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I Iwasawa main conjecture (theorem of Mazur–Wiles) For
3 ≤ i ≤ p − 2 odd,

CharZp [[T ]]

(
X∞,ωi

)
=
(
Lp(T , ω1−i )

)

Lp(T , ω1−i ) = Kubota–Leopoldt p-adic L-function.

Lp(T , ω1−i ) ∈ Zp[[T ]], and for k ≤ 1, χ|∆ = 1, cond(χ)|p∞,

Lp

(
(1 + p)kχ(1 + p)− 1, ω1−i) = Lp(1− k, χω1−i−k)

(the Kubota–Leopoldt p-adic L-function ⇔ Kummer’s congruences)
The Iwasawa main conjecture can be viewed as a generalized class
number formula, and the p-adic L-function is the object appearing on
the analytic side. This picture generalizes (elliptic curves, automorphic
Galois representations ...)
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In order to formulate the Iwasawa main conjecture for a p-adic Galois
representation, the p-adic L-function needs to be constructed (the
existence is conjectured by Coates–Perrin-Riou).

Consider π ⊂ A0(Sp(2n,Q)\Sp(2n,A)) with π∞ isomorphic to a
holomorphic discrete series (or a Siegel modular of degree n). One may
consider constructing a p-adic L-function interpolating

L(k, π × χ),

with χ varying among Dirichlet characters with cond(χ)|p∞, and k
varying among critical points for L(s, π × χ), and more generally with π
varying in a Hida family.

“Theorem” (L)

I If π is ordinary, there exists the one-variable p-adic L-function
Lπ,p-adic.

I For an n-variable Hida eigen-family C, there exists the
(n + 1)-variable p-adic L-function LC .
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Piatetski-Shapiro–Rallis, Shimura ...

It roughly says〈
ESieg(s, χ)

∣∣
Sp(2n)×Sp(2n)

, ϕ⊗ ϕ
〉
∼ L(s +

1

2
, π × χ).

It has been used to study the algebraicity (Garrett, Harris, Shimura ...)
and p-adic properties (Böcherer–Schmidt, Eischen–Harris–Li–Skinner,
Eischen–Wan ...) of L-values.

Our construction involves

I selecting nice sections at p and ∞ for the Siegel Eisenstein series
(desired p-adic congruences, nonvanishing of local zeta integrals ...),

I studying the algebraic structure Maass–Shimura differential
operator,

I computing the zeta integrals at p,



The construction relies on the doubling method, developed by Garrett,
Piatetski-Shapiro–Rallis, Shimura ... It roughly says〈

ESieg(s, χ)
∣∣
Sp(2n)×Sp(2n)

, ϕ⊗ ϕ
〉
∼ L(s +

1

2
, π × χ).

It has been used to study the algebraicity (Garrett, Harris, Shimura ...)
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and p-adic properties (Böcherer–Schmidt, Eischen–Harris–Li–Skinner,
Eischen–Wan ...) of L-values.

Our construction involves

I selecting nice sections at p and ∞ for the Siegel Eisenstein series
(desired p-adic congruences, nonvanishing of local zeta integrals ...),

I studying the algebraic structure Maass–Shimura differential
operator,

I computing the zeta integrals at p,



The construction relies on the doubling method, developed by Garrett,
Piatetski-Shapiro–Rallis, Shimura ... It roughly says〈

ESieg(s, χ)
∣∣
Sp(2n)×Sp(2n)

, ϕ⊗ ϕ
〉
∼ L(s +

1

2
, π × χ).

It has been used to study the algebraicity (Garrett, Harris, Shimura ...)
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After renormalizing LC properly, it will be the object on the analytic side
of the Iwasawa–Greenberg main conjecture for the family of Galois
representations associated to C,

predicting that

CharIC [[T ]]

(
X S
Q∞(C)

)
= (LC) .
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There is a common strategy for attempting to prove one divisibility in the
aforementioned theorems and conjectures,

L-value | size of the Selmer group,

p-adic L-function | characteristic ideal of the Selmer group.

The idea is to produce elements in Selmer groups by utilizing
congruences between Eisenstein series and cusp forms. It originates from
Ribet’s proof of the converse of Herbrand’s theorem, and is further
developed into a very general machinery by Wiles, Urban, Hsieh.
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The key input for running the Eisenstein congruence machinery is a
family of Klingen Eisenstein series satisfying

I the degenerate terms in its Fourier expansion are given by the
p-adic L-function,

I the degenerate terms are coprime to the non-degenerate terms
(some mod p non-vanishing results).

In the case π ⊂ A0(Sp(2n,Q)\Sp(2n,A)), after constructing the Klingen
Eisenstein family satisfying the first property (still by doubling method), I
am interested in computing the corresponding non-degenerate Fourier
coefficients, and finding how far I can go in the general setting as well as
if there are some special cases for which the second property can be
verified.
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In general, 〈
ϕ, θn+1(φ)(·, 1)ESieg(s)

〉
,

where ϕ ∈ π, φ ∈ S (Mn,n+1(A)).

θn+1(φ)(·, 1)

S̃p(2n) ×

ESieg(s)|s=k−n−1

S̃p(2n)

θ2k(Φ, ϕ)

O(2k)

Sp(2n)

ϕ ∈ π

O(n + 1)× O(2k − n − 1)

const. fcn

The hope is to

I understand
〈
ϕ, θn+1(φ)(·, 1)ESieg(s)

〉∣∣
s=k−n−1

,

I relate the change of indices of Fourier coefficients to the translation
by O(2k) on Φ,

I say something about the function

h 7→
∫

O(2k−n−1,Q)\O(2k−n−1,A)

θ2k(Φ, ϕ)(xh) dx .
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Thank you!


