An integral lift of contact homology

Jo Nelson
IAS and Columbia University

IAS short talks 2015

What is a contact manifold?

A contact structure ξ on $M^{2 n-1}$ is a maximally non-integrable hyperplane distribution...

What is a contact manifold?

A contact structure ξ on $M^{2 n-1}$ is a maximally non-integrable hyperplane distribution...

What is a contact manifold?

A contact structure ξ on $M^{2 n-1}$ is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^{1}\left(M^{2 n-1}\right)$ is a contact structure whenever

What is a contact manifold?

A contact structure ξ on $M^{2 n-1}$ is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^{1}\left(M^{2 n-1}\right)$ is a contact structure whenever

- $\alpha \wedge(d \alpha)^{n-1}$ is a volume form \Leftrightarrow

What is a contact manifold?

A contact structure ξ on $M^{2 n-1}$ is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^{1}\left(M^{2 n-1}\right)$ is a contact structure whenever

- $\alpha \wedge(d \alpha)^{n-1}$ is a volume form \Leftrightarrow
- $\left.d \alpha\right|_{\xi}$ is nondegenerate

What is a contact manifold?

A contact structure ξ on $M^{2 n-1}$ is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^{1}\left(M^{2 n-1}\right)$ is a contact structure whenever

- $\alpha \wedge(d \alpha)^{n-1}$ is a volume form \Leftrightarrow
- $\left.d \alpha\right|_{\xi}$ is nondegenerate

What is a contact manifold?

A contact structure ξ on $M^{2 n-1}$ is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^{1}\left(M^{2 n-1}\right)$ is a contact structure whenever

- $\alpha \wedge(d \alpha)^{n-1}$ is a volume form \Leftrightarrow
- $\left.d \alpha\right|_{\xi}$ is nondegenerate

Here: $\alpha=d z-y d x$

Reeb flow

Choose a contact form α.

Definition

The Reeb vector field R_{α} is uniquely determined by

- $\alpha\left(R_{\alpha}\right)=1$,
- $d \alpha\left(R_{\alpha}, \cdot\right)=0$.

Reeb flow

Choose a contact form α.

Definition

The Reeb vector field R_{α} is uniquely determined by

- $\alpha\left(R_{\alpha}\right)=1$,
- $d \alpha\left(R_{\alpha}, \cdot\right)=0$.

Reeb orbits are Hopf fibers of S^{3},

Reeb flow

Choose a contact form α.

Definition

The Reeb vector field R_{α} is uniquely determined by

- $\alpha\left(R_{\alpha}\right)=1$,
- $d \alpha\left(R_{\alpha}, \cdot\right)=0$.

Reeb orbits are Hopf fibers of $S^{3}, \alpha_{0}=\frac{i}{2}(u d \bar{u}-\bar{u} d u+v d \bar{v}-\bar{v} d v)$

Patrick Massot

http://www.nilesjohnson.net/hopf.html

Global Invariants

The Weinstein Conjecture

Let (M, ξ) be a closed oriented contact manifold. Then for any contact form α for ξ, the Reeb vector field R_{α} has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

Global Invariants

The Weinstein Conjecture

Let (M, ξ) be a closed oriented contact manifold. Then for any contact form α for ξ, the Reeb vector field R_{α} has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

Conjecture

The tight contact 3-sphere admits either 2 or infinitely many simple Reeb orbits.

Global Invariants

The Weinstein Conjecture

Let (M, ξ) be a closed oriented contact manifold. Then for any contact form α for ξ, the Reeb vector field R_{α} has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

Conjecture

The tight contact 3-sphere admits either 2 or infinitely many simple Reeb orbits.

- Cristofaro-Gardiner - Hutchings proved at least 2 simple orbits.
- Hofer-Wysocki-Zehnder proved for dynamically convex 3 -spheres

Global Invariants

The Weinstein Conjecture

Let (M, ξ) be a closed oriented contact manifold. Then for any contact form α for ξ, the Reeb vector field R_{α} has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

Conjecture

The tight contact 3-sphere admits either 2 or infinitely many simple Reeb orbits.

- Cristofaro-Gardiner - Hutchings proved at least 2 simple orbits.
- Hofer-Wysocki-Zehnder proved for dynamically convex 3 -spheres

Conjecture (Hutchings-Taubes)

The only contact 3-manifolds that admit exactly two simple Reeb orbits must be either a sphere or a lens space...Otherwise there are always infinitely many simple periodic Reeb orbits!

A "new" hope for a chain complex

Assume: M closed and α nondegenerate

A "new" hope for a chain complex

Assume: M closed and α nondegenerate
"Do" Morse theory on

$$
\begin{aligned}
\mathcal{A}: \quad C^{\infty}\left(S^{1}, M\right) & \rightarrow \mathbb{R}, \\
\gamma & \mapsto \int_{\gamma} \alpha .
\end{aligned}
$$

A "new" hope for a chain complex

Assume: M closed and α nondegenerate
"Do" Morse theory on

$$
\begin{aligned}
\mathcal{A}: \quad C^{\infty}\left(S^{1}, M\right) & \rightarrow \mathbb{R}, \\
\gamma & \mapsto \int_{\gamma} \alpha .
\end{aligned}
$$

Proposition

$\gamma \in \operatorname{Crit}(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

A "new" hope for a chain complex

Assume: M closed and α nondegenerate
"Do" Morse theory on

$$
\begin{aligned}
\mathcal{A}: \quad C^{\infty}\left(S^{1}, M\right) & \rightarrow \mathbb{R}, \\
\gamma & \mapsto \int_{\gamma} \alpha .
\end{aligned}
$$

Proposition

$\gamma \in \operatorname{Crit}(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

- Grading on orbits given by Conley-Zehnder index,

A "new" hope for a chain complex

Assume: M closed and α nondegenerate
"Do" Morse theory on

$$
\begin{aligned}
\mathcal{A}: \quad C^{\infty}\left(S^{1}, M\right) & \rightarrow \mathbb{R}, \\
\gamma & \mapsto \int_{\gamma} \alpha .
\end{aligned}
$$

Proposition

$\gamma \in \operatorname{Crit}(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

- Grading on orbits given by Conley-Zehnder index,

A "new" hope for a chain complex

Assume: M closed and α nondegenerate
"Do" Morse theory on

$$
\begin{aligned}
\mathcal{A}: \quad C^{\infty}\left(S^{1}, M\right) & \rightarrow \mathbb{R}, \\
\gamma & \mapsto \int_{\gamma} \alpha .
\end{aligned}
$$

Proposition

$\gamma \in \operatorname{Crit}(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

- Grading on orbits given by Conley-Zehnder index,
- $C_{*}(\alpha)=\mathbb{Q}\langle\{$ closed Reeb orbits $\} \backslash\{$ bad Reeb orbits $\}\rangle$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$, where $\gamma_{ \pm}$are $T_{ \pm- \text {-periodic Reeb orbits. }}$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$, where $\gamma_{ \pm}$are $T_{ \pm-}$- periodic Reeb orbits.

$$
\begin{aligned}
& u:=(a, f):\left(\mathbb{R} \times S^{1}, j\right) \rightarrow(\mathbb{R} \times M, \tilde{J}) \\
& \bar{\partial}_{j, \tilde{J}} u:=d u+\tilde{J} \circ d u \circ j \equiv 0
\end{aligned}
$$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$, where $\gamma_{ \pm}$are $T_{ \pm-}$- periodic Reeb orbits.
$u:=(a, f):\left(\mathbb{R} \times S^{1}, j\right) \rightarrow(\mathbb{R} \times M, \tilde{\jmath}) \lim _{s \rightarrow \pm \infty} a(s, t)= \pm \infty$
$\bar{\partial}_{j, \tilde{J}} u:=d u+\tilde{J} \circ d u \circ j \equiv 0$

$$
\lim _{s \rightarrow \pm \infty} f(s, t)=\gamma_{ \pm}\left(T_{ \pm} t\right)
$$

up to reparametrization.

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$, where $\gamma_{ \pm}$are $T_{ \pm-}$- periodic Reeb orbits.
$u:=(a, f):\left(\mathbb{R} \times S^{1}, j\right) \rightarrow(\mathbb{R} \times M, \tilde{\jmath}) \lim _{s \rightarrow \pm \infty} a(s, t)= \pm \infty$
$\bar{\partial}_{j, \tilde{J}} u:=d u+\tilde{\jmath} \circ d u \circ j \equiv 0 \quad \lim _{s \rightarrow \pm \infty} f(s, t)=\gamma_{ \pm}\left(T_{ \pm} t\right)$
up to reparametrization.

- $\partial: C_{*} \rightarrow C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$, where $\gamma_{ \pm}$are $T_{ \pm-}$- periodic Reeb orbits.
$u:=(a, f):\left(\mathbb{R} \times S^{1}, j\right) \rightarrow(\mathbb{R} \times M, \tilde{\jmath}) \lim _{s \rightarrow \pm \infty} a(s, t)= \pm \infty$
$\bar{\partial}_{j, \tilde{J}} u:=d u+\tilde{\jmath} \circ d u \circ j \equiv 0 \quad \lim _{s \rightarrow \pm \infty} f(s, t)=\gamma_{ \pm}\left(T_{ \pm} t\right)$
up to reparametrization.

- $\partial: C_{*} \rightarrow C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

A new hope...

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{j}}\left(\gamma_{+} ; \gamma_{-}\right)$, where $\gamma_{ \pm}$are $T_{ \pm- \text {-periodic Reeb orbits. }}$
$u:=(a, f):\left(\mathbb{R} \times S^{1}, j\right) \rightarrow(\mathbb{R} \times M, \tilde{J}) \lim _{s \rightarrow \pm \infty} a(s, t)= \pm \infty$
$\bar{\partial}_{j, \tilde{J}} u:=d u+\tilde{\jmath} \circ d u \circ j \equiv 0 \quad \lim _{s \rightarrow \pm \infty} f(s, t)=\gamma_{ \pm}\left(T_{ \pm} t\right)$
up to reparametrization.

- $\partial: C_{*} \rightarrow C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

Conjeorem (Eliashberg-Givental-Hofer '00)

Assume a minimal amount of things. Then $\left.\left(C_{*}(\alpha), \partial\right)\right)$ forms a chain complex and $H\left(C_{*}(\alpha), \partial\right)$ is independent of α and \tilde{J}.

The Pseudoholomorphic Menace

- Transversality for multiply covered curves...good luck

The Pseudoholomorphic Menace

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{j}}\left(\gamma_{+} ; \gamma_{-}\right)$more than a set?

The Pseudoholomorphic Menace

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{j}}\left(\gamma_{+} ; \gamma_{-}\right)$more than a set?
- $\mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$can have nonpositive virtual dimension!?!

The Pseudoholomorphic Menace

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{j}}\left(\gamma_{+} ; \gamma_{-}\right)$more than a set?
- $\mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$can have nonpositive virtual dimension!?!
- Compactness issues are severe
- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{j}}\left(\gamma_{+} ; \gamma_{-}\right)$more than a set?
- $\mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$can have nonpositive virtual dimension!?!
- Compactness issues are severe

Desired compactification for $C Z(x)-C Z(z)=2$.

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{j}}\left(\gamma_{+} ; \gamma_{-}\right)$more than a set?
- $\mathcal{M}_{\tilde{J}}\left(\gamma_{+} ; \gamma_{-}\right)$can have nonpositive virtual dimension!?!
- Compactness issues are severe

Desired compactification for $C Z(x)-C Z(z)=2$.

Adding to 2 becomes hard

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms associated to $\left(M^{3}, \xi\right)$. Then $\partial^{2}=0$, invariance under choice of \tilde{J} and dynamically separated α.

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms associated to $\left(M^{3}, \xi\right)$. Then $\partial^{2}=0$, invariance under choice of \tilde{J} and dynamically separated α.

- Do more index calculations

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms associated to $\left(M^{3}, \xi\right)$. Then $\partial^{2}=0$, invariance under choice of \tilde{J} and dynamically separated α.

- Do more index calculations
- Learn some intersection theory

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms associated to $\left(M^{3}, \xi\right)$. Then $\partial^{2}=0$, invariance under choice of \tilde{J} and dynamically separated α.

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms associated to $\left(M^{3}, \xi\right)$. Then $\partial^{2}=0$, invariance under choice of \tilde{J} and dynamically separated α.

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^{2}=0$ can be excluded in dimension 3!

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms associated to $\left(M^{3}, \xi\right)$. Then $\partial^{2}=0$, invariance under choice of \tilde{J} and dynamically separated α.

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^{2}=0$ can be excluded in dimension 3!

Jo Nelson
An integral lift of contact homology

The return of regularity

Definition

A nondegenerate ($M^{3}, \xi=\operatorname{ker} \alpha$) is dynamically convex whenever

- $\left.c_{1}(\xi)\right|_{\pi_{2}(M)}=0$ and every contractible γ satisfies $\mu_{C Z}(\gamma) \geq 3$.

The return of regularity

Definition

A nondegenerate ($M^{3}, \xi=\operatorname{ker} \alpha$) is dynamically convex whenever

- $\left.c_{1}(\xi)\right|_{\pi_{2}(M)}=0$ and every contractible γ satisfies $\mu_{C Z}(\gamma) \geq 3$.

A convex hypersurface transverse to the radial vector field Y in $\left(\mathbb{R}^{4}, \omega_{0}\right)$ admits a dynamically convex contact form $\alpha:=\omega_{0}(Y, \cdot)$.

The return of regularity

Definition

A nondegenerate ($M^{3}, \xi=\operatorname{ker} \alpha$) is dynamically convex whenever

- $\left.c_{1}(\xi)\right|_{\pi_{2}(M)}=0$ and every contractible γ satisfies $\mu_{C Z}(\gamma) \geq 3$.

A convex hypersurface transverse to the radial vector field Y in $\left(\mathbb{R}^{4}, \omega_{0}\right)$ admits a dynamically convex contact form $\alpha:=\omega_{0}(Y, \cdot)$.

Theorem (Hutchings-N. 2014)

If $\left(M^{3}, \alpha\right)$ is dynamically convex and every contractible Reeb orbit γ has $\mu_{C Z}(\gamma)=3$ only if γ is simple then $\partial^{2}=0$.

The return of regularity

Definition

A nondegenerate ($M^{3}, \xi=\operatorname{ker} \alpha$) is dynamically convex whenever

- $\left.c_{1}(\xi)\right|_{\pi_{2}(M)}=0$ and every contractible γ satisfies $\mu_{C Z}(\gamma) \geq 3$.

A convex hypersurface transverse to the radial vector field Y in $\left(\mathbb{R}^{4}, \omega_{0}\right)$ admits a dynamically convex contact form $\alpha:=\omega_{0}(Y, \cdot)$.

Theorem (Hutchings-N. 2014)

If $\left(M^{3}, \alpha\right)$ is dynamically convex and every contractible Reeb orbit γ has $\mu_{C Z}(\gamma)=3$ only if γ is simple then $\partial^{2}=0$.

Still stuck on Invariance....

The force awakens

The force awakens

The force awakens

- Non-equivariant formulations,
- Non-equivariant formulations, domain dependent almost complex structures,
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- And S^{1}-equivariantize
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- And S^{1}-equivariantize yielding an integral lift of contact homology, $\mathrm{CH}_{*}^{\mathbb{Z}} \ldots$
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- And S^{1}-equivariantize yielding an integral lift of contact homology, $\mathrm{CH}_{*}^{\mathbb{Z}} \ldots$ plus $\mathrm{CH}_{*}^{\mathbb{Z}} \otimes \mathbb{Q} \cong \mathrm{CH}_{*}$!

Theorem (Hutchings-N; 2015)

INVARIANCE! Obtained for dynamically convex $\left(M^{3}, \alpha\right)$ wherein a contractible γ has $\mu_{C Z}(\gamma)=3$ only if γ is simple.

The period doubling bifurcation for a simple Reeb orbit

Modify flow by the return map $\phi_{r}:=$ rotate by $180^{\circ} \circ \varphi_{\epsilon}^{X_{r}}$.

The period doubling bifurcation for a simple Reeb orbit
Modify flow by the return map $\phi_{r}:=$ rotate by $180^{\circ} \circ \varphi_{\epsilon}^{X_{r}}$.

Figure 1: Flow of X_{0}; before the bifurcation.

Figure 2: Flow of X_{r}; for $r=1 / 2$.

Figure 3: Flow of X_{1}; after the bifurcation.

The period doubling bifurcation for a simple Reeb orbit

Modify flow by the return map $\phi_{r}:=$ rotate by $180^{\circ} \circ \varphi_{\epsilon}^{X_{r}}$.

Figure 1: Flow of X_{0}; before the bifurcation.

Figure 2: Flow of X_{r}; for $r=1 / 2$.

Figure 3: Flow of X_{1}; after the bifurcation.

- At $r=0$ have an elliptic orbit E ,

The period doubling bifurcation for a simple Reeb orbit

Modify flow by the return map $\phi_{r}:=$ rotate by $180^{\circ} \circ \varphi_{\epsilon}^{X_{r}}$.

Figure 1: Flow of X_{0}; before the bifurcation.

Figure 2: Flow of X_{r}; for $r=1 / 2$.

Figure 3: Flow of X_{1}; after the bifurcation.

- At $r=0$ have an elliptic orbit E ,
- At $r=1$ bifurcation into negative hyperbolic orbit h and elliptic orbit e_{2} of double the period.

The period doubling bifurcation for a simple Reeb orbit

Modify flow by the return map $\phi_{r}:=$ rotate by $180^{\circ} \circ \varphi_{\epsilon}^{X_{r}}$.

Figure 1: Flow of X_{0}; before the bifurcation.

Figure 2: Flow of X_{r}; for $r=1 / 2$.

Figure 3: Flow of X_{1}; after the bifurcation.

- At $r=0$ have an elliptic orbit E ,
- At $r=1$ bifurcation into negative hyperbolic orbit h and elliptic orbit e_{2} of double the period.
Local $C H_{*}^{\mathbb{Q}}=H_{*}\left(\mathbb{Q}\left\langle\right.\right.$ good orbits winding k times around $\left.\left.N_{\gamma}\right\rangle, \partial\right)$.
For $k=2$: 1 generator before $\left(E^{2}\right)$ bifurcation and 1 generator after $\left(e_{2}\right)$.

The period doubling bifurcation for a simple Reeb orbit

Modify flow by the return map $\phi_{r}:=$ rotate by $180^{\circ} \circ \varphi_{\epsilon}^{X_{r}}$.

Figure 1: Flow of X_{0}; before the bifurcation.

Figure 2: Flow of X_{r}; for $r=1 / 2$.

Figure 3: Flow of X_{1}; after the bifurcation.

- At $r=0$ have an elliptic orbit E ,
- At $r=1$ bifurcation into negative hyperbolic orbit h and elliptic orbit e_{2} of double the period.
Local $C H_{*}^{\mathbb{Q}}=H_{*}\left(\mathbb{Q}\left\langle\right.\right.$ good orbits winding k times around $\left.\left.N_{\gamma}\right\rangle, \partial\right)$.
For $k=2$: 1 generator before $\left(E^{2}\right)$ bifurcation and 1 generator after $\left(e_{2}\right)$.
Local $\mathrm{CH}_{*}^{\mathbb{Z}}$ sees more!
Local $C H_{*}^{\mathbb{Z}}=H_{*}\left(\mathbb{Z}\left\langle\operatorname{good}\right.\right.$ and bad winding k times around $\left.\left.N_{\gamma}\right\rangle \otimes \mathbb{Z}[[u]]\right)$.

For the contact form λ_{0}, the only Reeb orbit in N which winds twice around N is the double cover E^{2} of E

$$
C H_{*}^{\mathbb{Z}}\left(\lambda_{0}, N\right)=\left\{\begin{array}{cll}
\mathbb{Z} & \text { if } *=0 & (\text { generated by } E) \\
\mathbb{Z} / 2 & \text { if } *=2 k+1 & \left(\text { generated by } u^{k} E\right) \\
0 & \text { otherwise } &
\end{array}\right.
$$

$H_{*}\left(\mathbb{Z}\left\langle\right.\right.$ good and bad winding k times around $\left.\left.N_{\gamma}\right\rangle \otimes \mathbb{Z}[[u]]\right)$.

For the contact form λ_{0}, the only Reeb orbit in N which winds twice around N is the double cover E^{2} of E

$$
C H_{*}^{\mathbb{Z}}\left(\lambda_{0}, N\right)=\left\{\begin{array}{cll}
\mathbb{Z} & \text { if } *=0 & (\text { generated by } E) \\
\mathbb{Z} / 2 & \text { if } *=2 k+1 & \left(\text { generated by } u^{k} E\right), \\
0 & \text { otherwise. } &
\end{array}\right.
$$

For the contact form λ_{1}, there are two Reeb orbits in N which wind twice around N, namely e_{2} and h^{2}

$$
C H_{*}^{\mathbb{Z}}\left(\lambda_{1}, N\right)=\left\{\begin{array}{cll}
\mathbb{Z} & \text { if } *=0 & \left(\text { generated by } e_{2}\right), \\
\mathbb{Z} / 2 & \text { if } *=2 k+1 & \left(\text { generated by } u^{k} h^{2}\right), \\
0 & \text { otherwise. } &
\end{array}\right.
$$

$H_{*}\left(\mathbb{Z}\left\langle\operatorname{good}\right.\right.$ and bad winding k times around $\left.\left.N_{\gamma}\right\rangle \otimes \mathbb{Z}[[u]]\right)$.

For the contact form λ_{0}, the only Reeb orbit in N which winds twice around N is the double cover E^{2} of E

$$
C H_{*}^{\mathbb{Z}}\left(\lambda_{0}, N\right)=\left\{\begin{array}{cll}
\mathbb{Z} & \text { if } *=0 & (\text { generated by } E) \\
\mathbb{Z} / 2 & \text { if } *=2 k+1 & \left(\text { generated by } u^{k} E\right) \\
0 & \text { otherwise. } &
\end{array}\right.
$$

For the contact form λ_{1}, there are two Reeb orbits in N which wind twice around N, namely e_{2} and h^{2}

$$
C H_{*}^{\mathbb{Z}}\left(\lambda_{1}, N\right)=\left\{\begin{array}{cll}
\mathbb{Z} & \text { if } *=0 & \left(\text { generated by } e_{2}\right), \\
\mathbb{Z} / 2 & \text { if } *=2 k+1 & \left(\text { generated by } u^{k} h^{2}\right), \\
0 & \text { otherwise. } &
\end{array}\right.
$$

The 2-torsion before the bifurcation sees the bad Reeb orbit that can be created in the bifurcation!

The end!

Jo Nelson

