms, we get
dSP(f) =~ —28{ ([e - Vhn](x, x))dt — dQ{(h,)

Integrate in time and use Cauchy-Schwarz inequality to show that

Q7 (hn), Q§(hy) vanish as n — co. Then

SP(F) — SP(F) ~ —2 /otsg([e Vhal(x,%))ds



Up to small terms, we get
dSP(f) =~ —28{ ([e - Vhn](x, x))dt — dQ{(h,)

Integrate in time and use Cauchy-Schwarz inequality to show that

Q7 (hn), Q§(hy) vanish as n — co. Then

SI(f) — S§(F) = —2 /otsg([e - Vhy](x, x))ds
Recall that hj, := h,(f) is the solution of

Lohy = n"Y2Ah, 4+ 2n2(e - V)h, = 2f' @6

The equation for S/(+) is closed.



It remains only to show (by Fourier transform, it's easy) that
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It remains only to show (by Fourier transform, it's easy) that

Jim [ Vh)(x,x) = 5 | (—ga)* = & (=) .

Remark: In [Cafarelli-Silvestre'08] such descriptions of fractional
Laplacian (and generalizations) with various boundary conditions

are given.



Related works, work in progress, open questions ...

e Jara, Komorowski and Olla obtained similar results for the har-
monic chain perturbed by a different noise conserving energy,
momentum and compression. Their proof is very different (Wigner

function).

e With a bit of work, our proof can be applied to their model and

we can recover their results.

e The nonlinear case is much more difficult (work in progress).



The evanescent flip noise limit

e Consider the same Markov process (harmonic chain + exchange
noise) and add a second stochastic perturbation with intensity
, b > 0, which consists to flip independently on each

site at Poissonian times the variable 7, into —7;.

e The energy is conserved but the volume ), 7, is not (stricto
sensu, only if b = 00).

e We look at the system in the time scale 77, a > 0, such that

the energy field has a non-trivial limit.



Some work in progress seems to indicate the following picture:
a
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