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Geometry of links and the Jones polynomial

In 1976, Thurston suggested the Geometrization conjecture, and demonstrated
that many 3-manifolds either have hyperbolic metric or can be decomposed into
pieces with hyperbolic metric (the Hyperbolization theorem). It allowed to study
manifolds from a new perspective: using geometry. By the virtue of
Mostow-Prasad rigidity, for a manifold with finite volume hyperbolic metric is
unique as long as it is complete, and gives rise to numerous invariants.

In 1984, Jones discovered the Jones polynomial for knots. To each oriented link,
it assigns a Laurent polynomial with integer coefficients. The discovery
stimulated a development of a new field of study: quantum invariants. Since
quantum invariants were introduced into knot theory, there has been a strong
interest in relating them to the intrinsic geometry of a link complement.
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Links and their geometry

In particular, Thurston demonstrated that every link in S3 is either a
(generalized) torus link, a satellite link (i.e. contains it an incompressible,
non-boundary parallel torus in its complement), or a hyperbolic link, and these
three categories are mutually exclusive.

Every knot can be uniquely decomposed as a knot sum of prime knots (H.
Schubert). It also true for non-split links, i.e. if there is no a 2–sphere in the
complement separating the link (Hashizume).

Hoste-Thistlethwaite-Weeks:
Of the 14 prime knots up to 7 crossings, only 3 are non-hyperbolic.
Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic.
Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic.
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Colored Jones polynomial

For a link K , the colored Jones polynomial J(K , n)(q) is a sequence of
Laurent polynomials in q indexed by a natural number n (color), with
integer coefficients. Color n = 2 gives the classical Jones polynomial. We
will write J(K , n)(q) as
±(anq

kn−bnq
kn−1 +cnq

kn−2) + . . .± (γnq
kn−rn+2−βnqkn−rn+1 +αnq

kn−rn)

Polynomial coefficients
n = 2 : {1,−2, 2,−2, 2,−1, 1}
n = 3 : {1,−2, 0, 4, ..., 3,−1,−1, 1}
n = 4 : {1,−2, 0, 2, ..., 0,−1,−1, 1}
..........

There are various approaches to defining the colored Jones polynomial:
e.g., via quantum groups and R-matrices (Turaev); via Kauffman bracket
and the skein relation; via Chern-Simons theory (by Witten). None of these
approaches provides a connection with the geometry of a link complement.
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Links and their volume
To compute the hyperbolic volume of a link in S3, one needs to find dihedral
angles of every hyperbolic tetrahedron in a triangulation of the link complement.
This can be done with the help of Thurston’s gluing and completeness equations
(used in the program SnapPea by J. Weeks) or with the help of alternative
equations (Thistlethwaite-T.). If the angles are αi , then the volume is the sum of
Λ(αi ), where Λ is the Lobachevsky function. Either process does not give a simple
expression for volume function in general.

Gromov introduced a norm on the homology of a 3-manifold. The simplicial
volume is v3 times the Gromov norm, where v3 is the volume of a regular ideal
hyperbolic tetrahedron. For a hyperbolic 3-manifold, the simplicial volume is
equal to the hyperbolic volume (Gromov-Thurston theorem). For an arbitrary
3-manifold, the simplicial volume is equal to the sum of the volumes of the
hyperbolic pieces (another theorem) after a decomposition along essential spheres
and tori.
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Volume Conjecture
(Kashaev 1997, J.Murakami-H.Murakami 2001).

For a hyperbolic link K , lim
n→∞

2π log |J(K , n)(e2πi/n)|
n

= Vol(K ). There is also

a version of the conjecture that involves simplicial volume. In particular, simplicial
volume of any knot is determined by its colored Jones polynomial.

The conjecture was proved only for some hyperbolic knots and links: figure-eight
knot (there are several proofs, e.g. by T. Ekholm), Borromean rings (Garoufalidis
and Le), augmented octahedral links, Whitehead chains (van der Veen) and
twisted Whitehead links (Zheng). Note: the links in these infinite families are
commensurable with the Whitehead link, and so the volume is a rational multiple
of the volume of the Whitehead link. Nothing is known about other infinite
families and the conjecture - even a class of 2-bridge links remains a mystery in
this regard.
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Questions motivated by the Volume Conjecture

Is there a correlation of the polynomial coefficients with the hyperbolic
volume?

And what can be said about the coefficients themselves when
n→∞?

(Thistlethwaite, 1986) For a link with a connected, irreducible, alternating
diagram, the first and last coefficients (i.e. the coefficients of the terms of
maximal and minimal degree) in the Jones polynomial are ±1.

Polynomial coefficients
n = 2 : {1,−2, 2,−2, 2,−1, 1}
n = 3 : {1,−2, 0, ...,−1,−1, 1}
n = 4 : {1,−2, 0, ...,−1,−1, 1}

(Dasbach and Lin, 2006) For an alternating link, the absolute values of the
first three and last three coefficients of the colored Jones polynomial are
independent of the color n when n ≥ 3, and the second and penultimate
coefficients are independent of n for n ≥ 2. Moreover, the leading and
trailing coefficients are known to be ±1 for all n.
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Coefficients of the colored Jones polynomial for an alternating link
For alternating links, the first three and the last three coefficients depend only on
the reduced checkerboard graphs (Dasbach and Lin).

To obtain a black checkerboard graph, color the diagram in black and white,
place a vertex inside each black region, and connect two vertices if they are
adjacent to the same crossing. For a reduced graph, delete all multiple edges,
leaving just one.

Note: computing further coefficients, starting from the third, is a harder task.
The first two and last two coefficients of the colored Jones polynomial are
determined by the coefficients of the classical Jones polynomial, unlike the rest.
The classical Jones polynomial of an alternating link can be computed from the
Tutte polynomial. However Tutte polynomial approach cannot be used for the
colored Jones polynomial in general.
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Further coefficients of the colored Jones polynomial
Therefore, one may use certain properties of a link diagram to compute (at least)
the last and first three coefficients.

The tail (respectively head) of a polynomial is the sequence of its lowest
(respectively highest) degree terms, up to some specified length. For a link L and
its mirror image L∗, the colored Jones polynomial J(L, n)(q) = J(L∗, n)(1/q), and
therefore the head of L is the tail of L∗.

The head or tail does not always exist.
Example (Armond, Dasbach). The (4, 3)-torus knot has different tails and one
head: one tail for even color n, and one tail for odd n. Its mirror image,
respectively, has two heads.

Conjecture (Dasbach, Lin). The head and tail exist for alternating knots, i.e. all
coefficients of J(K , n) stabilize for n large enough.
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For which other links (beyond alternating) do head and tail exist? Checkerboard
graphs and surfaces that are associated to alternating links have a natural
generalization (suggested at different times by Stoimenov, Thistlethwaite).

For every crossing in a link diagram, choose A-resolution. The result is a collection
of circles. Collapse each circle to a point, and connect the points through the
letters A. If the resulting graph has no 1-edge loops, the link is called A-adequate.
If it the link is A and B adequate, it is called adequate. Note: for alternating
links, the resulting graphs are just black and white checkerboard graphs.

The existence of head and tail was proved by Armond for adequate links, using
skein theoretical techniques (2011). Independently with different methods it was
proved by Garoufalidis and Le for alternating links (2011).
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Volume bounds for hyperbolic links

We saw that there is no simple expression for volume function in general.
However, instead of the exact calculation, one may estimate volume from
a diagram using volume bounds.

Theorem (Adams 1983; Lackenby 2004) For a hyperbolic link K with
crossing number c , different from the figure-eight knot,
Vol(K ) ≤ (4c − 16)v3, where v3 is the volume of a regular ideal hyperbolic
tetrahedron.

A twist is either a connected collection of bigons arranged in a row, which
is not a part of a longer row of bigons, or a single crossing adjacent to no
bigons. The twist number t(D) is the number of twists in the diagram D.

Theorem (Lackenby 2004). For a hyperbolic link K with a prime
alternating diagram D, v3(t(D)− 2)/2 ≤ Vol(K ) < v3(16t(D)− 16).

Anastasiia Tsvietkova (University of California, Davis Joint work with Oliver Dasbach.)A refined upper bound for the volume of links and the colored Jones polynomial 11 / 29



Volume bounds for hyperbolic links

We saw that there is no simple expression for volume function in general.
However, instead of the exact calculation, one may estimate volume from
a diagram using volume bounds.

Theorem (Adams 1983; Lackenby 2004) For a hyperbolic link K with
crossing number c , different from the figure-eight knot,
Vol(K ) ≤ (4c − 16)v3, where v3 is the volume of a regular ideal hyperbolic
tetrahedron.

A twist is either a connected collection of bigons arranged in a row, which
is not a part of a longer row of bigons, or a single crossing adjacent to no
bigons. The twist number t(D) is the number of twists in the diagram D.

Theorem (Lackenby 2004). For a hyperbolic link K with a prime
alternating diagram D, v3(t(D)− 2)/2 ≤ Vol(K ) < v3(16t(D)− 16).

Anastasiia Tsvietkova (University of California, Davis Joint work with Oliver Dasbach.)A refined upper bound for the volume of links and the colored Jones polynomial 11 / 29



Improved upper bound

Theorem (Agol and Thurston, 2004). Given a diagram D of a link K ,
Vol(K ) ≤ 10(t(D)− 1)v3.

This bound is asymptotically sharp and the constant 10 cannot be
improved for hyperbolic links in general. A chain fence link, which realizes
the upper bound exactly, and the corresponding (infinite) polyhedron:

Bounds for some other families of hyperbolic links (e.g., lower bounds
beyond alternating links) were obtained by Futer, Kalfagianni and Purcell.

Therefore, one may use certain properties of a link diagram to estimate
the volume of the link complement.
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Volumish Theorems

The above results were used to establish correlation of the first two and last two
coefficients of the (colored) Jones polynomial with volume.

For color n ≥ 3, let the colored Jones polynomial of K be
±(aqkn − bqkn−1 + cqkn−2) + . . .± (γqkn−rn+2 − βqkn−rn+1 + αqkn−rn)

Theorem (Dasbach and Lin, 2006) Let K be an alternating link, and b be the
second coefficient of the colored Jones polynomial, and β - the penultimate
coefficient. Then

v8(max(|b|, |β|)− 1) ≤ Vol(K ) ≤ 10v3(|b|+ |β| − 1),

where v8 is volume of an ideal regular hyperbolic octahedron.

Volume bounds for various other families of hyperbolic links (beyond alternating)
in terms of the first two and last two coefficients were obtained by Futer,
Kalfagianni, Purcell and others. On the other hand, there is no single function of
the second and the penultimate coefficient of the Jones polynomial that can
control the volume of all hyperbolic knots (Futer-Kalfaganni-Purcell). In other
words, these coefficients do not coarsely predict the volume of a knot.
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A refined approach to upper bound for volume
Let’s look again at the upper bounds for the volume that were previously used to
establish the correlation. There are links, for which the first gives a better
estimate, and there are links, for which the second one does.

Adams, Lackenby
4 tetrahedra per crossing
Vol(K ) ≤ (4c − 16)v3

Lackenby, Agol-Thurston
10 tetrahedra per twist
Vol(K ) ≤ (10t − 10)v3

The constants 10 and 4 cannot be improved, but a “mix” of the two bounds
might be closer to the actual volume function. The colored Jones polynomial
point of view also suggests that a finer bound is needed to demonstrate closer
correlation. Indeed, the twist number is the sum of just the second and
penultimate coefficients of the colored Jones polynomial, and thus the above
bounds cannot be used to involve further coefficients.
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A refined approach to upper bound for volume

We will prove a refined upper bound from volume that has more parameters
coming from a link diagram.

Let ti (D) be the number of twists that have exactly i crossings (i.e. i − 1
bigons), and gi (D) - the number of twists that have at least i crossings.

Twist number: t = 5
Twists with one crossing: t1 = 2
Twists with two crossings: t2 = 2
Twists with three crossings: t3 = 0
Twists with at least four: g4 = 1

Theorem (Dasbach and T.). For a non-split link L with a diagram D, the
simplicial volume Vol(K ) ≤ (10g4(D) + 8t3(D) + 6t2(D) + 4t1(D)− A)v3, where
A = 10 if g4 is non-zero, A = 7 if t3 is non-zero, and A = 6 otherwise.

For links with one-crossing twists this is the Adams and Lackenby bound, and for
links where all twists have at least four crossings, this is Lackenby and
Agol-Thirston bound (± a linear constant in both cases).
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An improved Volumish theorem for alternating links

The refined upper bound for volume allowed to improve the Volumish
theorem, showing for the first time that the first three and the last three
coefficients correlate with the volume. For a link K , let the colored Jones
polynomial (color n) be
±(anq

kn−bnq
kn−1 +cnq

kn−2)+ . . .±(γnq
kn−rn+2−βnqkn−rn+1 +αnq

kn−rn).

Theorem (Dasbach and T.). Let K be a hyperbolic alternating link. Then
Vol(K ) ≤ (6((c2 + γ2)− (c3 + γ3))− 2(b2 + β2)− A) v3, where A is a
linear constant taking values from 4 to 10 depending on the link diagram.

Note: it is not obvious from the expression, but it is an improvement over
the bound in the Dasbach-Lin Volumish Theorem (can be proved using
properties of an, bn, cn, αn, βn, γn).

Example. The volume of the figure-8 is 2v3. The previous upper bound
resulted in 10v3 for this link. The bound above gives 4v3.
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Proof of the refined upper bound

First, pass from an original link L to the link L′ whose volume is easier to bound.
For this, augment every twist of L that has more than 3 crossings, and remove all
crossings of that twist (shown below).

Claim 1. The (simplicial) volume of L is bounded above by the volume of L′.

Claim 2. The simplicial volume of L′ is at most
(10g4(D) + 8t3(D) + 6t2(D) + 4t1(D)− A)v3.

Suppose we were only interested in hyperbolic volume. Even if we start with a
hyperbolic link L, the above operation does not necessarily result in a hyperbolic
link L′ (unless L is an alternating link). Therefore, simplicial volume has to be
used to prove the refined upper bound even for hyperbolic links.
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Proof of the refined upper bound: main ideas

Claim 1. The volume of the original link L is bounded above by the volume of L′.

A full twist is a bigon. A half-twist is just a crossing. To proof the claim, we need
to show that once we augment and remove crossings at long twists, we obtain a
link with a larger volume. This holds for full twists, since a Dehn filling on a link
A gives a link C , and the simplicial volume is reduced under the filling (for
hyperbolic links, strictly reduced), as proved by Agol, Thurston. However this
technique does not apply to half-twists. Rather, we have to generalize the
following result from hyperbolic to simplicial volume.

Theorem (Adams). Suppose J is an arbitrary 2-tangle, and the links A and B are
hyperbolic. Then hyperbolic volumes of these links in S3 are equal.
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Proposition (generalization of Adams’ result). Suppose J is an arbitrary
2-tangle, and the links A and B are non-split. Then simplicial volumes of
these links in S3 are equal.

The original result holds due to the presence of a 3-punctured sphere in
both link complements. To prove the generalization, we consider a
decomposition of the link A by essential tori (one may think of the JSJ
decomposition of an irreducible manifold).

Anastasiia Tsvietkova (University of California, Davis Joint work with Oliver Dasbach.)A refined upper bound for the volume of links and the colored Jones polynomial 19 / 29



Generalizing Adams’ result to simplicial volume

An incompressible torus can intersect the three-punctured sphere only so
that the meridian is parallel to one of the punctures. For most such
intersection scenarios, one can find a three-punctured sphere along which
the complement of the link A and the decomposing torus can be cut.

Then a half-twist is added to the link, and then both the link complement
and the torus are re-glued back along the three-punctured sphere. The
original Adams’ result then implies that the volumes of the hyperbolic
pieces are unchanged. For the pieces that are not hyperbolic, the simplicial
volumes are 0. However, it is not always possible to re-glue the original
torus back to itself.
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Generalizing Adams’ result to simplicial volume

When it is not possible to re-glue the decomposing torus to itself, construct a
new decomposition of the link B. The decomposition does not look similar to the
decomposition of A at first, but the volumes of the pieces are the same.

To illustrate this, consider the case depicted above (left), with the torus TA in
red. Let J ′ be a subtangle of J that is inside the torus. For the link B take
another torus TB (central figure). The new torus TB partially coincides with TA

(as shown by solid red line) and is parallel to the boundary of B elsewhere (as
shown by dotted red line). Inside the tori we have homeomorphic pieces of the
decomposition with equal volumes (shown on the right). Similar analysis can be
performed with the pieces outside the tori.
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Proof of the refined upper bound: outline

Theorem (Dasbach and T.). For a non-split link L with a diagram D, the
simplicial volume Vol(K ) ≤ (10g4(D) + 8t3(D) + 6t2(D) + 4t1(D)− A)v3, where
A = 10 if g4 is non-zero, A = 7 if t3 is non-zero, and A = 6 otherwise.

Claim 1. The volume of L is bounded above by the volume of L′.

Proposition (generalization of Adams’ result). Suppose
J is an arbitrary 2-tangle, and the links A and B are
non-split. Then simplicial volumes of these links in S3

are equal. Proved above.

Note: L′ is not necessarily non-split. Hence, before
applying the Proposition, we need to consider a
decomposition of L′ by essential spheres.

Claim 2. The simplicial volume of the modified link, L′, is at most
10g4(D) + 8t3(D) + 6t2(D) + 4t1(D)− A)v3.
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Proof of the refined upper bound: ideas
Suppose we started with a non-split link L, but the partially augmented link L′ is
a split link. Then L′ resulted from augmenting a composite link L with a
decomposing 2-punctured sphere S .

The augmentation takes place at a twist of L that is right next to S . Then L′

splits into a link that looks like L or almost like L (a part of it is a mirror image of
a part of L), and into several separate unknotted components. The separate
unknotted components contribute 0 to the volume. And due to the additivity of
simplicial volume under connected sum in dimension 3, the volume of L′ is the
same as the volume of L.
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Claim 2. The simplicial volume of the modified link, L′, is at most
(10g4(D) + 8t3(D) + 6t2(D) + 4t1(D)− A)v3.

To prove it, perform a decomposition into two polyhedra, one above the
projection plane, and one below. The decomposition is a “hybrid” of Menasco’s
decomposition for alternating links and Agol-Thurston decomposition for the links
where every twist is augmented. In particular, there are two “bow-tie” triangular
faces at every crossing circle, and a four-sided face at every twist. These faces
share vertices (the vertices are labeled by numbers, and bow-ties are colored in
gray on the left).
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To obtain the complement of L′, fold rectangular dotted faces, glue together two
triangular dotted faces at every bow-tie, and double along the rest of the faces.

There are more faces in this decomposition than in other decompositions.
However the rectangular dotted faces are folded in the end and do not add to the
count, but help the gluing.

Perform a triangulation and count the maximal possible number of tetrahedra.
Put two “extra” vertices in the link complement, one above the diagram, and one
below. Connect them with the existing vertices so that each bow-tie face yield
four tetrahedra (two above and two below), and other faces yield one tetrahedron
per edge (stellar decomposition). This gives the upper bound. Lastly, collapsing
the two extra vertices results in subtracting a linear constant.
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Further questions

The lower bound for the volume of alternating links was proved by
Lackenby. Can one refine it or suggest another refined lower bound?
Such a bound might be useful to show further correlation of the
coefficients of the colored Jones polynomial and volume.

Can one involve three coefficients of the colored Jones polynomial for
the links beyond alternating? Our refined upper bound for volume is
for all links, but on the side of the Jones polynomial our current
methods are limited to alternating links.

For adequate links, other coefficients of the colored Jones polynomial
stabilize for a color n large enough (“the head and tail” by
Dasbach-Lin, Garoufalidis-Le, Armond). How are they related to the
volume? Is a further refinement possible?
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How close can we get to the actual volume function using such
methods? Futer, kalfagianni, Purcell: volume is not in general
coarsely determined by any linear function of the second and
penultimate coefficients. What about the third coefficient?

Can one relate the coefficients to the volume through the exact
computation rather than upper and lower bounds?

We obtained polynomials for two-bridge links that allow to compute
volume exactly and from a link diagram (based on the alternative method
for computing hyperbolic structure, Thistlethwaite-T.). E.g., for a twist
knot with k + 2 crossings the tetrahedral shapes are (simple-looking)
functions of the root of the polynomial

n∑
j=0

(
2n − j

j

)
w2j +

n−1∑
j=0

(
2n − j − 1

k

)
w2j+1 = 0, where n = k/2.

On the other side, Armond and Dasbach obtained formulas for the
coefficients of the colored Jones polynomial of 2-bridge links.
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