Cylindrical contact homology in dimension 3 via intersection theory and more

Jo Nelson

the IAS and Columbia University

Short Talks, October 1, 2014

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

 \Leftrightarrow

• $\alpha \wedge (d\alpha)^{n-1}$ is a volume form

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form \Leftrightarrow
- $d\alpha|_{\xi}$ is nondegenerate

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form \Leftrightarrow
- $d\alpha|_{\xi}$ is nondegenerate

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

The kernel of $\alpha \in \Omega^1(M^{2n-1})$ is a **contact structure** whenever

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form \Leftrightarrow
- $d\alpha|_{\xi}$ is nondegenerate

Here: $\alpha = dz - ydx$

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb orbits are Hopf fibers of S^3 ,

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb orbits are Hopf fibers of S^3 , $\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv)$

Patrick Massot

http://www.nilesjohnson.net/hopf.html

Assume: M closed and α nondegenerate

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(\mathcal{S}^1, \mathcal{M}) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

• Grading on orbits given by Conley-Zehnder index,

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

• Grading on orbits given by Conley-Zehnder index,

Assume: M closed and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

- Grading on orbits given by Conley-Zehnder index,
- C_{*}(α) = {closed Reeb orbits} \ {bad Reeb orbits}

$$u := (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J})$$

 $\bar{\partial}_{j,\tilde{J}} u := du + \tilde{J} \circ du \circ j \equiv 0$

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} u &:= du + \tilde{J} \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm} .

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} u &:= du + \tilde{J} \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

• $\partial: C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} \ u &:= du + \tilde{J} \ \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

- $\partial: C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm} .

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} \ u &:= du + \tilde{J} \ \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

- $\partial: C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

Conjeorem (Eliashberg-Givental-Hofer '00)

Assume a minimal amount of things. Then $(C_*(\alpha), \partial))$ forms a chain complex and $H(C_*(\alpha), \partial)$ is independent of α and \tilde{J} .

• Transversality for multiply covered curves...good luck

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!
- Compactness issues are severe

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!
- Compactness issues are severe

Desired compactification

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!
- Compactness issues are severe

Desired compactification

Adding to 2 becomes hard

• Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3.**
- Understand basic arithmetic and the Conley-Zehnder index

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_{α} has only contractible orbits.

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_{α} has only contractible orbits. We say a contact form is **dynamically separated** whenever

(i) All closed simple contractible Reeb orbits γ satisfy $3 \le \mu_{CZ}(\gamma) \le 5$.

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_{α} has only contractible orbits. We say a contact form is **dynamically separated** whenever (i) All closed simple contractible Reeb orbits γ satisfy $3 \le \mu_{CZ}(\gamma) \le 5$. (ii) $\mu_{CZ}(\gamma^k) = \mu_{CZ}(\gamma^{k-1}) + 4$, γ^k is the *k*-th iterate of a simple orbit γ .

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_{α} has only contractible orbits. We say a contact form is **dynamically separated** whenever (i) All closed simple contractible Reeb orbits γ satisfy $3 \le \mu_{CZ}(\gamma) \le 5$.

(ii) $\mu_{CZ}(\gamma^k) = \mu_{CZ}(\gamma^{k-1}) + 4, \gamma^k$ is the k-th iterate of a simple orbit γ .

Theorem (N.)

 $\partial^2 = 0$, invariance under choice of \tilde{J} and dynamically separated α .

• Do more index calculations

- Do more index calculations
- Learn some intersection theory

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^2 = 0$ can be excluded!

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^2 = 0$ can be excluded!

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to ∂² = 0 can be excluded!

Definition

A nondegenerate $(M^3, \xi = \ker \alpha)$ is dynamically convex whenever

• $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \ge 3$.

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^2 = 0$ can be excluded!

Definition

A nondegenerate ($M^3, \xi = \ker \alpha$) is dynamically convex whenever

• $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \ge 3$.

Any convex hypersurface transverse to the radial vector field Y in (\mathbb{R}^4, ω_0) admits a dynamically convex contact form $\alpha := \omega_0(Y, \cdot)$.

- Do more index calculations
- Learn some intersection theory
- Team up with Hutchings
- Remaining obstruction to $\partial^2 = 0$ can be excluded!

Definition

A nondegenerate $(M^3, \xi = \ker \alpha)$ is **dynamically convex** whenever • $c_1(\xi)|_{\pi_2(M)} = 0$ and every contractible γ satisfies $\mu_{CZ}(\gamma) \ge 3$.

Any convex hypersurface transverse to the radial vector field Y in (\mathbb{R}^4, ω_0) admits a dynamically convex contact form $\alpha := \omega_0(Y, \cdot)$.

Theorem (Hutchings-N.)

If (M^3, α) is dynamically convex and every contractible Reeb orbit γ has $\mu_{CZ}(\gamma) = 3$ only if γ is simple then $\partial^2 = 0$.

Still stuck on Invariance....

• Throw in the entire kitchen sink

- Throw in the entire kitchen sink
- Non-equivariant formulations,

- Throw in the entire kitchen sink
- Non-equivariant formulations, domain dependent almost complex structures,

- Throw in the entire kitchen sink
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing

- Throw in the entire kitchen sink
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- Family Floer homology constructions to get an S^1 -equivariant theory which should be $SH_*^{S^1,+}$ over \mathbb{Z} .

- Throw in the entire kitchen sink
- Non-equivariant formulations, domain dependent almost complex structures, obstruction bundle gluing
- Family Floer homology constructions to get an S^1 -equivariant theory which should be $SH_*^{S^1,+}$ over \mathbb{Z} .
- \bullet Tensor with ${\mathbb Q}$ to get back ${\it CH}_*$

Theorem (Hutchings-N; in progress)

INVARIANCE! Obtained for dynamically convex (M^3, α) wherein a contractible γ has $\mu_{CZ}(\gamma) = 3$ only if γ is simple.

• Computations for Seifert fiber spaces

- Computations for Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology

- Computations for Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology
- Look at dimensions > 3??

- Computations for Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology
- Look at dimensions > 3??
- Other dynamical questions involving contact structures

Thanks!