Cylindrical contact homology as a well-defined homology?

Jo Nelson

Columbia University and the IAS

IAS, September 30, 2013

Jo Nelson Cylindrical contact homology as a well-defined homology?

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

If α is a 1-form on M and

- $\alpha \wedge (d\alpha)^{n-1}$ is a volume form
- $\Leftrightarrow d\alpha|_{\xi}$ is nondegenerate

then $\xi := \ker \alpha$ is a contact structure.

A contact structure ξ on M^{2n-1} is a maximally non-integrable hyperplane distribution...

If α is a 1-form on M and • $\alpha \wedge (d\alpha)^{n-1}$ is a volume form • $\Leftrightarrow d\alpha|_{\xi}$ is nondegenerate then $\xi := \ker \alpha$ is a contact structure.

Above: $\alpha = dz - ydx$

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb orbits are Hopf fibers of S^3 ,

Reeb flow

Choose a contact form α .

Definition

The Reeb vector field R_{α} is uniquely determined by

•
$$\alpha(R_{\alpha}) = 1$$
,

•
$$d\alpha(R_{\alpha}, \cdot) = 0.$$

Reeb orbits are Hopf fibers of S^3 , $\alpha_0 = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv)$

Patrick Massot

http://www.nilesjohnson.net/hopf.html

Cylindrical contact homology as a well-defined homology?

Assume: M compact and α nondegenerate

Assume: M compact and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(\mathcal{S}^1, \mathcal{M}) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Assume: M compact and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

Assume: M compact and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

• Grading on orbits given by Conley-Zehnder index,

Assume: M compact and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

• Grading on orbits given by Conley-Zehnder index,

Assume: M compact and α nondegenerate

"Do" Morse theory on

$$\mathcal{A}: \quad \mathcal{C}^{\infty}(S^1, M) \quad o \quad \mathbb{R}, \ \gamma \quad \mapsto \quad \int_{\gamma} lpha.$$

Proposition

 $\gamma \in Crit(\mathcal{A}) \Leftrightarrow \gamma$ is a closed Reeb orbit.

- Grading on orbits given by Conley-Zehnder index,
- C_{*}(α) = {closed Reeb orbits} \ {bad Reeb orbits}

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm} .

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm} .

$$u := (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J})$$

 $\bar{\partial}_{j,\tilde{J}} u := du + \tilde{J} \circ du \circ j \equiv 0$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm} .

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} u &:= du + \tilde{J} \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm} .

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} u &:= du + \tilde{J} \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

• $\partial: C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization

Gradient flow lines no go; use finite energy pseudoholomorphic cylinders $u \in \mathcal{M}(\gamma_+; \gamma_-)$, where γ_{\pm} are Reeb orbits of periods T_{\pm} .

$$\begin{split} u &:= (a, f) : (\mathbb{R} \times S^1, j) \to (\mathbb{R} \times M, \tilde{J}) \lim_{s \to \pm \infty} a(s, t) = \pm \infty \\ \bar{\partial}_{j, \tilde{J}} \ u &:= du + \tilde{J} \ \circ du \circ j \equiv 0 \qquad \lim_{s \to \pm \infty} f(s, t) = \gamma_{\pm}(T_{\pm}t) \\ \text{up to reparametrization.} \end{split}$$

- $\partial: C_* \to C_{*-1}$ is a weighted count of pseudoholomorphic cylinders up to reparametrization
- Hope this is independent of our choices.

Conjeorem (Eliashberg-Givental-Hofer '00)

Assume a minimal amount of things. Then $(C_*(\alpha), \partial))$ forms a chain complex and $H(C_*(\alpha), \partial)$ is independent of α and \tilde{J} .

• Transversality for multiply covered curves...good luck

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!
- Compactness issues are severe

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!

Jo Nelson

• Compactness issues are severe

Desired compactification

- Transversality for multiply covered curves...good luck
- Is $\mathcal{M}(\gamma_+;\gamma_-)$ more than a letter?
- $\mathcal{M}(\gamma_+;\gamma_-)$ can have **nonpositive** virtual dimension!?!
- Compactness issues are severe

Desired compactification

Adding to 2 becomes hard

Jo Nelson

Cylindrical contact homology as a well-defined homology?

• Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_{α} has only contractible orbits.

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_{α} has only contractible orbits. We say a contact form is **dynamically separated** whenever the following hold

(i) All closed simple contractible Reeb orbits γ satisfy $3 \le \mu_{CZ}(\gamma) \le 5$.

- Automatic transversality results of Wendl, Hutchings, and Taubes in **dimension 3**.
- Understand basic arithmetic and the Conley-Zehnder index
- Realize your original thesis project contained a useful geometric perturbation

Definition

Assume $c_1(\xi) = 0$. For today restrict to when R_{α} has only contractible orbits. We say a contact form is **dynamically separated** whenever the following hold

(i) All closed simple contractible Reeb orbits γ satisfy $3 \le \mu_{CZ}(\gamma) \le 5$.

(ii) $\mu_{CZ}(\gamma^k) = \mu_{CZ}(\gamma^{k-1}) + 4, \gamma^k$ is the k-th iterate of a simple orbit γ .

• Simple singularities appear as origin of \mathbb{C}^2/Γ , $\Gamma \subset SU_2(\mathbb{C})$.

- Simple singularities appear as origin of \mathbb{C}^2/Γ , $\Gamma \subset SU_2(\mathbb{C})$.
- The origin is an isolated quotient singularity.

- Simple singularities appear as origin of \mathbb{C}^2/Γ , $\Gamma \subset SU_2(\mathbb{C})$.
- The origin is an isolated quotient singularity.
- The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f_{\Gamma}^{-1}(0)\} \subset \mathbb{C}^3$.

- Simple singularities appear as origin of \mathbb{C}^2/Γ , $\Gamma \subset SU_2(\mathbb{C})$.
- The origin is an isolated quotient singularity.
- The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f_{\Gamma}^{-1}(0)\} \subset \mathbb{C}^3$.
- The link is $L := S^5 \cap \{f_{\Gamma}^{-1}(0)\}$, take $\xi_L = TL \cap J_0(TL)$.

- Simple singularities appear as origin of C²/Γ, Γ ⊂ SU₂(C).
- The origin is an isolated quotient singularity.
- The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f_{\Gamma}^{-1}(0)\} \subset \mathbb{C}^3$.
- The link is $L := S^5 \cap \{f_{\Gamma}^{-1}(0)\}$, take $\xi_L = TL \cap J_0(TL)$.
- S^{3} 's contact structure descends to S^{3}/Γ , recall: $\alpha_{0} = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$

- Simple singularities appear as origin of C²/Γ, Γ ⊂ SU₂(C).
- The origin is an isolated quotient singularity.
- The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f_{\Gamma}^{-1}(0)\} \subset \mathbb{C}^3$.
- The link is $L := S^5 \cap \{f_{\Gamma}^{-1}(0)\}$, take $\xi_L = TL \cap J_0(TL)$.
- S^{3} 's contact structure descends to S^{3}/Γ , recall: $\alpha_{0} = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$

Lemma (N)

 $(S^3/\Gamma, \xi_{S^3/\Gamma})$ is contactomorphic to (L, ξ_L) .

- Simple singularities appear as origin of C²/Γ, Γ ⊂ SU₂(C).
- The origin is an isolated quotient singularity.
- The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f_{\Gamma}^{-1}(0)\} \subset \mathbb{C}^3$.
- The link is $L := S^5 \cap \{f_{\Gamma}^{-1}(0)\}$, take $\xi_L = TL \cap J_0(TL)$.
- S^{3} 's contact structure descends to S^{3}/Γ , recall: $\alpha_{0} = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$

Lemma (N)

 $(S^3/\Gamma, \xi_{S^3/\Gamma})$ is contactomorphic to (L, ξ_L) .

Topology of link tells us nature of singularity...

- Simple singularities appear as origin of C²/Γ, Γ ⊂ SU₂(C).
- The origin is an isolated quotient singularity.
- The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f_{\Gamma}^{-1}(0)\} \subset \mathbb{C}^3$.
- The link is $L := S^5 \cap \{f_{\Gamma}^{-1}(0)\}$, take $\xi_L = TL \cap J_0(TL)$.
- S^{3} 's contact structure descends to S^{3}/Γ , recall: $\alpha_{0} = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$

Lemma (N)

$$(S^3/\Gamma, \xi_{S^3/\Gamma})$$
 is contactomorphic to (L, ξ_L) .

Topology of link tells us nature of singularity...Are there dynamical implications?

- Simple singularities appear as origin of C²/Γ, Γ ⊂ SU₂(C).
- The origin is an isolated quotient singularity.
- The variety \mathbb{C}^2/Γ can be identified with the hypersurface $\{f_{\Gamma}^{-1}(0)\} \subset \mathbb{C}^3$.
- The link is $L := S^5 \cap \{f_{\Gamma}^{-1}(0)\}$, take $\xi_L = TL \cap J_0(TL)$.
- S^{3} 's contact structure descends to S^{3}/Γ , recall: $\alpha_{0} = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$

Lemma (N)

$$(S^3/\Gamma, \xi_{S^3/\Gamma})$$
 is contactomorphic to (L, ξ_L) .

Topology of link tells us nature of singularity...Are there dynamical implications?

 $\begin{array}{c} S^3 \\ h \downarrow \\ S^2 \xrightarrow{} H \mathbb{R} \end{array}$

•
$$\alpha' = (1 + \epsilon h^* H) \alpha_0$$

$$\begin{array}{c}
S^{3} \\
h \downarrow \\
S^{2} \xrightarrow{} H \\
\end{array} \mathbb{R}$$

•
$$\alpha' = (1 + \epsilon h^* H) \alpha_0$$

• $R' = \frac{1}{(1 + \epsilon h^* H)} R_0 + \frac{\epsilon}{(1 + \epsilon h^* H)^2} \tilde{X}_H.$

$$\begin{array}{c}
S^{3} \\
h \downarrow \\
S^{2} \xrightarrow{} H \\
\end{array} \mathbb{R}$$

•
$$\alpha' = (1 + \epsilon h^* H) \alpha_0$$

• $R' = \frac{1}{(1 + \epsilon h^* H)} R_0 + \frac{\epsilon}{(1 + \epsilon h^* H)^2} \tilde{X}_H.$
• $X_H = J_0 \nabla H_0$

$$\begin{array}{c}
S^{3} \\
h \downarrow \\
S^{2} \xrightarrow{} H \\
\end{array} \mathbb{R}$$

•
$$\alpha' = (1 + \epsilon h^* H) \alpha_0$$

• $R' = \frac{1}{(1 + \epsilon h^* H)} R_0 + \frac{\epsilon}{(1 + \epsilon h^* H)^2} \tilde{X}_H.$

•
$$X_H = J_0 \nabla H$$
, use symmetry of Γ to pick H

$$\begin{array}{c}
S^{3} \\
h \downarrow \\
S^{2} \xrightarrow{} H \\
\end{array} \mathbb{R}$$

•
$$\alpha' = (1 + \epsilon h^* H) \alpha_0$$

• $R' = \frac{1}{(1 + \epsilon h^* H)} R_0 + \frac{\epsilon}{(1 + \epsilon h^* H)^2} \tilde{X}_H.$

•
$$X_H = J_0 \nabla H$$
, use symmetry of Γ to pick H

For
$$\Gamma = \mathbb{T}^*$$
 (*E*₆-type) take $H = xyz$.

$$S^{3} \qquad \bullet \ \alpha' = (1 + \epsilon h^{*} H) \alpha_{0}$$

$$\bullet \ R' = \frac{1}{(1 + \epsilon h^{*} H)} R_{0} + \frac{\epsilon}{(1 + \epsilon h^{*} H)^{2}} \tilde{X}_{H}.$$

$$\bullet \ X_{H} = J_{0} \nabla H, \text{ use symmetry of } \Gamma \text{ to pick } H$$

For
$$\Gamma = \mathbb{T}^*$$
 (*E*₆-type) take $H = xyz$.

$$Spin(3) \cong SU(2, \mathbb{C})$$

 $2:1 \downarrow$
 $SO(3)$

Reeb orbits which generate chain complex correspond to presentation of S^3/Γ as a Seifert fiber space!

• Other Seifert fiber spaces

- Other Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology

- Other Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology
- Precise nature of relationship with symplectic homology

- Other Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology
- Precise nature of relationship with symplectic homology
- Extending work to hold in more generality in dimension 3

- Other Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology
- Precise nature of relationship with symplectic homology
- Extending work to hold in more generality in dimension 3
- Look at dimensions > 3??

- Other Seifert fiber spaces
- Connections to Chen-Ruan orbifold homology and string topology
- Precise nature of relationship with symplectic homology
- Extending work to hold in more generality in dimension 3
- Look at dimensions > 3??
- Other dynamical questions involving contact structures

Thanks!