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Unitary invariant ensemble

p(x1, · · · , xN) =
1

ZN

|∆N(x)|2
N
∏

j=1

e−NV (xj)

◮ Density of states: equilibrium measure. Finite support.

◮ Bulk universality: sine kernel

1

Nρeq(x0)
KN

(

x0 +
ξ

Nρeq(x0)
, x0 +

η

Nρeq(x0)

)

→ S(ξ, η)

◮ [Pastur, Scherbina] [Bleher, Its] [Deift, Kriecherbauer,
McLaughlin, Venekides, Zhou] [Lubinsky] [Bourgade, Erdös,
Yau]

◮ Here V (x) is macroscopic compared to the spacings of typical
eigenvalues.
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Unitary invariant ensemble

NV (x)
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Unitary invariant ensemble

O
1

N

∆ h = O(1)

∆h = NV
(

a +
y

N

)

− NV (a) ≈ V ′(a)y , locally linear
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Question

Q: What happens if locally non-linear?

O
1

N

O(1)
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Question

Q: What happens if locally non-linear?

O
1

N

O(1)

NV (x) + cos(Nx), or more generally NV1(x) + V2(Nx)
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Question

Q: What happens if locally non-linear?

O
1

N

O(1)

NV (x) + cos(Nx), or more generally NV1(x) + V2(Nx)

mixed scale: NV (x) + N
Λ cos(Λx) or NV1(x) +

N
ΛV2(Λx)
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Question

Potential: NV1(x) +
N
ΛV2(Λx)

density of state?

How is sine kernel changed?

We study the circular version without V1 and a Jacobi version
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Circular ensemble with periodic potential

Fix V (e iθ).

pN,Λ(e
iθ1 , · · · , e iθN ) = 1

ZN

|∆N(e
iθ)|2

N
∏

j=1

e−
N
Λ
V (e

iΛθj )

Unitary group U(N) with density e−
N
Λ
Tr(V (UΛ))

Example: V (e iNθ) = −c cos(Nθ)
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“Motivation”

Gap size distribution of parked cars on London streets. Rawal,
Rodgers 2005
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“Motivation”

Random car parking model: random interval filling problem of
Rényi 1958

Drop a needle of size 1 sequentially randomly without overlapping
on a long interval.

Gap-size distribution: Non-vanishing density at x = 0
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“Motivation”

Abul-Magd 2006. Perhaps GUE Wigner surmise?
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“Motivation”

◮ Petr Seba. Data from streets in the Czech Republic; proposed
different Markov model

◮ Anthony Fader: REU project. Streets in Ann Arbor, Michigan.
No long enough streets without parking meters or driveways.
Collected data from streets with parking meters and also from
parking garages.
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“Motivation”

◮ Petr Seba. Data from streets in the Czech Republic; proposed
different Markov model

◮ Anthony Fader: REU project. Streets in Ann Arbor, Michigan.
No long enough streets without parking meters or driveways.
Collected data from streets with parking meters and also from
parking garages.

◮ Parking meters = periodic potential?
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Peter Forrester 1986

◮ Λ = N

◮ free energy, one-point and two-point correlation functions.

◮ β = 1, 2, 4

◮ Kosterlitz -Thouless conducting-insulating phase transition
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Circular ensemble with periodic potential

pN,Λ(e
iθ1 , · · · , e iθN ) = 1

ZN

|∆N(e
iθ)|2

N
∏

j=1

e−
N
Λ
V (e

iΛθj )

◮ Invariant under θj 7→ θj +
2π
Λ for all j .

◮ Density of states ρN,Λ(e
iθ) is periodic with period 2π

Λ .

◮ Determinantal point process with kernel

KN,Λ(e
iθ, e iϕ) = KN,Λ(e

i(θ+ 2π
Λ
), e i(ϕ+

2π
Λ
))
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Orthogonal polynomials

Determinantal point process

R
(N,Λ)
m (e iθ1 , · · · , e iθm) = det

(

KN,Λ(e
iθi , e iθj )

)m

i ,j=1

Kernel given in terms of Nth orthogonal polynomials with respect

to e−
N
Λ
V (e iΛθ)dθ

p
(Λ)
N (e iθ)p

(Λ)
N (e iϕ)− e iN(θ−ϕ)p

(Λ)
N (e iθ)p

(Λ)
N (e iϕ)

e iθ − e iϕ
e−

N
2Λ

V (e iΛθ)− N
2Λ

V (e iΛφ)

Jinho Baik University of Michigan Random matrix ensemble with locally-varying potential



Orthogonal polynomials

Lemma. Let π
(Λ)
k (z) and πk(z) be monic OP’s with respect to

w(e iΛθ)dθ and w(e iθ)dθ, respectively. Then

π
(N)
N (z) = π1(z

N)
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Orthogonal polynomials

Lemma. Let π
(Λ)
k (z) and πk(z) be monic OP’s with respect to

w(e iΛθ)dθ and w(e iθ)dθ, respectively. Then

π
(N)
N (z) = π1(z

N)

More generally,

π
(aN)
bN+c(z) = zcπ

(a)
b (zN)
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Orthogonal polynomials

From Lemma,

KN,Λ(e
iθ, e iϕ) =

sin(N2 (θ − ϕ)

sin(12 (θ − ϕ))
K1, Λ

N

(e iNθ, e iNϕ), if
Λ

N
∈ Z

N particles and Λ period “=” 1 particle and Λ
N

period.

Also, “=” N
Λ particles and 1 period.
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Density of states.

pN,Λ(e
iθ1 , · · · , e iθN ) = 1

ZN

|∆N(e
iθ)|2

N
∏

j=1

e−
N
Λ
V (e

iΛθj )

◮ When Λ = 1: w(θ) = e−NV (e iθ), usual external potential

◮ When Λ = ∞: w(θ) = 1, CUE (circular unitary ensemble)

ρN,Λ(e
iθ) →

{

ρeq(e
iθ) when Λ = 1

1 when Λ = ∞

◮ Does ρN,Λ converge when N,Λ → ∞? No. But it is bounded.
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Density of states I. |∆N(e
iθ)|2∏N

j=1 e
−N

ΛV (e iΛθj )

When N = kΛ:
ρN,Λ(e

iθ) = fk(e
iΛθ)

where fk(e
iϕ) is the DOS for k particle system with e−kV (e iϕ).

As k → ∞, fk(e
iϕ) → ρeq(e

iϕ), equil. meas. for V (e iϕ). Indeed,

ρN,Λ(e
iθ) ≈ ρeq(e

iΛθ) N >> Λ

Especially, when N = Λ: 1 particle system

ρN,N(e
iθ) ∝ e−V (e iΛθ)
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Density of states II. |∆N(e
iθ)|2∏N

j=1 e
−N

ΛV (e iΛθj )

When N = 1
k
Λ,

ρN,Λ(e
iθ) =

e−
1
k
V (e iΛθ)

1
2π

∫ 2π
0 e−

1
k
V (e iθ)dθ

As k → ∞, RHS→ 1. Indeed,

ρN,Λ(e
iθ) → 1,
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Density of states. |∆N(e
iθ)|2∏N

j=1 e
−N

ΛV (e iΛθj )

1. When N >> Λ,
ρN,Λ(e

iθ) ≈ ρeq(e
iΛθ)

2. When N = kΛ,
ρN,Λ(e

iθ) = fk(e
iΛθ)

3. When N = 1
k
Λ, with I0 =

1
2π

∫ 2π
0 e−

1
k
V (e iθ)dθ,

ρN,Λ(e
iθ) =

1

I0
e−

1
k
V (e iΛθ)

4. When N << Λ,
ρN,Λ(e

iθ) → 1
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Example. V (e ix) = −c cos(x). Density of states

Λ = N N >> Λ

Λ = N N >> Λ
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Bulk scaling limit. |∆N(e
iθ)|2∏N

j=1 e
−N

ΛV (e iΛθj )

When Λ = 1: Let ρeq(e
ix ) be the density of the equilibrium

measure for e−V (e ix ). For a such that ρeq(e
ia) > 0,

2π

ρeq(a)N
KN,1(e

i(a+ 2π
ρeq(a)N

ξ)
, e

i(a+ 2π
ρeq(a)N

η)
) → S(ξ, η)

So, (with a = 0)

2π

N
KN,1(e

i 2π
N
ξ, e i

2π
N
η) → S

(

ρeq(1)ξ, ρeq(1)η
)

When Λ = ∞:

2π

N
KN,1(e

i 2π
N
ξ, e i

2π
N
η) → S(ξ, η)
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Bulk scaling limit. 2π
N
KN ,Λ(e

i 2π
N
ξ
, e

i 2π
N
η) converges to

1. When N >> Λ,
S
(

ρeq(1)ξ, ρeq(1)η
)

2. When N = kΛ,

S
( ξ

k
,
η

k

)

Kk(e
iξ, e iη)

3. When N = 1
k
Λ,

S(ξ, η)
e−

1
2k
V (e2πikξ)− 1

2k
V (e2πikη)

1
2π

∫ 2π
0 e−

1
k
V (e iθ)dθ

4. When N << Λ,
S(ξ, η)
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Two-point function. R2(0, x)

V (e ix) = 0 (CUE)
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Two-point function. R2(0, x)

V (e ix) = − 1
10 cos(2πx)

N = 2Λ N = Λ N = 1
2Λ
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Different scaling

Change

e−
N
Λ
V (e iΛθ) → e−NV (e iΛθ)

Example: V = cos θ, Λ = N. Then

ρN,N(e
iθ) ≈

{

0, if θ /∈ 2π
N
Z

∞, if θ ∈ 2π
N
Z

Bulk scaling limit:

2π

N
KN,N(e

i 2π
N
ξ, e i

2π
N
η) →

{

0, if ξ − η /∈ Z

∞, if ξ − η ∈ Z
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Jacobi ensemble

Jacobi unitary ensemble

p(x1, · · · , xN) =
1

ZN

|∆N(x)|2
N
∏

j=1

1
√

1− x2j

Density of states: 1
π
√
1−x2

. Bulk universality.
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Jacobi ensemble

Let Tk(x) be the Tchebyshev polynomial of first kind.
Tk(x) = cos(kθ) where x = cos θ.
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Jacobi ensemble

Fix V (x), x ∈ [−1, 1], and consider

pN,Λ(x1, · · · , xN) =
1

ZN

|∆N(x)|2
N
∏

j=1

e−
N
Λ
V (TΛ(xj ))

√
1− x2

V (x) = −1
2x − 1

10x
5, N = 30, Λ = 50.
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Jacobi ensemble

Set N = Λ. Density of states:

ρN,N(x) ≈
a + bTN(x)

π
√
1− x2

e−V (TN (x))

Bulk limit: for some x0(N) → 0,

π

N
KN,N

(

x0(N) +
π

N
ξ, x0(N) +

π

N
η
)

→
(

aS(ξ, η) + b
sin(πξ)− sin(πη)

ξ − η

)

e−V (sin(πξ))−V (sin(πη))
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Jacobi ensemble, hard edge

JUE 1√
1−x2

:

1

2N2
K JUE
N

(

1− ξ

2N2
, 1− η

2N2

)

→ B−1/2(ξ, η)

Bessel kernel

Ba(ξ, η) =
Ja(

√
ξ)
√
ηJa(

√
η)−

√
ξJ ′a(

√
ξ)Ja(

√
η)

ξ − η

Eigenvalue scale x = 1− ξ
2N2 .
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Jacobi ensemble, hard edge

locally-varying potential e
−

N
Λ
V (TΛ(xj ))

√
1−x2

with Λ = N:

V (TN(x)) ≈ −V (
√

ξ) when x = 1− ξ

2N2

Hard edge:

1

2N2
K JUE
N

(

1− ξ

2N2
, 1− η

2N2

)

→
(

aB−1/2(ξ, η) + bL(ξ, η)
)

e−
1
2
V (

√
ξ)− 1

2
V (

√
η)

where

L(ξ, η) =

√
ξ sin(

√
ξ)−√

η sin(
√
η)

(ξη)1/4(ξ − η)
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Summary

◮ Locally-varying potential NV1(x) + V2(Nx)

◮ Circular unitary ensemble with periodic potential

◮ Simple relation between orthogonal polynomials

◮ Bulk scaling: determinantal point process with kernel
A(x , y)B(x , y) structure.

◮ Jacobi unitary ensemble with potential e
−

N
Λ
V (TΛ(x))

√
1−x2

. Hard edge.

◮ Question: (i) other β (ii) Hermitian matrix (iii) soft edge
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