An integral lift of contact homology

Jo Nelson

IAS and Columbia University

IAS short talks 2015

Jo Nelson An integral lift of contact homology

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

 \Leftrightarrow

• $\alpha \wedge (d\alpha)^{n-1}$ is a volume form

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form \Leftrightarrow
- $d\alpha|_{\xi}$ is nondegenerate

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form \Leftrightarrow
- $d\alpha|_{\xi}$ is nondegenerate

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form \Leftrightarrow
- $d\alpha|_{\xi}$ is nondegenerate

Here: $\alpha = dz - ydx$

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb orbits are Hopf fibers of S^3 ,

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb orbits are Hopf fibers of S^3 , $\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv)$

Patrick Massot

http://www.nilesjohnson.net/hopf.html

The Weinstein Conjecture

Let (M,ξ) be a closed oriented contact manifold. Then for any contact form α for ξ , the Reeb vector field R_{α} has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

The Weinstein Conjecture

Let (M,ξ) be a closed oriented contact manifold. Then for any contact form α for ξ , the Reeb vector field R_{α} has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

Conjecture

The tight contact 3-sphere admits either 2 or infinitely many simple Reeb orbits.

The Weinstein Conjecture

Let (M,ξ) be a closed oriented contact manifold. Then for any contact form α for ξ , the Reeb vector field R_{α} has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

Conjecture

The tight contact 3-sphere admits either 2 or infinitely many simple Reeb orbits.

- Cristofaro-Gardiner Hutchings proved at least 2 simple orbits.
- Hofer-Wysocki-Zehnder proved for dynamically convex 3-spheres

The Weinstein Conjecture

Let (M,ξ) be a closed oriented contact manifold. Then for any contact form α for ξ , the Reeb vector field R_{α} has a closed orbit.

Proven in dimension 3 by Taubes in 2007.

Conjecture

The tight contact 3-sphere admits either 2 or infinitely many simple Reeb orbits.

- Cristofaro-Gardiner Hutchings proved at least 2 simple orbits.
- Hofer-Wysocki-Zehnder proved for dynamically convex 3-spheres

Conjecture (Hutchings-Taubes)

The only contact 3-manifolds that admit exactly two simple Reeb orbits must be either a sphere or a lens space...Otherwise there are always infinitely many simple periodic Reeb orbits!

Assume: M closed and α nondegenerate

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(\mathcal{S}^1, \mathcal{M}) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

• Grading on orbits given by Conley-Zehnder index,

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

• Grading on orbits given by Conley-Zehnder index,

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

- Grading on orbits given by Conley-Zehnder index,
- $C_*(\alpha) = \mathbb{Q}(\{\text{closed Reeb orbits}\} \setminus \{\text{bad Reeb orbits}\})$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{I}}(\gamma_+; \gamma_-)$, where γ_{\pm} are \mathcal{T}_{\pm} -periodic Reeb orbits.

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{I}}(\gamma_+; \gamma_-)$, where γ_{\pm} are \mathcal{T}_{\pm} -periodic Reeb orbits.

$$u := (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J})$$

 $\bar{\partial}_{j,\tilde{J}} u := du + \tilde{J} \circ du \circ j \equiv 0$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{I}}(\gamma_+; \gamma_-)$, where γ_{\pm} are \mathcal{T}_{\pm} -periodic Reeb orbits.

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} u &:= du + \tilde{J} \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{J}}$ (γ_+ ; γ_-), where γ_{\pm} are \mathcal{T}_{\pm} -periodic Reeb orbits.

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} \ u &:= du + \tilde{J} \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

• $\partial: C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{J}}$ (γ_+ ; γ_-), where γ_{\pm} are \mathcal{T}_{\pm} -periodic Reeb orbits.

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} \ u &:= du + \tilde{J} \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

- $\partial: C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}_{\tilde{J}}$ (γ_+ ; γ_-), where γ_{\pm} are \mathcal{T}_{\pm} -periodic Reeb orbits.

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} \ u &:= du + \tilde{J} \ \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

- $\partial: C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

Conjeorem (Eliashberg-Givental-Hofer '00)

Assume a minimal amount of things. Then $(C_*(\alpha), \partial))$ forms a chain complex and $H(C_*(\alpha), \partial)$ is independent of α and \tilde{J} .

• Transversality for multiply covered curves...good luck

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{I}}(\gamma_+;\gamma_-)$ more than a set?

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{I}}(\gamma_+;\gamma_-)$ more than a set?
- $\mathcal{M}_{\tilde{J}}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{I}}(\gamma_+;\gamma_-)$ more than a set?
- $\mathcal{M}_{\tilde{J}}(\gamma_{+};\gamma_{-})$ can have **nonpositive** virtual dimension!?!
- Compactness issues are severe

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}_{\tilde{I}}(\gamma_+;\gamma_-)$ more than a set?
- $\mathcal{M}_{\tilde{J}}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!
- Compactness issues are severe

Desired compactification for CZ(x) - CZ(z) = 2.

• Transversality for multiply covered curves...good luck

Jo Nelson

- Is $\mathcal{M}_{\tilde{J}}(\gamma_+;\gamma_-)$ more than a set?
- $\mathcal{M}_{\tilde{J}}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!
- Compactness issues are severe

Desired compactification for CZ(x) - CZ(z) = 2.

Adding to 2 becomes hard

An integral lift of contact homology

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms associated to (M^3, ξ) . Then $\partial^2 = 0$, invariance under choice of \tilde{J} and dynamically separated α .

A graduate student strikes back

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

Assume some relatively strong things about contact forms associated to (M^3, ξ) . Then $\partial^2 = 0$, invariance under choice of \tilde{J} and dynamically separated α .

• Do more index calculations

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

- Do more index calculations
- Learn some intersection theory

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^2 = 0$ can be excluded in dimension 3!

...but luckily in dimension 3 we can combine fun facts about the Conley-Zehnder index with automatic transversality to obtain...

Theorem (N. 2013)

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^2 = 0$ can be excluded in dimension 3!

The return of regularity

A nondegenerate $(M^3, \xi = \ker \alpha)$ is dynamically convex whenever

• $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \ge 3$.

A nondegenerate $(M^3, \xi = \ker \alpha)$ is **dynamically convex** whenever

• $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \ge 3$.

A convex hypersurface transverse to the radial vector field Y in (\mathbb{R}^4, ω_0) admits a dynamically convex contact form $\alpha := \omega_0(Y, \cdot)$.

A nondegenerate $(M^3, \xi = \ker \alpha)$ is **dynamically convex** whenever

• $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \ge 3$.

A convex hypersurface transverse to the radial vector field Y in (\mathbb{R}^4, ω_0) admits a dynamically convex contact form $\alpha := \omega_0(Y, \cdot)$.

Theorem (Hutchings-N. 2014)

If (M^3, α) is dynamically convex and every contractible Reeb orbit γ has $\mu_{CZ}(\gamma) = 3$ only if γ is simple then $\partial^2 = 0$.

A nondegenerate $(M^3, \xi = \ker \alpha)$ is dynamically convex whenever

• $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \ge 3$.

A convex hypersurface transverse to the radial vector field Y in (\mathbb{R}^4, ω_0) admits a dynamically convex contact form $\alpha := \omega_0(Y, \cdot)$.

Theorem (Hutchings-N. 2014)

If (M^3, α) is dynamically convex and every contractible Reeb orbit γ has $\mu_{CZ}(\gamma) = 3$ only if γ is simple then $\partial^2 = 0$.

Still stuck on Invariance....

The force awakens

The force awakens

• Non-equivariant formulations,

• Non-equivariant formulations, domain dependent almost complex structures,

• Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing

- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- And S^1 -equivariantize

- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- And S¹-equivariantize yielding an integral lift of contact homology, CH^Z_{*}...

- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- And S¹-equivariantize yielding an integral lift of contact homology, CH^ℤ_{*}...plus CH^ℤ_{*} ⊗ Q ≅ CH_{*}!

Theorem (Hutchings-N; 2015)

INVARIANCE! Obtained for dynamically convex (M^3, α) wherein a contractible γ has $\mu_{CZ}(\gamma) = 3$ only if γ is simple.

Modify flow by the return map $\phi_r :=$ rotate by $180^\circ \circ \varphi_{\epsilon}^{X_r}$.

Modify flow by the return map $\phi_r :=$ rotate by $180^\circ \circ \varphi_{\epsilon}^{X_r}$.

Figure 1: Flow of X_0 ; before the bifurcation.

Figure 2: Flow of X_r ; for r = 1/2.

Figure 3: Flow of X_1 ; after the bifurcation.

Modify flow by the return map $\phi_r :=$ rotate by $180^\circ \circ \varphi_{\epsilon}^{X_r}$.

Figure 1: Flow of X_0 ; before the bifurcation.

Figure 2: Flow of X_r ; for r = 1/2.

Figure 3: Flow of X_1 ; after the bifurcation.

• At *r* = 0 have an **elliptic** orbit E,

Modify flow by the return map $\phi_r :=$ rotate by $180^\circ \circ \varphi_{\epsilon}^{X_r}$.

Figure 1: Flow of X_0 ; before the bifurcation.

Figure 2: Flow of X_r ; for r = 1/2.

Figure 3: Flow of X_1 ; after the bifurcation.

- At r = 0 have an **elliptic** orbit E,
- At r = 1 bifurcation into **negative hyperbolic** orbit *h* and **elliptic** orbit e_2 of double the period.

Modify flow by the return map $\phi_r :=$ rotate by $180^\circ \circ \varphi_{\epsilon}^{X_r}$.

Figure 1: Flow of X_0 ; before the bifurcation.

Figure 2: Flow of X_r ; for r = 1/2.

Figure 3: Flow of X_1 ; after the bifurcation.

- At r = 0 have an elliptic orbit E,
- At r = 1 bifurcation into **negative hyperbolic** orbit *h* and **elliptic** orbit e_2 of double the period.

Local $CH^{\mathbb{Q}}_* = H_*(\mathbb{Q} \langle \text{good orbits winding } k \text{ times around } N_{\gamma} \rangle, \partial)$. For k = 2: 1 generator before (E^2) bifurcation and 1 generator after (e_2) .

Modify flow by the return map $\phi_r :=$ rotate by $180^\circ \circ \varphi_{\epsilon}^{X_r}$.

Figure 1: Flow of X_0 ; before the bifurcation.

Figure 2: Flow of X_r ; for r = 1/2.

Figure 3: Flow of X_1 ; after the bifurcation.

- At r = 0 have an **elliptic** orbit E,
- At r = 1 bifurcation into **negative hyperbolic** orbit *h* and **elliptic** orbit e_2 of double the period.

Local $CH^{\mathbb{Q}}_* = H_*(\mathbb{Q} \langle \text{good orbits winding } k \text{ times around } N_{\gamma} \rangle, \partial).$ For k = 2: 1 generator before (E^2) bifurcation and 1 generator after (e_2) .

Local $CH_*^{\mathbb{Z}}$ sees more! Local $CH_*^{\mathbb{Z}} = H_*(\mathbb{Z} \langle \text{good and bad winding } k \text{ times around } N_{\gamma} \rangle \otimes \mathbb{Z}[[u]]).$

For the contact form λ_0 , the only Reeb orbit in N which winds twice around N is the double cover E^2 of E

$$CH^{\mathbb{Z}}_{*}(\lambda_{0}, N) = \begin{cases} \mathbb{Z} & \text{if } * = 0 \quad (\text{generated by } E), \\ \mathbb{Z}/2 & \text{if } * = 2k + 1 \quad (\text{generated by } u^{k}E), \\ 0 & \text{otherwise.} \end{cases}$$

For the contact form λ_0 , the only Reeb orbit in N which winds twice around N is the double cover E^2 of E

$$CH^{\mathbb{Z}}_{*}(\lambda_{0}, N) = \left\{ egin{array}{ccc} \mathbb{Z} & ext{if } * = 0 & (ext{generated by } E), \\ \mathbb{Z}/2 & ext{if } * = 2k+1 & (ext{generated by } u^{k}E), \\ 0 & ext{otherwise.} \end{array}
ight.$$

For the contact form λ_1 , there are two Reeb orbits in N which wind twice around N, namely e_2 and h^2

$$CH^{\mathbb{Z}}_{*}(\lambda_{1}, N) = \begin{cases} \mathbb{Z} & \text{if } * = 0 \quad (\text{generated by } e_{2}), \\ \mathbb{Z}/2 & \text{if } * = 2k + 1 \quad (\text{generated by } u^{k}h^{2}), \\ 0 & \text{otherwise.} \end{cases}$$

For the contact form λ_0 , the only Reeb orbit in N which winds twice around N is the double cover E^2 of E

$$CH^{\mathbb{Z}}_{*}(\lambda_{0}, N) = \left\{ egin{array}{cccc} \mathbb{Z} & ext{if } * = 0 & (ext{generated by } E), \\ \mathbb{Z}/2 & ext{if } * = 2k+1 & (ext{generated by } u^{k}E), \\ 0 & ext{otherwise.} \end{array}
ight.$$

For the contact form λ_1 , there are two Reeb orbits in N which wind twice around N, namely e_2 and h^2

$$CH^{\mathbb{Z}}_{*}(\lambda_{1}, N) = \begin{cases} \mathbb{Z} & \text{if } * = 0 \quad (\text{generated by } e_{2}), \\ \mathbb{Z}/2 & \text{if } * = 2k + 1 \quad (\text{generated by } u^{k}h^{2}), \\ 0 & \text{otherwise.} \end{cases}$$

The 2-torsion before the bifurcation sees the bad Reeb orbit that can be created in the bifurcation!

Thanks!