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Key points
● Systems can be encoded as sheaves
● Datasets are assignments to a sheaf model of a system
● Consistency radius measures compatibility between 

system and dataset
– Global sections have zero consistency radius
– Data fusion minimizes consistency radius

● Filters transform global sections via pairs of sheaf 
morphisms
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What is a sheaf?

A sheaf of _____________ on a ______________
(data type) (topological space)
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Overlap constructs topology
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Changing overlaps changes the topology
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Sheaves are about consistency

Non-numeric data types of varying complexity can certainly be supported!
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Finite topologies from partial orders
● Partial orders describe the relationships between observations in a 

system… order relations correspond to (differential) operators

● Every partial order has a natural topology, the Alexandroff topology
– Presheaves and sheaves “are the same thing” in this topology, since the 

gluing axiom is satisfied trivially
– Commutativity is the only actual constraint on a sheaf diagrams
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Topologizing a partial order
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Topologizing a partial order

Open sets are unions
of up-sets
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Topologizing a partial order

Open sets are unions
of up-sets



  Michael Robinson

Topologizing a partial order

Closed sets are
complements of 
open sets
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Topologizing a partial order

Intersections
of up-sets are also
up-sets
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Topologizing a partial order

Intersections
of up-sets are also
up-sets
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A sheaf on a poset is...

A set assigned to 
each element, called
a stalk, and …

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(The stalk on an 
element in the poset
is better thought of being
associated to the up-set)

2
3
1

2 -2
3 -3
1 -1
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A sheaf on a poset is...

… restriction functions 
between stalks, 
following the 
order relation…

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(“Restriction” 
because it goes from
bigger up-sets to smaller ones)
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A sheaf on a poset is...
ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(1 -1) =

(   )0 1 1
1 0 1(1 0) = (0 1) (   )1 0 1

0 1 1

(  )0 1
1 0(  )-3 3

-4 4(   )1 0 1
0 1 1

2 -2
3 -3
1 -1

=

… so that the diagram
commutes!

2
3
1

2
3
1

2 -2
3 -3
1 -1

2 -2
3 -3
1 -1
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An assignment is...

… the selection of a
value from all stalks

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(-1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
0

-2
-3
-1

The term serration is more common, but perhaps more opaque.
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A global section is...

… an assignment
that is consistent 
with the restrictions

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(-1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
0

-2
-3
-1
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Some assignments aren’t consistent

… but they might
be partially 
consistent

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(+1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
1

-2
-3
-1
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Consistency radius is...
… the maximum 
(or some other norm)
distance between the 
value in a stalk and 
the values 
propagated 
along the 
restrictions

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(+1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
1

-2
-3
-1

2
3
1(   )0 1 1

1 0 1 ( )3
2- =   2

( )2
3(1 -1) - 1 = 2

(+1) - 
2
3
1

-2
-3    = 2  14
-1 MAX ≥ 2  14

Note: lots more restrictions to check!
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The space of global sections

It’s a subset of the product 
of the stalks over the 
minimal elements

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

Global sections ⊆ ℝ2×ℝ3 ⊆ ℝ17

Thm: (R.) Consistency 
radius sets a lower 
bound on the distance 
to the nearest 
global section

Data fusion selects the
nearest global section

2
3
1

2 -2
3 -3
1 -1
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Chris Capraro, Janelle Henrich

Separating sinusoids from noise
● Consider a signal formed from N sinusoids

– Each sinusoid has a (real) frequency ω
– Each sinusoid has a (complex) amplitude a

● Task: Recover these parameters from M samples
 f is an arbitrary 

known function
Possibilities:
● Magnitude
● Phase
● Identity function
● Quantizer output
● Signal dispersion

Gaussian noise
Sample time

Sinusoid frequency

Sinusoid amplitude
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Chris Capraro, Janelle Henrich

Separating sinusoids from noise
● Consider a signal formed from N sinusoids

– Each sinusoid has a (real) frequency ω
– Each sinusoid has a (complex) amplitude a

● Model the situation as a sheaf over a poset...
 

ℂ ℂ ℂ…

Parameter spaces 
become stalks

Signal models become restrictions

ℝN×ℂN
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Chris Capraro, Janelle Henrich

Separating sinusoids from noise
● Consider a signal formed from N sinusoids

– Each sinusoid has a (real) frequency ω
– Each sinusoid has a (complex) amplitude a

● The samples become an assignment to part of the 
sheaf  

ℝN×ℂN

x1 ∈ ℂ x2 ∈ ℂ xM ∈ ℂ Observed…
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Chris Capraro, Janelle Henrich

Separating sinusoids from noise
● Consider a signal formed from N sinusoids

– Each sinusoid has a (real) frequency ω
– Each sinusoid has a (complex) amplitude a

● Find the unknown parameters by minimizing 
consistency radius

(ω1,…,ωN,a1,…,aN) ∈ ℝN×ℂN

x1 ∈ ℂ x2 ∈ ℂ xM ∈ ℂ Observed

Inferred

…
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Chris Capraro, Janelle Henrich

Sheaves deliver excellent performance

8x improvement 
over state-of-the-art 
in heavy noise!

Sheaf result
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More complex example: flight tracking
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… turns into a search and rescue mission

Actual
flight path

Observations generated using realistic simulated data...
(known crash location withheld for validation)
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Virtual (inferred) sensors

Sheaf model of the sensors
● We can form a partial order of the sensors and 

their overlaps

ATC
radar

Last 
known
position

RDF 1 RDF 2Satellite
image

Bearing 1 Bearing 2Crash 
time

Dead reckoning

Partial order

Physical sensors

Reported data
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Sheaf model of the sensors
● We can form a partial order of the sensors and 

their overlaps

ATC
radar

Last 
known
position

RDF 1 RDF 2Satellite
image

Bearing 1 Bearing 2Crash 
time

Dead reckoning

Partial orderSheaf model
Restrictions A, B, C, D compute bearings from lat/lon
Restriction E computes estimated crash location from last known position, velocity, time
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Case 1: Known flight path

Raw data:
Consistency radius: 15.7 km
Crash site error:  16.1 km (using last known position only)

Post-fusion: 
Crash site error: 2.0 km
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Case 2: Minor RDF angle error

Raw data:
Consistency radius: 11.6 km
Crash site error: 17.3 km (using last known position only)

Post-fusion: 
Crash site error: 8.4 km
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Case 3: Major flight path error

Raw data:
Consistency radius: 152 km
Crash site error: 193 km (using last known position only)

Post-fusion: 
Crash site error: 74.4 km

High consistency radius means data 
and model are in conflict...
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Topological filters
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Discrete-time LTI filters
● Linear Translation-Invariant filters are the 

workhorses of modern signal processing

time

time

Input Signal

Output Signal

Linear 
operation
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Discrete-time LTI filters
● Linear Translation-Invariant filters are the 

workhorses of modern signal processing

time

time

Input Signal

Output Signal

Linear 
operation
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Discrete-time LTI filters
● Linear Translation-Invariant filters are the 

workhorses of modern signal processing

time

time

Input Signal

Output Signal

Linear 
operation
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Filters as sheaf morphisms
● Theorem: Every discrete-time LTI filter can be 

encoded as a sequence of two sheaf morphisms

S
1
                S

2         
         S

3

Input Internal state Output

Weighted sum

Sheaf formalism

Hardware

Shift register

projection combination
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Proof sketch: Input sheaf
● Sections of this sheaf are timeseries, instead of 

continuous functions

time

Input Signal
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Proof sketch: Input sheaf
● Sections of this sheaf are timeseries, instead of 

continuous functions

ℝ0ℝ0ℝ0ℝ0

time

Input Signal
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Proof sketch: Input sheaf
● Sections of this sheaf are timeseries, instead of 

continuous functions

ℝ0ℝ0ℝ0ℝ0
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Proof sketch: Output sheaf
● The output sheaf is the same

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0
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Proof sketch: The internal state
● Contents of the shift register at each timestep
● N = 3 shown

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

1 0 0
0 1 0

0 1 0
0 0 1(   )

(   )
0 1 0
0 0 1(   ) 0 1 0

0 0 1(   ) 0 1 0
0 0 1(   )

1 0 0
0 1 0(   ) 1 0 0

0 1 0(   )
ℝ0ℝ0ℝ0ℝ0
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Proof sketch: The internal state
● Loads a new value with each timestep

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

(0 0 1) (0 0 1)(0 0 1)
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Proof sketch: The internal state
● Computes linear functional of the shift register at 

each timestep (for instance, compute the mean)

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

(0 0 1) (0 0 1)(0 0 1)

ℝ0ℝ0ℝ0ℝ0

(⅓ ⅓ ⅓) (⅓ ⅓ ⅓) (⅓ ⅓ ⅓)
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Proof sketch: Finishing both morphisms
● Put in a few zero maps!

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

ℝ0ℝ0ℝ0ℝ0
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A practical topological filter

The QuasiPeriodic Low Pass Filter 

(QPLPF)
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Circumventing bandwidth limits
● Traditional: averaging in a connected window

– Noise cancellation (Good)
– Distortion to the signal (Bad)

● Knowledge of the phase space: can safely do more 
averaging across the entire signal
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Stage 2:
Topological 

filtering

QPLPF block diagram

Input signal Quasiperiodic
Factorization

Quotient
construction Averaging filter Output signal

Stage 1:
Topological 
estimation

T
im

e

Neighbors

Average along rows
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Stage 2:
Topological 

filtering

How is this a topological filter?

Input signal Quasiperiodic
Factorization

Quotient
construction Averaging filter Output signal

Stage 1:
Topological 
estimation

Input base 
space is ℤ

Output base 
space is ℤ

Internal state base space is 
learned from the data
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Stage 2:
Topological 

filtering

How is this a topological filter?

Input signal Quasiperiodic
Factorization

Quotient
construction Averaging filter Output signal

Stage 1:
Topological 
estimation

Samples grouped 
according to 
learned topology

Input 
timeseries

Output 
timeseries

AverageProject
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QPLPF results

Extremely stable output amplitudeSome low
frequency
distortion
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Compare: standard adaptive filter

Unstable amplitude
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Filter performance comparison
● QPLPF combines good noise removal with signal 

envelope stability
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Ocean radar image despeckling
After topological filtering:
● Speckle and contrast improved

QPLPF
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High-pass filtering

Detecting missing and spurious data

joint work with Fernando Benadon and Andy McGraw
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Context: Afro-Cuban drumming

photo credit: 
Andrew McGraw

● Five instrumentalists
● No musical score
● Varying degrees of 
structure

Onset list Inter-Onset
Intervals
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Extracting musical structure
● The clave is highly regular… it provides the timing 

for the ensemble

PCA

Sliding window array
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Extracting musical structure
● The clave is highly regular…
● QPLPF acts by tightening the note clusters

QPLPF+PCA

Sliding window array (ignore the nuisance rotation!)
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Extracting musical structure
● … so much that it can be transcribed easily
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Some instruments are less clear
● The segundo is pretty structured...

Outliers present

Note clusters 
from main theme
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Some instruments are less clear
● … but automated transcription is frustrated by 

ghost notes.  (There’s considerable musical nuance)

“Extra” notes

“Missing” notes

NB: These might 
be “extra” or 
“missing” on 
purpose!
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Deghosting process
● Use QPLPF as a baseline, look at the difference!
● This is the QuasiPeriodic High Pass Filter

Form 
measure 
window 

array

QPLPF Difference Peak 
detect

Add/remove 
notes

IOI timeseries

Corrected IOI timeseries
QPHPF
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Peak detection subtlety
● Two musically-separate halves of the piece.  
● They need to be handled differently

time (s)

D
ev

ia
tio

n 
fr

om
 b

as
el

in
e 

 (s
)

time (s)

Extra notes

Missing notes
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Features now visible
Tem

p o incr ease

First few measures are different, before stabilizing to regular pattern

Segundo follows an 11-note pattern

Distinct anomalous 
measures, possibly to re-
synch with other 
drummers, or maybe just 
weaker ghosts...
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The future
● Computational sheaf theory

– Small examples can be put together ad hoc
– Larger ones require a software library

● PySheaf: a software library for sheaves
– https://github.com/kb1dds/pysheaf
– Includes several examples you can play with!

● Connections to statistical models need to be explored
● Extensive testing on various datasets and scenarios

https://github.com/kb1dds/pysheaf
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For more information

Michael Robinson

michaelr@american.edu

Preprints available from my website:

http://www.drmichaelrobinson.net/

mailto:michaelr@american.edu
http://www.drmichaelrobinson.net/
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