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What is a contact manifold?

A contact structure ξ on M2n−1 is a maximally non-integrable
hyperplane distribution...

The kernel of α ∈ Ω1(M2n−1) is a
contact structure whenever

α∧ (dα)n−1 is a volume form

⇔

dα|ξ is nondegenerate

Here: α = dz − ydx
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Reeb flow

Choose a contact form α.

Definition

The Reeb vector field Rα is uniquely determined by

α(Rα) = 1,

dα(Rα, ·) = 0.

Reeb orbits are Hopf fibers of S3, α0 = i
2(udū− ūdu + vdv̄ − v̄dv)

Patrick Massot http://www.nilesjohnson.net/hopf.html
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Global Invariants

The Weinstein Conjecture

Let (M, ξ) be a closed oriented contact manifold. Then for any
contact form α for ξ, the Reeb vector field Rα has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

Conjecture

The tight contact 3-sphere admits either 2 or infinitely many
simple Reeb orbits.

Cristofaro-Gardiner – Hutchings proved at least 2 simple orbits.

Hofer-Wysocki-Zehnder proved for dynamically convex 3-spheres

Conjecture (Hutchings-Taubes)

The only contact 3-manifolds that admit exactly two simple Reeb
orbits must be either a sphere or a lens space...Otherwise there are
always infinitely many simple periodic Reeb orbits!
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A “new” hope for a chain complex

Assume: M closed and α nondegenerate

“Do” Morse theory on

A : C∞(S1,M) → R,

γ 7→
∫
γ
α.

Proposition

γ ∈ Crit(A)⇔ γ is a closed Reeb orbit.

Grading on orbits given by Conley-Zehnder index,

C∗(α) = Q〈{closed Reeb orbits} \ {bad Reeb orbits}〉
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A new hope...

Gradient flow lines no go; use finite energy pseudoholomorphic
cylinders u ∈MJ̃ (γ+; γ−), where γ± are T±-periodic Reeb orbits.

u := (a, f ) : (R× S1, j)→ (R×M, J̃ )

∂̄j ,J̃ u := du + J̃ ◦ du ◦ j ≡ 0

lim
s→±∞

a(s, t) = ±∞

lim
s→±∞

f (s, t) = γ±(T±t)

up to reparametrization.

∂ : C∗ → C∗−1 is a weighted count of pseudoholomorphic
cylinders up to reparametrization

Hope this is independent of our choices.

Conjeorem (Eliashberg-Givental-Hofer ’00)

Assume a minimal amount of things. Then (C∗(α), ∂)) forms a
chain complex and H(C∗(α), ∂) is independent of α and J̃ .
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The Pseudoholomorphic Menace

Transversality for multiply covered curves...good luck

Is MJ̃ (γ+; γ−) more than a set?

MJ̃ (γ+; γ−) can have nonpositive virtual dimension!?!

Compactness issues are severe

1

ind= 2

1

Desired compactification
for CZ (x)− CZ (z) = 2.

x

−3

y1 y2

2

y3

0

y4

2

y5

2

−1

0

y6

z

Adding to 2 becomes hard
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A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the
Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms
associated to (M3, ξ). Then ∂2 = 0, invariance under choice of
J̃ and dynamically separated α.

Do more index calculations

Learn some intersection theory

Team up with Hutchings

Remaining obstruction to
∂2 = 0 can be excluded in
dimension 3!

γd+1

ind= 0

γ

2

γd

0
γd
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The return of regularity

Definition

A nondegenerate (M3, ξ = kerα) is dynamically convex whenever

c1(ξ)|π2(M) = 0 and every contractible γ satisfies µCZ (γ) ≥ 3.

A convex hypersurface transverse to the radial vector field Y in (R4, ω0)
admits a dynamically convex contact form α := ω0(Y , ·).

Theorem (Hutchings-N. 2014)

If (M3, α) is dynamically convex and every contractible Reeb orbit γ has
µCZ (γ) = 3 only if γ is simple then ∂2 = 0.

Still stuck on Invariance....
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The force awakens

Non-equivariant formulations, domain dependent almost
complex structures, obstruction bundle gluing

And S1-equivariantize yielding an integral lift of contact
homology, CHZ

∗ ...plus CHZ
∗ ⊗Q ∼= CH∗!

Theorem (Hutchings-N; 2015)

INVARIANCE! Obtained for dynamically convex (M3, α) wherein a
contractible γ has µCZ (γ) = 3 only if γ is simple.

Jo Nelson An integral lift of contact homology
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The period doubling bifurcation for a simple Reeb orbit

Modify flow by the return map φr := rotate by 180◦ ◦ ϕXr
ε .

At r = 0 have an elliptic orbit E,

At r = 1 bifurcation into negative hyperbolic orbit h and
elliptic orbit e2 of double the period.

Local CHQ
∗ = H∗(Q〈good orbits winding k times around Nγ〉, ∂).

For k = 2: 1 generator before (E 2) bifurcation and 1 generator after (e2).

Local CHZ
∗ sees more!

Local CHZ
∗ = H∗(Z〈good and bad winding k times around Nγ〉 ⊗ Z[[u]]).
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H∗(Z〈good and bad winding k times around Nγ〉 ⊗ Z[[u]]).

For the contact form λ0, the only Reeb orbit in N which winds
twice around N is the double cover E 2 of E

CHZ
∗ (λ0,N) =


Z if ∗ = 0 (generated by E ),

Z/2 if ∗ = 2k + 1 (generated by ukE ),

0 otherwise.

For the contact form λ1, there are two Reeb orbits in N which
wind twice around N, namely e2 and h2

CHZ
∗ (λ1,N) =


Z if ∗ = 0 (generated by e2),

Z/2 if ∗ = 2k + 1 (generated by ukh2),

0 otherwise.

The 2-torsion before the bifurcation sees the bad Reeb orbit that
can be created in the bifurcation!
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The end!

Thanks!

Jo Nelson An integral lift of contact homology




