p-adic L-functions and Iwasawa main conjectures

Zheng LIU
Institute for Advanced Study

Oct. 2, 2017

Let p be an odd prime and ζ_{p} be a primitive p-th root of unity.

Let p be an odd prime and ζ_{p} be a primitive p-th root of unity.

$K / \mathbb{Q}\left(\zeta_{p}\right)$ maximal abelian unramified,

Let p be an odd prime and ζ_{p} be a primitive p-th root of unity.

$K / \mathbb{Q}\left(\zeta_{p}\right)$ maximal abelian unramified,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right)}\right|=\frac{w \sqrt{\mid d_{\mathbb{Q}\left(\zeta_{p}\right) \mid}}}{(2 \pi)^{\frac{\left[\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right]}{2}} R_{\mathbb{Q}\left(\zeta_{p}\right)}} \cdot \prod_{0 \leq i \leq p-2} L\left(1, \omega^{-i}\right)
$$

Let p be an odd prime and ζ_{p} be a primitive p-th root of unity.

$K / \mathbb{Q}\left(\zeta_{p}\right)$ maximal abelian unramified,
$\omega:(\mathbb{Z} / p)^{\times} \rightarrow \mu_{p-1}$, the Teichmüller character,

$$
\omega(a) \equiv \operatorname{amod} p \text { for } a \in(\mathbb{Z} / p)^{\times},
$$

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right)}\right|=\frac{w \sqrt{\left|d_{\mathbb{Q}\left(\zeta_{p}\right)}\right|}}{(2 \pi)^{\frac{\left.\mathbb{Q}\left(\zeta_{p}\right): 0\right]}{2}} R_{\mathbb{Q}\left(\zeta_{p}\right)}} \cdot \prod_{0 \leq i \leq p-2} L\left(1, \omega^{-i}\right)
$$

Let p be an odd prime and ζ_{p} be a primitive p-th root of unity.

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right)}\right|=\frac{w \sqrt{\left|d_{\mathbb{Q}\left(\zeta_{p}\right)}\right|}}{(2 \pi)^{\frac{\left.\mathbb{Q}\left(\zeta_{p}\right): 0\right]}{2}} R_{\mathbb{Q}\left(\zeta_{p}\right)}} \cdot \prod_{0 \leq i \leq p-2} L\left(1, \omega^{-i}\right)
$$

Let p be an odd prime and ζ_{p} be a primitive p-th root of unity.
$K / \mathbb{Q}\left(\zeta_{p}\right)$ maximal abelian unramified,
$\omega:(\mathbb{Z} / p)^{\times} \rightarrow \mu_{p-1}$,
the Teichmüller character,
$\omega(a) \equiv \operatorname{amod} p$ for $a \in(\mathbb{Z} / p)^{\times}$,
${ }_{(\mathbb{Z} / p)^{\times}}(\mid$
$(\mathbb{Z} / p)^{\times}$
$C_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}=$ the ω^{i}-eigenspace

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right)}\right|=\frac{w \sqrt{\left|d_{\mathbb{Q}\left(\zeta_{p}\right)}\right|}}{(2 \pi)^{\frac{\left.\mathbb{Q}\left(\zeta_{p}\right): 0\right]}{2}} R_{\mathbb{Q}\left(\zeta_{p}\right)}} \cdot \prod_{0 \leq i \leq p-2} L\left(1, \omega^{-i}\right)
$$

Let p be an odd prime and ζ_{p} be a primitive p-th root of unity.

$$
\underset{\mathbb{Q}\left(\zeta_{p}\right)}{(\mathbb{Z} / p)^{\times}\left(\left.\right|_{\mathbb{Q}\left(\zeta_{p}\right)} ^{K} \begin{array}{l}
K / \mathbb{Q}\left(\zeta_{p}\right) \text { maximal abelian unramified, } \\
\omega:(\mathbb{Z} / p)^{\times} \rightarrow \mu_{p-1}, \\
\text { the Teichmüller character, } \\
\omega(a) \equiv \operatorname{anod} p \text { for } a \in(\mathbb{Z} / p)^{\times}, \\
C_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}=\text { the } \omega^{i} \text {-eigenspace }
\end{array}\right.}
$$

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right)}\right|=\frac{w \sqrt{\left|d_{\mathbb{Q}\left(\zeta_{p}\right)}\right|}}{(2 \pi)^{\frac{\left.\mathbb{Q}\left(\zeta_{p}\right): \cdot\right] \mid}{2}} R_{\mathbb{Q}\left(\zeta_{p}\right)}} \cdot \prod_{0 \leq i \leq p-2} L\left(1, \omega^{-i}\right)
$$

$$
\prod_{1 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i} \mid}\right|=2^{-\frac{p-3}{2}} p \prod_{1 \leq i \leq p-2 \text { odd }} L\left(0, \omega^{-i}\right)
$$

Let p be an odd prime and ζ_{p} be a primitive p-th root of unity.

$$
\begin{aligned}
& K / \mathbb{Q}\left(\zeta_{p}\right) \text { maximal abelian unramified, } \\
& \omega:(\mathbb{Z} / p)^{\times} \rightarrow \mu_{p-1}, \\
& \text { the Teichmüller character, } \\
& \omega(a) \equiv \operatorname{amod} p \text { for } a \in(\mathbb{Z} / p)^{\times}, \\
& { }_{(\mathbb{Z} / p)^{\times}}(\mid \\
& \mathrm{Cl}_{\left(\zeta_{p}\right)} \\
& \longrightarrow \\
& (\mathbb{Z} / p)^{x} \\
& C_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}=\text { the } \omega^{i} \text {-eigenspace } \\
& \left|C l_{\mathbb{Q}\left(\zeta_{p}\right)}\right|=\frac{w \sqrt{\left|d_{\mathbb{Q}\left(\zeta_{p}\right)}\right|}}{(2 \pi)^{\frac{\left.\mathbb{Q}\left(\zeta_{p}\right): 0\right] \mid}{2}} R_{\mathbb{Q}\left(\zeta_{p}\right)}} \cdot \prod_{0 \leq i \leq p-2} L\left(1, \omega^{-i}\right) \\
& \prod_{1 \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|=2^{-\frac{p-3}{2}} p \prod_{1 \leq i \leq p-2 \text { odd }} L\left(0, \omega^{-i}\right) \\
& \left.\prod_{3 \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right),\left.\omega^{i}\right|_{p}=} \prod_{3 \leq i \leq p-2 \text { odd }}\right| L\left(0, \omega^{-i}\right)\right|_{p}
\end{aligned}
$$

- the class number formula
- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- the class number formula

$$
\prod_{3 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\prod_{3 \leq i \leq p-2 \text { odd }}\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

One may also consider the tower of cyclotomic extensions.

- the class number formula

$$
\prod_{3 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\prod_{3 \leq i \leq p-2 \text { odd }}\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

One may also consider the tower of cyclotomic extensions.

- the class number formula

$$
\prod_{3 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right),\left.\omega^{i}\right|_{p}=\prod_{3 \leq i \leq p-2 \text { odd }}\left|L\left(0, \omega^{-i}\right)\right|_{p}\left|, \prod^{2}\right|}\right|
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

One may also consider the tower of cyclotomic extensions.

$K_{n-1} / \mathbb{Q}\left(\zeta_{p^{n}}\right)$ is the maximal unramified

$$
\mathbb{Q}\left(\zeta_{p^{\infty}}\right) \quad K_{n-1}
$$ abelian p-extension,

$(\mathbb{Z} / p)^{\times}(\mid$
\mathbb{Q}

- the class number formula

$$
\prod_{3 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\prod_{3 \leq i \leq p-2 \text { odd }}\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

One may also consider the tower of cyclotomic extensions.

$K_{n-1} / \mathbb{Q}\left(\zeta_{p^{n}}\right)$ is the maximal unramified abelian p-extension,
$X_{\infty, \omega^{i}}$ is a module over $\mathbb{Z}_{p}\left[\left[\mathbb{Z}_{p}\right]\right] \simeq \mathbb{Z}_{p}[[T]]$,
(an Iwasawa module over the Iwasawa algebra)

- the class number formula

$$
\prod_{3 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\prod_{3 \leq i \leq p-2 \text { odd }}\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

One may also consider the tower of cyclotomic extensions.

$K_{n-1} / \mathbb{Q}\left(\zeta_{p^{n}}\right)$ is the maximal unramified abelian p-extension, $X_{\infty, \omega^{i}}$ is a module over $\mathbb{Z}_{p}\left[\left[\mathbb{Z}_{p}\right]\right] \simeq \mathbb{Z}_{p}[[T]]$, (an Iwasawa module over the Iwasawa algebra) finitely generated and torsion,

- the class number formula

$$
\prod_{3 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\prod_{3 \leq i \leq p-2 \text { odd }}\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

One may also consider the tower of cyclotomic extensions.

$K_{n-1} / \mathbb{Q}\left(\zeta_{p^{n}}\right)$ is the maximal unramified abelian p-extension,
$X_{\infty, \omega^{i}}$ is a module over $\mathbb{Z}_{p}\left[\left[\mathbb{Z}_{p}\right]\right] \simeq \mathbb{Z}_{p}[[T]]$,
(an Iwasawa module over the Iwasawa algebra) finitely generated and torsion,
$\operatorname{Char}_{\mathbb{Z}_{p}[[T]]}\left(X_{\infty, \omega^{i}}\right)$
$(\mathbb{Z} / p)^{\times}(\mid$

- the class number formula

$$
\prod_{3 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\prod_{3 \leq i \leq p-2 \text { odd }}\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

One may also consider the tower of cyclotomic extensions.

$K_{n-1} / \mathbb{Q}\left(\zeta_{p^{n}}\right)$ is the maximal unramified abelian p-extension,
$X_{\infty, \omega^{i}}$ is a module over $\mathbb{Z}_{p}\left[\left[\mathbb{Z}_{p}\right]\right] \simeq \mathbb{Z}_{p}[[T]]$,
(an Iwasawa module over the Iwasawa algebra) finitely generated and torsion,
$\operatorname{Char}_{\mathbb{Z}_{p}[[T]]}\left(X_{\infty, \omega^{i}}\right)=? ?$
$(\mathbb{Z} / p)^{\times}(\mid$

$$
\operatorname{Char}_{\left.\left.\mathbb{Z}_{p}[T]\right]\right]}\left(X_{\infty, \omega^{i}}\right)=\left(\mathcal{L}_{p}\left(T, \omega^{1-i}\right)\right)
$$

$$
\operatorname{Char}_{\left.\mathbb{Z}_{p}[T T]\right]}\left(X_{\infty, \omega^{i}}\right)=\left(\mathcal{L}_{p}\left(T, \omega^{1-i}\right)\right)
$$

$\mathcal{L}_{p}\left(T, \omega^{1-i}\right)=$ Kubota-Leopoldt p-adic L-function.

$$
\operatorname{Char}_{\mathbb{Z}_{p}[[T]]}\left(X_{\infty, \omega^{i}}\right)=\left(\mathcal{L}_{p}\left(T, \omega^{1-i}\right)\right)
$$

$\mathcal{L}_{p}\left(T, \omega^{1-i}\right)=$ Kubota-Leopoldt p-adic L-function.
$\mathcal{L}_{p}\left(T, \omega^{1-i}\right) \in \mathbb{Z}_{p}[[T]]$, and for $k \leq 1,\left.\chi\right|_{\Delta}=1, \operatorname{cond}(\chi) \mid p^{\infty}$,

$$
\mathcal{L}_{p}\left((1+p)^{k} \chi(1+p)-1, \omega^{1-i}\right)=L^{p}\left(1-k, \chi \omega^{1-i-k}\right)
$$

$$
\operatorname{Char}_{\left.\mathbb{Z}_{p}[T T]\right]}\left(X_{\infty, \omega^{i}}\right)=\left(\mathcal{L}_{p}\left(T, \omega^{1-i}\right)\right)
$$

$\mathcal{L}_{p}\left(T, \omega^{1-i}\right)=$ Kubota-Leopoldt p-adic L-function.
$\mathcal{L}_{p}\left(T, \omega^{1-i}\right) \in \mathbb{Z}_{p}[[T]]$, and for $k \leq 1,\left.\chi\right|_{\Delta}=1, \operatorname{cond}(\chi) \mid p^{\infty}$,

$$
\mathcal{L}_{p}\left((1+p)^{k} \chi(1+p)-1, \omega^{1-i}\right)=L^{p}\left(1-k, \chi \omega^{1-i-k}\right)
$$

(the Kubota-Leopoldt p-adic L-function \Leftrightarrow Kummer's congruences)

- Iwasawa main conjecture (theorem of Mazur-Wiles) For $3 \leq i \leq p-2$ odd,

$$
\operatorname{Char}_{\left.\left.\mathbb{Z}_{p}[T]\right]\right]}\left(X_{\infty, \omega^{i}}\right)=\left(\mathcal{L}_{p}\left(T, \omega^{1-i}\right)\right)
$$

$\mathcal{L}_{p}\left(T, \omega^{1-i}\right)=$ Kubota-Leopoldt p-adic L-function.
$\mathcal{L}_{p}\left(T, \omega^{1-i}\right) \in \mathbb{Z}_{p}[[T]]$, and for $k \leq 1,\left.\chi\right|_{\Delta}=1, \operatorname{cond}(\chi) \mid p^{\infty}$,

$$
\mathcal{L}_{p}\left((1+p)^{k} \chi(1+p)-1, \omega^{1-i}\right)=L^{p}\left(1-k, \chi \omega^{1-i-k}\right)
$$

(the Kubota-Leopoldt p-adic L-function \Leftrightarrow Kummer's congruences)

- the class number formula

$$
\prod_{3 \leq i \leq p-2 \text { odd }}\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\prod_{3 \leq i \leq p-2 \text { odd }}\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\Uparrow
$$

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- Iwasawa main conjecture (theorem of Mazur-Wiles) For $3 \leq i \leq p-2$ odd,

$$
\operatorname{Char}_{\left.\left.\mathbb{Z}_{p}[T]\right]\right]}\left(X_{\infty, \omega^{i}}\right)=\left(\mathcal{L}_{p}\left(T, \omega^{1-i}\right)\right)
$$

$\mathcal{L}_{p}\left(T, \omega^{1-i}\right)=$ Kubota-Leopoldt p-adic L-function.
$\mathcal{L}_{p}\left(T, \omega^{1-i}\right) \in \mathbb{Z}_{p}[[T]]$, and for $k \leq 1,\left.\chi\right|_{\Delta}=1, \operatorname{cond}(\chi) \mid p^{\infty}$,

$$
\mathcal{L}_{p}\left((1+p)^{k} \chi(1+p)-1, \omega^{1-i}\right)=L^{p}\left(1-k, \chi \omega^{1-i-k}\right)
$$

(the Kubota-Leopoldt p-adic L-function \Leftrightarrow Kummer's congruences)

- the class number formula

$$
\begin{aligned}
& \prod \quad\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\prod_{3 \leq i \leq p}\left|L\left(0, \omega^{-i}\right)\right|_{p} \\
& 3 \leq i \leq p-2 \text { odd } \quad 3 \leq i \leq p-2 \text { odd }
\end{aligned}
$$

- (refined) Herbrand-Ribet theorem For $3 \leq i \leq p-2$ odd,

$$
\Uparrow
$$

$$
\left|C l_{\mathbb{Q}\left(\zeta_{p}\right), \omega^{i}}\right|_{p}=\left|L\left(0, \omega^{-i}\right)\right|_{p}
$$

- Iwasawa main conjecture (theorem of Mazur-Wiles) For $3 \leq i \leq p-2$ odd,

$$
\operatorname{Char}_{\left.\mathbb{Z}_{p}[T]\right]}\left(X_{\infty, \omega^{i}}\right)=\left(\mathcal{L}_{p}\left(T, \omega^{1-i}\right)\right)
$$

$\mathcal{L}_{p}\left(T, \omega^{1-i}\right)=$ Kubota-Leopoldt p-adic L-function.
$\mathcal{L}_{p}\left(T, \omega^{1-i}\right) \in \mathbb{Z}_{p}[[T]]$, and for $k \leq 1,\left.\chi\right|_{\Delta}=1, \operatorname{cond}(\chi) \mid p^{\infty}$,

$$
\mathcal{L}_{p}\left((1+p)^{k} \chi(1+p)-1, \omega^{1-i}\right)=L^{p}\left(1-k, \chi \omega^{1-i-k}\right)
$$

(the Kubota-Leopoldt p-adic L-function \Leftrightarrow Kummer's congruences)
The Iwasawa main conjecture can be viewed as a generalized class number formula, and the p-adic L-function is the object appearing on the analytic side. This picture generalizes (elliptic curves, automorphic Galois representations ...)

In order to formulate the Iwasawa main conjecture for a p-adic Galois representation, the p-adic L-function needs to be constructed (the existence is conjectured by Coates-Perrin-Riou).

In order to formulate the Iwasawa main conjecture for a p-adic Galois representation, the p-adic L-function needs to be constructed (the existence is conjectured by Coates-Perrin-Riou).

Consider $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$ with π_{∞} isomorphic to a holomorphic discrete series

In order to formulate the Iwasawa main conjecture for a p-adic Galois representation, the p-adic L-function needs to be constructed (the existence is conjectured by Coates-Perrin-Riou).

Consider $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$ with π_{∞} isomorphic to a holomorphic discrete series (or a Siegel modular of degree n).

In order to formulate the Iwasawa main conjecture for a p-adic Galois representation, the p-adic L-function needs to be constructed (the existence is conjectured by Coates-Perrin-Riou).

Consider $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$ with π_{∞} isomorphic to a holomorphic discrete series (or a Siegel modular of degree n). One may consider constructing a p-adic L-function interpolating

$$
L(k, \pi \times \chi)
$$

In order to formulate the Iwasawa main conjecture for a p-adic Galois representation, the p-adic L-function needs to be constructed (the existence is conjectured by Coates-Perrin-Riou).

Consider $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$ with π_{∞} isomorphic to a holomorphic discrete series (or a Siegel modular of degree n). One may consider constructing a p-adic L-function interpolating

$$
L(k, \pi \times \chi),
$$

with χ varying among Dirichlet characters with $\operatorname{cond}(\chi) \mid p^{\infty}$,

In order to formulate the Iwasawa main conjecture for a p-adic Galois representation, the p-adic L-function needs to be constructed (the existence is conjectured by Coates-Perrin-Riou).

Consider $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$ with π_{∞} isomorphic to a holomorphic discrete series (or a Siegel modular of degree n). One may consider constructing a p-adic L-function interpolating

$$
L(k, \pi \times \chi),
$$

with χ varying among Dirichlet characters with $\operatorname{cond}(\chi) \mid p^{\infty}$, and k varying among critical points for $L(s, \pi \times \chi)$,

In order to formulate the Iwasawa main conjecture for a p-adic Galois representation, the p-adic L-function needs to be constructed (the existence is conjectured by Coates-Perrin-Riou).

Consider $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$ with π_{∞} isomorphic to a holomorphic discrete series (or a Siegel modular of degree n). One may consider constructing a p-adic L-function interpolating

$$
L(k, \pi \times \chi)
$$

with χ varying among Dirichlet characters with $\operatorname{cond}(\chi) \mid p^{\infty}$, and k varying among critical points for $L(s, \pi \times \chi)$, and more generally with π varying in a Hida family.

In order to formulate the Iwasawa main conjecture for a p-adic Galois representation, the p-adic L-function needs to be constructed (the existence is conjectured by Coates-Perrin-Riou).

Consider $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$ with π_{∞} isomorphic to a holomorphic discrete series (or a Siegel modular of degree n). One may consider constructing a p-adic L-function interpolating

$$
L(k, \pi \times \chi)
$$

with χ varying among Dirichlet characters with $\operatorname{cond}(\chi) \mid p^{\infty}$, and k varying among critical points for $L(s, \pi \times \chi)$, and more generally with π varying in a Hida family.
"Theorem" (L)

- If π is ordinary, there exists the one-variable p-adic L-function $\mathcal{L}_{\pi, p \text {-adic }}$.
- For an n-variable Hida eigen-family \mathcal{C}, there exists the $(n+1)$-variable p-adic L-function $\mathcal{L}_{\mathcal{C}}$.

The construction relies on the doubling method, developed by Garrett, Piatetski-Shapiro-Rallis, Shimura ...

The construction relies on the doubling method, developed by Garrett, Piatetski-Shapiro-Rallis, Shimura ... It roughly says

$$
\left\langle\left. E^{\mathrm{Sieg}}(s, \chi)\right|_{\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)}, \varphi \otimes \bar{\varphi}\right\rangle \sim L\left(s+\frac{1}{2}, \pi \times \chi\right) .
$$

The construction relies on the doubling method, developed by Garrett, Piatetski-Shapiro-Rallis, Shimura ... It roughly says

$$
\left\langle\left. E^{\operatorname{Sieg}}(s, \chi)\right|_{\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)}, \varphi \otimes \bar{\varphi}\right\rangle \sim L\left(s+\frac{1}{2}, \pi \times \chi\right) .
$$

It has been used to study the algebraicity (Garrett, Harris, Shimura ...) and p-adic properties (Böcherer-Schmidt, Eischen-Harris-Li-Skinner, Eischen-Wan ...) of L-values.

The construction relies on the doubling method, developed by Garrett, Piatetski-Shapiro-Rallis, Shimura ... It roughly says

$$
\left\langle\left. E^{\operatorname{Sieg}}(s, \chi)\right|_{\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)}, \varphi \otimes \bar{\varphi}\right\rangle \sim L\left(s+\frac{1}{2}, \pi \times \chi\right) .
$$

It has been used to study the algebraicity (Garrett, Harris, Shimura ...) and p-adic properties (Böcherer-Schmidt, Eischen-Harris-Li-Skinner, Eischen-Wan ...) of L-values.

Our construction involves

The construction relies on the doubling method, developed by Garrett, Piatetski-Shapiro-Rallis, Shimura ... It roughly says

$$
\left\langle\left. E^{\operatorname{Sieg}}(s, \chi)\right|_{\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)}, \varphi \otimes \bar{\varphi}\right\rangle \sim L\left(s+\frac{1}{2}, \pi \times \chi\right) .
$$

It has been used to study the algebraicity (Garrett, Harris, Shimura ...) and p-adic properties (Böcherer-Schmidt, Eischen-Harris-Li-Skinner, Eischen-Wan ...) of L-values.

Our construction involves

- selecting nice sections at p and ∞ for the Siegel Eisenstein series (desired p-adic congruences, nonvanishing of local zeta integrals ...),

The construction relies on the doubling method, developed by Garrett, Piatetski-Shapiro-Rallis, Shimura ... It roughly says

$$
\left\langle\left. E^{\operatorname{Sieg}}(s, \chi)\right|_{\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)}, \varphi \otimes \bar{\varphi}\right\rangle \sim L\left(s+\frac{1}{2}, \pi \times \chi\right) .
$$

It has been used to study the algebraicity (Garrett, Harris, Shimura ...) and p-adic properties (Böcherer-Schmidt, Eischen-Harris-Li-Skinner, Eischen-Wan ...) of L-values.

Our construction involves

- selecting nice sections at p and ∞ for the Siegel Eisenstein series (desired p-adic congruences, nonvanishing of local zeta integrals ...),
- studying the algebraic structure Maass-Shimura differential operator,

The construction relies on the doubling method, developed by Garrett, Piatetski-Shapiro-Rallis, Shimura ... It roughly says

$$
\left\langle\left. E^{\operatorname{Sieg}}(s, \chi)\right|_{\mathrm{Sp}(2 n) \times \operatorname{Sp}(2 n)}, \varphi \otimes \bar{\varphi}\right\rangle \sim L\left(s+\frac{1}{2}, \pi \times \chi\right) .
$$

It has been used to study the algebraicity (Garrett, Harris, Shimura ...) and p-adic properties (Böcherer-Schmidt, Eischen-Harris-Li-Skinner, Eischen-Wan ...) of L-values.

Our construction involves

- selecting nice sections at p and ∞ for the Siegel Eisenstein series (desired p-adic congruences, nonvanishing of local zeta integrals ...),
- studying the algebraic structure Maass-Shimura differential operator,
- computing the zeta integrals at p,

After renormalizing $\mathcal{L}_{\mathcal{C}}$ properly, it will be the object on the analytic side of the Iwasawa-Greenberg main conjecture for the family of Galois representations associated to \mathcal{C},

After renormalizing $\mathcal{L}_{\mathcal{C}}$ properly, it will be the object on the analytic side of the Iwasawa-Greenberg main conjecture for the family of Galois representations associated to \mathcal{C}, predicting that

$$
\operatorname{Char}_{\left.\left.\mathbb{I}_{\mathcal{C}}[T]\right]\right]}\left(X_{\mathbb{Q}_{\infty}}^{S}(\mathcal{C})\right)=\left(\mathcal{L}_{\mathcal{C}}\right) .
$$

There is a common strategy for attempting to prove one divisibility in the aforementioned theorems and conjectures,
L-value | size of the Selmer group,
p-adic L-function | characteristic ideal of the Selmer group.

There is a common strategy for attempting to prove one divisibility in the aforementioned theorems and conjectures,
L-value | size of the Selmer group,
p-adic L-function | characteristic ideal of the Selmer group.

The idea is to produce elements in Selmer groups by utilizing congruences between Eisenstein series and cusp forms.

There is a common strategy for attempting to prove one divisibility in the aforementioned theorems and conjectures,
L-value | size of the Selmer group,
p-adic L-function | characteristic ideal of the Selmer group.

The idea is to produce elements in Selmer groups by utilizing congruences between Eisenstein series and cusp forms. It originates from Ribet's proof of the converse of Herbrand's theorem,

There is a common strategy for attempting to prove one divisibility in the aforementioned theorems and conjectures,
L-value | size of the Selmer group,
p-adic L-function | characteristic ideal of the Selmer group.

The idea is to produce elements in Selmer groups by utilizing congruences between Eisenstein series and cusp forms. It originates from Ribet's proof of the converse of Herbrand's theorem, and is further developed into a very general machinery by Wiles, Urban, Hsieh.

The key input for running the Eisenstein congruence machinery is a family of Klingen Eisenstein series satisfying

The key input for running the Eisenstein congruence machinery is a family of Klingen Eisenstein series satisfying

- the degenerate terms in its Fourier expansion are given by the p-adic L-function,

The key input for running the Eisenstein congruence machinery is a family of Klingen Eisenstein series satisfying

- the degenerate terms in its Fourier expansion are given by the p-adic L-function,
- the degenerate terms are coprime to the non-degenerate terms (some mod p non-vanishing results).

The key input for running the Eisenstein congruence machinery is a family of Klingen Eisenstein series satisfying

- the degenerate terms in its Fourier expansion are given by the p-adic L-function,
- the degenerate terms are coprime to the non-degenerate terms (some mod p non-vanishing results).

In the case $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$,

The key input for running the Eisenstein congruence machinery is a family of Klingen Eisenstein series satisfying

- the degenerate terms in its Fourier expansion are given by the p-adic L-function,
- the degenerate terms are coprime to the non-degenerate terms (some mod p non-vanishing results).

In the case $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$, after constructing the Klingen Eisenstein family satisfying the first property (still by doubling method),

The key input for running the Eisenstein congruence machinery is a family of Klingen Eisenstein series satisfying

- the degenerate terms in its Fourier expansion are given by the p-adic L-function,
- the degenerate terms are coprime to the non-degenerate terms (some mod p non-vanishing results).

In the case $\pi \subset \mathcal{A}_{0}(\operatorname{Sp}(2 n, \mathbb{Q}) \backslash \operatorname{Sp}(2 n, \mathbb{A}))$, after constructing the Klingen Eisenstein family satisfying the first property (still by doubling method), I am interested in computing the corresponding non-degenerate Fourier coefficients, and finding how far I can go in the general setting as well as if there are some special cases for which the second property can be verified.

In general,

$$
\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\mathrm{Sieg}}(s)\right\rangle,
$$

where $\varphi \in \pi, \phi \in \mathcal{S}\left(M_{n, n+1}(\mathbb{A})\right)$.

In general,

$$
\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\mathrm{Sieg}}(s)\right\rangle,
$$

where $\varphi \in \pi, \phi \in \mathcal{S}\left(M_{n, n+1}(\mathbb{A})\right)$.

In general,

$$
\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\mathrm{Sieg}}(s)\right\rangle,
$$

where $\varphi \in \pi, \phi \in \mathcal{S}\left(M_{n, n+1}(\mathbb{A})\right)$.

In general,

$$
\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\mathrm{Sieg}}(s)\right\rangle,
$$

where $\varphi \in \pi, \phi \in \mathcal{S}\left(M_{n, n+1}(\mathbb{A})\right)$.

The hope is to

- understand $\left.\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\text {Sieg }}(s)\right\rangle\right|_{s=k-n-1}$,

In general,

$$
\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\mathrm{Sieg}}(s)\right\rangle,
$$

where $\varphi \in \pi, \phi \in \mathcal{S}\left(M_{n, n+1}(\mathbb{A})\right)$.

The hope is to

- understand $\left.\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\text {Sieg }}(s)\right\rangle\right|_{s=k-n-1}$,
- relate the change of indices of Fourier coefficients to the translation by $\mathrm{O}(2 k)$ on Φ,

In general,

$$
\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\mathrm{Sieg}}(s)\right\rangle,
$$

where $\varphi \in \pi, \phi \in \mathcal{S}\left(M_{n, n+1}(\mathbb{A})\right)$.

The hope is to

- understand $\left.\left\langle\varphi, \theta_{n+1}(\phi)(\cdot, 1) E^{\text {Sieg }}(s)\right\rangle\right|_{s=k-n-1}$,
- relate the change of indices of Fourier coefficients to the translation by $\mathrm{O}(2 k)$ on Φ,
- say something about the function

$$
h \mapsto \int_{\mathrm{O}(2 k-n-1, \mathbb{Q}) \backslash \bigcirc(2 k-n-1, \mathbb{A})} \theta_{2 k}(\Phi, \varphi)(x h) d x .
$$

Thank you!

