Random matrix ensemble with locally-varying potential

Jinho Baik University of Michigan

2013 November, IAS

< E.

Unitary invariant ensemble

$$p(x_1,\cdots,x_N)=\frac{1}{Z_N}|\Delta_N(x)|^2\prod_{j=1}^N e^{-NV(x_j)}$$

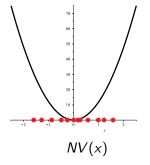
- Density of states: equilibrium measure. Finite support.
- Bulk universality: sine kernel

$$\frac{1}{N\rho_{eq}(x_0)}K_N\left(x_0+\frac{\xi}{N\rho_{eq}(x_0)},x_0+\frac{\eta}{N\rho_{eq}(x_0)}\right)\to \mathbb{S}(\xi,\eta)$$

- [Pastur, Scherbina] [Bleher, Its] [Deift, Kriecherbauer, McLaughlin, Venekides, Zhou] [Lubinsky] [Bourgade, Erdös, Yau]
- Here V(x) is macroscopic compared to the spacings of typical eigenvalues.

伺下 イヨト イヨト

Unitary invariant ensemble

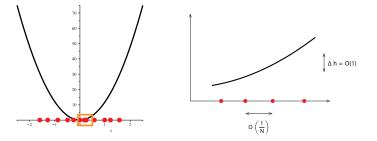


- ∢ ≣ ▶

< ≣ >

æ

Unitary invariant ensemble

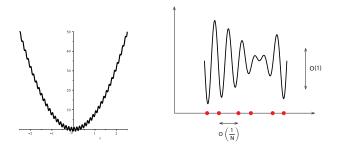


$$\Delta h = NV\left(a + \frac{y}{N}\right) - NV(a) \approx V'(a)y,$$
 locally linear

→ 프 → → 프 →

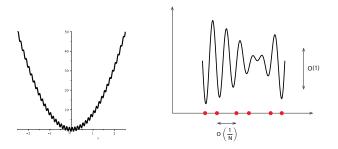
Question

Q: What happens if locally non-linear?



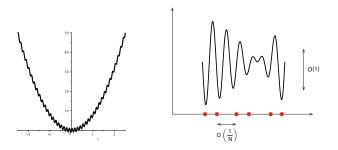
-

Q: What happens if locally non-linear?



 $NV(x) + \cos(Nx)$, or more generally $NV_1(x) + V_2(Nx)$

Q: What happens if locally non-linear?



 $NV(x) + \cos(Nx)$, or more generally $NV_1(x) + V_2(Nx)$

mixed scale: $NV(x) + \frac{N}{\Lambda}\cos(\Lambda x)$ or $NV_1(x) + \frac{N}{\Lambda}V_2(\Lambda x)$

Potential: $NV_1(x) + \frac{N}{\Lambda}V_2(\Lambda x)$ density of state?

density of state:

How is sine kernel changed?

We study the circular version without V_1 and a Jacobi version

→ Ξ →

→ ∃ >

Circular ensemble with periodic potential

Fix $V(e^{i\theta})$.

$$p_{N,\Lambda}(e^{i\theta_1},\cdots,e^{i\theta_N}) = \frac{1}{Z_N} |\Delta_N(e^{i\theta})|^2 \prod_{j=1}^N e^{-\frac{N}{\Lambda}V(e^{i\Lambda\theta_j})}$$

Unitary group $\mathcal{U}(N)$ with density $e^{-\frac{N}{\Lambda}\operatorname{Tr}(V(U^{\Lambda}))}$

Example:
$$V(e^{iN\theta}) = -c\cos(N\theta)$$

$-\pi - \frac{3\pi}{4} - \frac{\pi}{2} - \frac{\pi}{4} = 0 - \frac{\pi}{4} - \frac{\pi}$

Gap size distribution of parked cars on London streets. Rawal, Rodgers 2005

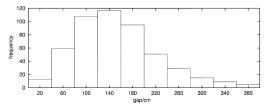


Fig. 1. The frequency distribution of gaps between parked cars.

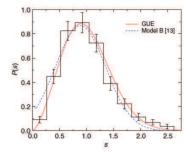
Random car parking model: random interval filling problem of Rényi 1958

Drop a needle of size 1 sequentially randomly without overlapping on a long interval.

Gap-size distribution: Non-vanishing density at x = 0

向下 イヨト イヨト

Abul-Magd 2006. Perhaps GUE Wigner surmise?



- Petr Seba. Data from streets in the Czech Republic; proposed different Markov model
- Anthony Fader: REU project. Streets in Ann Arbor, Michigan. No long enough streets without parking meters or driveways. Collected data from streets with parking meters and also from parking garages.

- Petr Seba. Data from streets in the Czech Republic; proposed different Markov model
- Anthony Fader: REU project. Streets in Ann Arbor, Michigan. No long enough streets without parking meters or driveways. Collected data from streets with parking meters and also from parking garages.
- Parking meters = periodic potential?

- $\blacktriangleright \Lambda = N$
- free energy, one-point and two-point correlation functions.

Kosterlitz - Thouless conducting-insulating phase transition

伺下 イヨト イヨト

Circular ensemble with periodic potential

$$p_{N,\Lambda}(e^{i\theta_1},\cdots,e^{i\theta_N}) = \frac{1}{Z_N} |\Delta_N(e^{i\theta})|^2 \prod_{j=1}^N e^{-\frac{N}{\Lambda}V(e^{i\Lambda\theta_j})}$$

• Invariant under
$$\theta_j \mapsto \theta_j + \frac{2\pi}{\Lambda}$$
 for all j .

- Density of states $\rho_{N,\Lambda}(e^{i\theta})$ is periodic with period $\frac{2\pi}{\Lambda}$.
- ► Determinantal point process with kernel $K_{N,\Lambda}(e^{i\theta}, e^{i\varphi}) = K_{N,\Lambda}(e^{i(\theta + \frac{2\pi}{\Lambda})}, e^{i(\varphi + \frac{2\pi}{\Lambda})})$

- - E - M

Determinantal point process

$$R_m^{(N,\Lambda)}(e^{i heta_1},\cdots,e^{i heta_m})= \detig(K_{N,\Lambda}(e^{i heta_i},e^{i heta_j})ig)_{i,j=1}^m$$

Kernel given in terms of Nth orthogonal polynomials with respect to $e^{-\frac{N}{\Lambda}V(e^{i\Lambda\theta})}d\theta$

$$\frac{p_{N}^{(\Lambda)}(e^{i\theta})\overline{p_{N}^{(\Lambda)}(e^{i\varphi})} - e^{iN(\theta - \varphi)}\overline{p_{N}^{(\Lambda)}(e^{i\theta})}p_{N}^{(\Lambda)}(e^{i\varphi})}{e^{i\theta} - e^{i\varphi}}e^{-\frac{N}{2\Lambda}V(e^{i\Lambda\theta}) - \frac{N}{2\Lambda}V(e^{i\Lambda\phi})}$$

通 とう ほう く ほう

Lemma. Let $\pi_k^{(\Lambda)}(z)$ and $\pi_k(z)$ be monic OP's with respect to $w(e^{i\Lambda\theta})d\theta$ and $w(e^{i\theta})d\theta$, respectively. Then

$$\pi_N^{(N)}(z) = \pi_1(z^N)$$

御 と く ヨ と く ヨ と …

Lemma. Let $\pi_k^{(\Lambda)}(z)$ and $\pi_k(z)$ be monic OP's with respect to $w(e^{i\Lambda\theta})d\theta$ and $w(e^{i\theta})d\theta$, respectively. Then

$$\pi_N^{(N)}(z) = \pi_1(z^N)$$

More generally,

$$\pi_{bN+c}^{(aN)}(z) = z^c \pi_b^{(a)}(z^N)$$

伺下 イヨト イヨト

From Lemma,

$$\mathcal{K}_{N,\Lambda}(e^{i heta},e^{iarphi})=rac{\sin(rac{N}{2}(heta-arphi))}{\sin(rac{1}{2}(heta-arphi))}\mathcal{K}_{1,rac{\Lambda}{N}}(e^{iN heta},e^{iNarphi}), \quad ext{if } rac{\Lambda}{N}\in\mathbb{Z}$$

N particles and Λ period "=" 1 particle and $\frac{\Lambda}{N}$ period.

Also, "="
$$\frac{N}{\Lambda}$$
 particles and 1 period.

回 と く ヨ と く ヨ と …

$$p_{N,\Lambda}(e^{i\theta_1},\cdots,e^{i\theta_N}) = \frac{1}{Z_N} |\Delta_N(e^{i\theta})|^2 \prod_{j=1}^N e^{-\frac{N}{\Lambda}V(e^{i\Lambda\theta_j})}$$

• When $\Lambda = 1$: $w(\theta) = e^{-NV(e^{i\theta})}$, usual external potential

• When $\Lambda = \infty$: $w(\theta) = 1$, CUE (circular unitary ensemble)

$$ho_{N,\Lambda}(e^{i heta}) o egin{cases}
ho_{eq}(e^{i heta}) & ext{ when } \Lambda = 1 \ 1 & ext{ when } \Lambda = \infty \end{cases}$$

▶ Does $\rho_{N,\Lambda}$ converge when $N,\Lambda \to \infty$? No. But it is bounded.

Density of states I. $|\Delta_N(e^{i\theta})|^2 \prod_{j=1}^N e^{-\frac{N}{\Lambda}V(e^{i\Lambda_{\theta_j}})}$

When $N = k\Lambda$:

$$\rho_{N,\Lambda}(e^{i\theta}) = f_k(e^{i\Lambda\theta})$$

where $f_k(e^{i\varphi})$ is the DOS for k particle system with $e^{-kV(e^{i\varphi})}$.

As
$$k \to \infty$$
, $f_k(e^{i\varphi}) \to \rho_{eq}(e^{i\varphi})$, equil. meas. for $V(e^{i\varphi})$. Indeed,
 $\rho_{N,\Lambda}(e^{i\theta}) \approx \rho_{eq}(e^{i\Lambda\theta}) \qquad N >> \Lambda$

Especially, when $N = \Lambda$: 1 particle system

$$ho_{N,N}(e^{i heta}) \propto e^{-V(e^{i \Lambda heta})}$$

Density of states II.
$$|\Delta_N(e^{i\theta})|^2 \prod_{j=1}^N e^{-\frac{N}{\Lambda}V(e^{i\lambda\theta_j})}$$

When $N = \frac{1}{k}\Lambda$,

$$\rho_{N,\Lambda}(e^{i\theta}) = \frac{e^{-\frac{1}{k}V(e^{i\Lambda\theta})}}{\frac{1}{2\pi}\int_0^{2\pi}e^{-\frac{1}{k}V(e^{i\theta})}d\theta}$$

As $k \to \infty$, RHS $\to 1$. Indeed,

$$\rho_{N,\Lambda}(e^{i\theta}) \to 1,$$

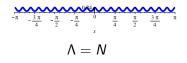
Density of states. $|\Delta_N(e^{i\theta})|^2 \prod_{j=1}^N e^{-\frac{N}{\Lambda}V(e^{i\Lambda\theta_j})}$

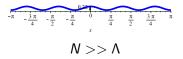
1. When $N >> \Lambda$. $\rho_{N,\Lambda}(e^{i\theta}) \approx \rho_{eq}(e^{i\Lambda\theta})$ 2. When $N = k\Lambda$. $\rho_{N,\Lambda}(e^{i\theta}) = f_k(e^{i\Lambda\theta})$ 3. When $N = \frac{1}{k}\Lambda$, with $I_0 = \frac{1}{2\pi} \int_0^{2\pi} e^{-\frac{1}{k}V(e^{i\theta})} d\theta$, $\rho_{N,\Lambda}(e^{i\theta}) = \frac{1}{I_0} e^{-\frac{1}{k}V(e^{i\Lambda\theta})}$ 4. When $N << \Lambda$.

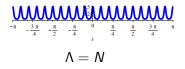
$$ho_{N,\Lambda}(e^{i\theta})
ightarrow 1$$

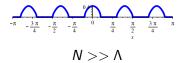
- A E M A E M -

Example. $V(e^{ix}) = -c \cos(x)$. Density of states









- 3 ≥ >

Bulk scaling limit. $|\Delta_N(e^{i\theta})|^2 \prod_{j=1}^N e^{-\frac{N}{\Lambda}V(e^{i\Lambda\theta_j})}$

When $\Lambda = 1$: Let $\rho_{eq}(e^{ix})$ be the density of the equilibrium measure for $e^{-V(e^{ix})}$. For a such that $\rho_{eq}(e^{ia}) > 0$,

$$\frac{2\pi}{\rho_{eq}(a)N}K_{N,1}(e^{i(a+\frac{2\pi}{\rho_{eq}(a)N}\xi)},e^{i(a+\frac{2\pi}{\rho_{eq}(a)N}\eta)})\to \mathbb{S}(\xi,\eta)$$

So, (with a = 0)

$$\frac{2\pi}{N} \mathcal{K}_{N,1}(e^{i\frac{2\pi}{N}\xi}, e^{i\frac{2\pi}{N}\eta}) \to \mathbb{S}(\rho_{eq}(1)\xi, \rho_{eq}(1)\eta)$$

When $\Lambda = \infty$:

$$\frac{2\pi}{N} K_{N,1}(e^{i\frac{2\pi}{N}\xi}, e^{i\frac{2\pi}{N}\eta}) \to \mathbb{S}(\xi, \eta)$$

伺下 イヨト イヨト

Bulk scaling limit. $\frac{2\pi}{N}K_{N,\Lambda}(e^{i\frac{2\pi}{N}\xi}, e^{i\frac{2\pi}{N}\eta})$ converges to

1. When
$$N >> \Lambda$$
, $\mathbb{S}ig(
ho_{eq}(1)\xi,
ho_{eq}(1)\etaig)$

2. When
$$N = k\Lambda$$
, $\mathbb{S}(rac{\xi}{k},rac{\eta}{k})K_k(e^{i\xi},e^{i\eta})$

3. When
$$N = \frac{1}{k}\Lambda$$
,

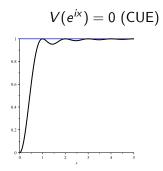
$$\mathbb{S}(\xi,\eta)\frac{e^{-\frac{1}{2k}V(e^{2\pi ik\xi})-\frac{1}{2k}V(e^{2\pi ik\eta})}}{\frac{1}{2\pi}\int_0^{2\pi}e^{-\frac{1}{k}V(e^{i\theta})}d\theta}$$

4. When $N << \Lambda$,

 $\mathbb{S}(\xi,\eta)$

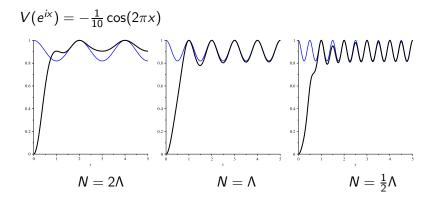
A B K A B K

Two-point function. $R_2(0, x)$



∢ ≣⇒

æ



Change

$$e^{-\frac{N}{\Lambda}V(e^{i\Lambda\theta})}
ightarrow e^{-NV(e^{i\Lambda\theta})}$$

Example: $V = \cos \theta$, $\Lambda = N$. Then

$$\rho_{N,N}(e^{i\theta}) \approx \begin{cases} 0, & \text{if } \theta \notin \frac{2\pi}{N}\mathbb{Z} \\ \infty, & \text{if } \theta \in \frac{2\pi}{N}\mathbb{Z} \end{cases}$$

Bulk scaling limit:

$$\frac{2\pi}{N} \mathcal{K}_{N,N}(e^{i\frac{2\pi}{N}\xi}, e^{i\frac{2\pi}{N}\eta}) \to \begin{cases} 0, & \text{if } \xi - \eta \notin \mathbb{Z} \\ \infty, & \text{if } \xi - \eta \in \mathbb{Z} \end{cases}$$

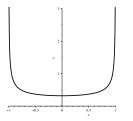
回 と く ヨ と く ヨ と

æ

Jacobi unitary ensemble

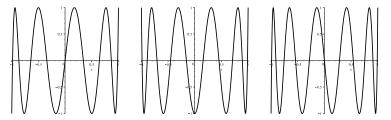
$$p(x_1, \cdots, x_N) = \frac{1}{Z_N} |\Delta_N(x)|^2 \prod_{j=1}^N \frac{1}{\sqrt{1-x_j^2}}$$

Density of states: $\frac{1}{\pi\sqrt{1-x^2}}$. Bulk universality.



回 と く ヨ と く ヨ と …

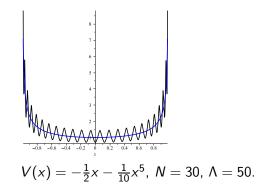
Let $T_k(x)$ be the Tchebyshev polynomial of first kind. $T_k(x) = \cos(k\theta)$ where $x = \cos \theta$.



Jacobi ensemble

Fix V(x), $x \in [-1, 1]$, and consider

$$p_{N,\Lambda}(x_1,\cdots,x_N) = \frac{1}{Z_N} |\Delta_N(x)|^2 \prod_{j=1}^N \frac{e^{-\frac{N}{\Lambda}V(T_{\Lambda}(x_j))}}{\sqrt{1-x^2}}$$



• E • • E • •

Set $N = \Lambda$. Density of states:

$$\rho_{N,N}(x) \approx \frac{a + bT_N(x)}{\pi\sqrt{1 - x^2}} e^{-V(T_N(x))}$$

Bulk limit: for some $x_0(N) \rightarrow 0$,

$$\frac{\pi}{N} K_{N,N} \left(x_0(N) + \frac{\pi}{N} \xi, x_0(N) + \frac{\pi}{N} \eta \right) \\ \rightarrow \left(a \mathbb{S}(\xi, \eta) + b \frac{\sin(\pi\xi) - \sin(\pi\eta)}{\xi - \eta} \right) e^{-V(\sin(\pi\xi)) - V(\sin(\pi\eta))}$$

イロン イヨン イヨン ・ ヨン

Jacobi ensemble, hard edge

JUE
$$\frac{1}{\sqrt{1-x^2}}$$
:
$$\frac{1}{2N^2} \mathcal{K}_N^{JUE} \left(1 - \frac{\xi}{2N^2}, 1 - \frac{\eta}{2N^2}\right) \rightarrow \mathbb{B}_{-1/2}(\xi, \eta)$$

Bessel kernel

$$\mathbb{B}_{a}(\xi,\eta) = \frac{J_{a}(\sqrt{\xi})\sqrt{\eta}J_{a}(\sqrt{\eta}) - \sqrt{\xi}J_{a}'(\sqrt{\xi})J_{a}(\sqrt{\eta})}{\xi - \eta}$$

Eigenvalue scale $x = 1 - \frac{\xi}{2N^2}$.

□ > 《注 > 《注 > _

Jacobi ensemble, hard edge

locally-varying potential
$$\frac{e^{-\frac{N}{\Lambda}V(T_{\Lambda}(x_j))}}{\sqrt{1-x^2}}$$
 with $\Lambda = N$:
 $V(T_N(x)) \approx -V(\sqrt{\xi})$ when $x = 1 - \frac{\xi}{2N^2}$

Hard edge:

$$\frac{1}{2N^2} \mathcal{K}_N^{JUE} \left(1 - \frac{\xi}{2N^2}, 1 - \frac{\eta}{2N^2} \right) \\ \rightarrow \left(a \mathbb{B}_{-1/2}(\xi, \eta) + bL(\xi, \eta) \right) e^{-\frac{1}{2}V(\sqrt{\xi}) - \frac{1}{2}V(\sqrt{\eta})}$$

where

$$L(\xi,\eta) = \frac{\sqrt{\xi}\sin(\sqrt{\xi}) - \sqrt{\eta}\sin(\sqrt{\eta})}{(\xi\eta)^{1/4}(\xi-\eta)}$$

→ E → < E →</p>

A ■

æ

- Locally-varying potential $NV_1(x) + V_2(Nx)$
- Circular unitary ensemble with periodic potential
- Simple relation between orthogonal polynomials
- Bulk scaling: determinantal point process with kernel A(x, y)B(x, y) structure.
- ► Jacobi unitary ensemble with potential $\frac{e^{-\frac{M}{\Lambda}V(T_{\Lambda}(x))}}{\sqrt{1-x^2}}$. Hard edge.
- Question: (i) other β (ii) Hermitian matrix (iii) soft edge

・ 同 ト ・ ヨ ト ・ ヨ ト