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Abstract

We argue that quadratic pricing of votes on collective decisions is analogous to linear pric-

ing of private goods and thus solves the tyranny of majority created by the one-person-one-

vote rule. To do so we propose a solution concept for costly voting models where individuals

take the price of influence in units of votes as given. Under this concept, quadratic pricing of

votes is the only rule that is always efficient. We then show that all type-symmetric Bayes-

Nash equilibria of an independent private values Quadratic Voting game converge to this

efficient price-taking outcome as the population size grows large, with inefficiency generi-

cally decaying as 1/N . We discuss the robustness of these conclusions and their implications

for market and mechanism design.
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(T)he “one man one vote” rule gives everyone minimum share in public decision-
making, but it also sets...a maximum...it does not permit the citizens to register the
widely different intensities with which they hold their respective political convictions
and opinions.

– Albert O. Hirschman, Shifting Involvements: Private Interest and Public Action

(T)he will of those whose qualifications, when both sides are added up, are the great-
est, should prevail.

– Aristotle, The Politics, Book VI, Part III

1 Introduction

Prohibitions on gay marriage seem destined to be remembered as classic examples of the “tyranny
of the majority” that has plagued democracy since the ancient world. While in many countries
a(n increasingly narrow) majority of voters oppose the practice, the value it brings to those di-
rectly affected seems likely to be an order of magnitude larger than the costs accruing to those
opposed.1 However, one-person-one-vote (1p1v) offers no opportunity to express intensity of
preference, allowing such inefficient policies to persist. While most developed countries have
institutions, such as independent judiciaries and log-rolling, that help protect minorities, these
are often costly and insufficient (Posner and Weyl, Forthcoming). In this paper we argue for a
simple solution: allow individuals to cast as many (continuous) votes as they wish, but charge
them the square of the votes they cast.2

The basic problem we seek to address is that 1p1v rations rather than prices votes, resulting
in externalities across individuals. This contrast with the market mechanisms for allocating pri-
vate goods where individuals pay the opportunity cost of their consumption, leading to social
efficiency (Smith, 1776). We therefore, in Section 2, consider a simple class of costly voting rules
under which individuals purchase any continuous number of votes they wish using a quasi-
linear numeraire. To study such rules, we propose a “price-taking” model where individuals
take as given the vote-price of influence, the number of votes it takes to have a unit of influence
on the outcome. This price for short plays the same role in coordinating behavior that prices do
in a market for private goods. Optimization given price-taking, together with a fixed total sup-
ply of influence, inspired by general statistical limits on influence as derived by Al-Najjar and
Smorodinsky (2000) define a price-taking equilibrium.

1A rough calibration to the California Proposition 8 referendum by Weyl (2015a) suggests a potential Pareto
improvement of nearly $1000 per California voter was possible over the prohibition that was enacted through 1p1v.

2To our knowledge this mechanism was first proposed, in its present form, by Weyl in an earlier version of this
paper (circulated in February 2012) as “Quadratic Vote Buying”.
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We show that for any convex vote costs a unique equilibrium exists. Limiting cases yield
familiar predictions: in nearly linear vote buying equilibrium approaches the dictatorship of
the single individual with the most intense preference typically derived from linear vote buying
models and as the cost becomes extremely convex 1p1v results. We then use this concept in Sub-
section 2.5 to extend to discrete decisions Hylland and Zeckhauser (1980)’s argument that effi-
ciency occurs in equilibrium for all value configurations if and only the pricing rule is quadratic.3

This uniqueness contrasts with the complete information, game theoretic environment studied
by Groves and Ledyard (1977) where many rules are efficient (Maskin, 1999).

Individuals in this model have an assumed-linear value of acquiring “influence”, a concept
without clear micro-foundation in this non-stochastic price-theoretic environment.4 In Section
3 we therefore study a canonical, quasi-linear independent bounded-support private values
model with a small aggregate noise that smooths payoffs.

We prove that in any type-symmetric Bayes-Nash equilibrium, at least one of which exists,
any social waste associated with equilibrium is eliminated as the population grows large. For
the generic case when the mean of the value distribution is non-zero, equilibrium takes a sur-
prising form, where a vanishingly small tail of “extremists”, from the side of the distribution
opposite to its mean, purchase enough votes to win the election with high probability. Their ex-
istence, despite occurring only with probability 1/N, is sufficient to provide others the incentive
to buy sufficient votes to deter extremists from being more active. Approximate calculations of
constants on this decay rate and numerical simulations by Weyl (2015a) suggest resulting in-
efficiency is very small for reasonable parameter values in moderately large populations (with
thousands of individuals).

While we focus here on establishing these motivating properties of Quadratic Voting (QV),
in companion work we and others have investigated its robustness to a variety of changes in
the model and practical considerations. In Section 4 we briefly discuss our tentative conclusion,
based on this work, that QV is a more practically viable approximately efficient alternative to
1p1v than others previously proposed by economists. Finally in Section 5 we briefly describe
on-going work related on QV.

2 Price-Taking Equilibrium of Costly Voting

As we discuss in Section 4, the mechanisms economists have previously proposed for collective
decision-making strike most as complex and fitted tightly to the formal modeling environments
that motivated them. Furthermore they have proved fragile in other analyses and have thus

3Also, our quasi-linearity assumption allows us to extend their result to a single decision.
4Readers who are interested primarily in the core economic intuitions behind and applications of QV may wish

to skip Section 3, which is quite technical. On the other hand, readers primarily interested in micro-founded results
may wish to skip Section 2.
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been widely dismissed as impractical. Like over-fitted statistical models, they appear to perform
poorly out of sample.

We therefore take an alternative approach inspired by the literature on over-fitting (Vapnik
and Chervonenkis, 1971): we consider a simple class of mechanisms that are as analogous as pos-
sible to the linear-pricing market mechanism studied by Smith (1776) and analyze them using
a price-taking approximation. This uniquely identifies a simple mechanism that we hope, con-
sequently, will be more robust than those previously considered by economists. While placing
such arbitrary restraints on the class of mechanisms considered may seem restrictive, statistical
learning theory (Blumer et al., 1987) suggests it increases the reliability of extrapolation based
upon such an analysis. Similarly while our price-taking concept is somewhat ad-hoc, Section
3 shows that it is the limit of any type-symmetric equilibrium of a canonical game theoretic
micro-foundation and Subsection 4.1 discussed the robustness of this conclusion.

2.1 Model

Consider a finite collection N of individuals making a binary collective decision about whether
to maintain a shared status quo or adopt an alternative A. Each individual i = 1, . . . , N is char-
acterized by a value ui ∈ R describing her willingness to pay, out of a quasi-linear numeraire, to
see the alternative adopted over the status quo; negative values represent willingness to pay to
maintain the status quo. For normalization we assume that an individual gains ui if the alterna-
tive is adopted, but loses it if the status quo is maintained, so that her net value for changing the
outcome is 2ui.

We study a class of costly voting mechanisms. Whether the alternative is implemented is de-
termined by a vote in which each individual selects a scalar vi ∈ R and the alternative is im-
plemented if and only if

∑
i vi ≥ 0. Each individual pays a cost c (vi) where c is differentiable,

convex, even and strictly monotone increasing in |vi| and receives a refund ri (v−i) such that∑
i c (vi) =

∑
i ri (v−i), where v−i is the vector of votes by other individuals.5

2.2 Definition of equilibrium

We begin by defining our equilibrium concept formally and then motivate it.

Definition 1. A collective decision problem is a triple {N,S, u} of a number of individuals N ∈ Z++,
a supply of influence S ∈ R++ and an N -dimensional value vector u ∈ RN .

Definition 2. A price-taking equilibrium of a collective decision problem {N,S, u} under costly
voting rule c a triple {I?, p?, 1?A} of an influence vector I? ∈ RN , price p? ∈ R++ and an action

5We do not specify precisely which refund rule is used as it is irrelevant to the analysis that follows in this and
the next two sections (given that it in no way depends on the individual’s own choice), but a simple one obeying

this budget balance condition is that each individual receives
∑

j 6=i c(vj)

N−1 .
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1?A ∈ {0, 1} such that

1. Price-taking: for each i ∈ 1, . . . , N , I?i maximizes 2uiIi − c (pIi) over all choices of Ii ∈ R.

2. Market clearing:
∑N

i=1 |I?i | = S.

3. Majority rules: 1?A = 1V ?≥0 where V ? ≡
∑

i p
?I?i .

The equilibrium votes corresponding to an equilibrium {I?, p?, 1?A} is the vector v? whose ith entry
is v?i = p?I?i .

Under our solution concept, individuals choose an amount of influence to exert over the de-
cision, taking as given the linear price of this influence in units of votes. The market clears if
the total absolute value of influence acquired equals an exogenous supply S. The most natu-
ral micro-foundation for this concept is the chance that individuals perceive of their changing
the outcome in their preferred direction. Section 3 develops this interpretation rigorously (but
narrowly).

This chance of any vote influencing the outcome of the aggregate decision is likely to be small
in large elections for reasons familiar to economists. As Mailath and Postelwaite (1990) show,
only in very special, complete information environments is it possible to make a large number
of individuals pivotal for a single binary decision each with a large probability. In fact, Al-Najjar
and Smorodinsky (2000) prove strong and robust upper bounds on the total influence exerted on
average on the outcome. Extensive empirical evidence confirms these predictions (Mulligan and
Hunter, 2003; Gelman et al., 2010). While the precise amount of influence “available” depends
on the particular form and parameters of the information environment, the basic principles of
it being in limited supply and thus it being small for almost all individuals is robust across all
such environments (Gelman et al., 2002). This motivates our assumption that there is a limited
total supply of influence.

Clearly this influence arises (only) from the possibility that the decision may be tied. Thus the
price of influence in units of votes is the inverse of the chance (density with which) a tie occurs.
We refer to this price as the vote-price of influence or simply price for short. Mueller (1973, 1977)
and Laine (1977) argue that, in a somewhat different context, this price is insensitive to number
of votes an individual purchases. This seems a reasonable extension of the previous intuition
limiting the total size of influence, because it appears impossible for an individual with very
little influence over the final decision to significantly impact the chance a tie occurs; after all an
election’s chance of being tied only changes by the chance of one side’s victory rising or falling.
But by Al-Najjar and Smorodinsky’s arguments, it is impossible for a large number of individu-
als to have significant influence. This is the intuition behind our price-taking assumption.
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2.3 Existence and uniqueness

As a prelude to our main analysis, we now consider two results, one technical and one substan-
tive, that illustrate attractive properties of price-taking equilibrium.

Lemma 1. For any collective decision problem {N,S, u} and any vote cost c(·) there exists a
unique price-taking equilibrium.

Proof. By differentiability and convexity, price-taking is equivalent to

2ui = pc′ (pIi) .

By the same properties, c′ is invertible and its inverse is continuous; denote this inverse γ(·).
Then, if we let I(p;u) be the unique vector of price-taking influences voters acquire when the
price is p,

Ii(p;u) =
γ
(

2ui
p

)
p

. (1)

γ is strictly monotone increasing by strict convexity of c, has the same sign as Ii by the fact that c
is even and increasing in the absolute value of its argument and is continuous by differentiability
of c. |Ii(p;u)|, and thus |I(p;u)|, is thus strictly monotone decreasing and continuous in p. Thus
D(p) ≡

∑N
i=1 |Ii(p;u)| is strictly monotone decreasing in p and continuous. By definition, any

equilibrium must have D(p) = S; thus there may be at most one equilibrium.
Furthermore note that as p→∞, Ii(p;u)→ 0 for all i because γ

(
ui
p

)
is strictly declining in p.

By the same logic, Ii(p;u)→ ±∞ as p→ 0. Thus limp→0D(p) =∞ and limp→∞D(p) = 0. Thus by
continuity and the intermediate value theorem there is some p for which D(p) = S. This p and
I(p;u) constitute an equilibrium as equation (1) fully characterizes the price-taking condition by
our arguments above. Given this, the outcome 1?A immediately follows uniquely.

Note the role that each of convexity and quasi-linearity play here. Absent convexity, equi-
librium could easily fail to exist because it might be that individuals would, at each value of p,
choose either a very large number of votes or a very small number of votes, potentially violating
market clearing. Absent quasi-linearity, income effects of changes in p could result in multiple
equilibria just as in classical general equilibrium theory.

2.4 Limit cases as validation

Does the concept yield substantively reasonable conclusions? Consider the special case of con-
vex power costs c(v) = k|v|x, where x > 1. Then price taking requires that

ui
p

=
kx

2
sign (v?i ) |v?i |

x−1 ⇐⇒ v?i =

(
2

kxp

) 1
x−1

sign(ui) |ui|
1

x−1 .
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Thus, in this class of mechanisms, the decision always favors whichever side has a greater value
of
∑

i |ui|
1

x−1 . Two extreme cases yield particularly simple and familiar results.
For any fixed vector u and for all i, limx→∞ |ui|

1
x−1 → 1. Thus, as the cost of voting becomes

arbitrarily convex the decision is determined by which side has more individuals, that is 1p1v
majority rule. A case yielding a less obvious conclusion is the limit as x → 1 of linear voting
costs. Let i? be the index of the (generically unique) individual with the largest |ui|. Note that
for any j 6= i?

lim
x→1

|ui?|
1

x−1

|uj|
1

x−1

=∞ =⇒ lim
x→1

|ui?|
1

x−1∑
j 6=i? |uj|

1
x−1

→∞.

Thus as x→ 1 the outcome is generically the dictatorship of the single individual with the most
intense preference.

This result is predicted by several recent studies of equilibria in linear vote buying models
with new solution concepts or set-ups that resolve classic problems nonexistence in linear vote-
buying models, arising from lack of convexity.6 Casella et al. (2012) propose a notion of ex-ante
equilibrium under which they, and Casella and Turban (2014), show that in every case they
can study the single individual with the most intense preference wins with high probability,
regardless of all other parameters. Dekel et al. (2008, 2009) and Dekel and Wolinsky (2012) find
similar and in many cases identical results in a range of game theoretic vote buying models.

2.5 The uniquely robust efficiency of Quadratic Voting

We now characterize the class of voting costs yielding robustly efficient outcomes, as now for-
mally defined, under this tractable and apparently reasonable solution concept.

Definition 3. A voting rule c(·) is robustly efficient if, for all collective decision problems {N,S, u},
in the unique equilibrium 1?A = 1U≥0 where U ≡

∑
i ui.

Theorem 1. c(·) is robustly efficient if and only if c(v) = kv2 for some k > 0.

Proof. First consider the “if” direction. By price-taking and our analysis in Subsection 2.4, at any
price-taking equilibrium we must have

v?i =
1

kp?
sign (ui) |ui| =

ui
kp?

.

Thus

sign

(∑
i

v?i

)
= sign

(∑
i

ui
kp?

)
= sign

(∑
i

ui

)
,

6It is also consistent with a long tradition of informal argument about the impact of (linear) vote buying and
lobbying on political outcomes (Olson, 1965) and formal results on the private provision of public goods with linear
technology (Bergstrom et al., 1986).
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because k, p? > 0.
For the “only if” direction, equation 1 implies

v?i = γ

(
2ui
p

)
. (2)

By the proof of Lemma 1 (and by the argument in the text above), for any number of individuals
N and value vector u, adjusting S can lead to any desired value of p. Thus we can, without
loss of generality with respect to considering robust efficiency, assume that p = 2 as long as
we do not adjust S in the rest of the proof. Thus equation (2) becomes v?i = γ (ui). The only
homogeneous of degree one functions of a single variable are linear, so either γ is linear or it is
not homogeneous of degree one. In the first case, inversion and integration yields that c takes
the desired form, given that γ is also even by the evenness of c. In the second case, there must
exist some values u′ > 0, κ > 1 (again by evenness) such that γ(κu′) 6= κγ(u′). Suppose, without
loss of generality, that γ(κu′) > κγ(u′) and let ∆ ≡ γ(κu′)

κγ(u′)
− 1. Let N? be the least integer strictly

greater than 2κ(1+∆)
∆

and let N?? be the greatest integer strictly less than N?

k
.

Consider a collective decision problem where N?? individuals have value −κu′ and N? indi-
viduals have value u′ and there are no other individuals in the economy. Then note that

∑
i

ui = N?u′ −N??κu′ > N?u′ − N?

κ
κu′ = 0

so the sign of
∑

i ui > 0. However,∑
i

v?i = N?γ (u′)−N??γ (κu′) = γ (u′) [N? −N??κ (1 + ∆)] <

γ (u′) [N? − (N? − κ) (1 + ∆)] = κγ (u′)

[
1 + ∆−∆

N?

κ

]
< κγ (u′) [1 + ∆− 2(1 + ∆)] < 0,

using the fact that k, γ > 0 by the monotonicity of γ. Thus unless γ(·) is homogeneous of degree
1, c(·) cannot be robustly efficient.

The proof formalizes the intuition that quadratic functions are the only ones with linear
derivatives and thus the only ones where individuals equating their marginal utility to the
marginal cost of a vote will buy votes in proportion to their utility. As Smith (1776) observed
about the linear pricing of private goods, quadratic pricing leads a voter who intends only her
own gain to be led by an invisible hand to promote an end that is no part of her intention.

Our result is most closely related to three from the literature. Groves and Ledyard (1977)
show that quadratic pricing can be used to achieve optimality in the provision of continuous
public goods under complete information. However, under complete information, many other
pricing schemes (Greenberg et al., 1977), many of them (Maskin, 1999) far more fragile than the
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quadratic mechanism, achieve optimality.7

A closer result, therefore, is that in unpublished and publicly unavailable work by Hylland
and Zeckhauser (1980).8 They show, in a Walrasian model analogous to ours where individuals
take the price of influence as constant, that quadratic pricing of continuous public goods using
artificial currency is the unique pricing rule that achieves an analog to the First and Second
Fundamental Welfare Theorems. We extend their analysis to the discrete decisions through our
notion of price-taking equilibrium and consider a case with only a single choice byu introducing
a private numeraire good. We also extend their analysis by providing explicit non-cooperative
foundations for Walrasian equilibrium in the next section.9

Finally, Goeree and Zhang (2013), in work that was circulated after the first draft of this pa-
per, consider the large population limit of the Expected Externality mechanism of Arrow (1979)
and d’Aspremont and Gérard-Varet (1979) for a binary, quasilinear collective decision like ours.
In the case when the mean of the distribution of values is 0, this limit is payments that are ap-
proximately quadratic, so that a quadratic pricing mechanism (with a particular value of k) gives
approximate incentives for truthful value revelation. While much of our analysis below focuses
on the generic case when the mean of the value distribution is not 0, when the limit of the Ex-
pected Externality mechanism is nothing like quadrtic, it was also this connection that led us to
consider the quadratic form.10

3 Convergence from Independent Private Values

We now follow Cournot (1838) and Satterthwaite and Williams (1989) who provided coherent
non-cooperative game theoretic models that converge to market equilibrium by building an
analogous model of convergence towards our price-taking equilibrium for collective decisions.
Rigorous proofs of all results in this section appear in an appendix following the main text of the
paper.

7This led much of the literature to consider such schemes generally unattractive (Bailey, 1994).
8This was recently revived by Benjamin et al. (2013) and Chung and Duggan (2014) who, like us until after the

first version of this paper was published, were unaware of Hylland and Zeckhauser’s previous work.
9See our conclusion for a discussion of our on-going work with Hylland and Zeckhauser to update and publish

their original work.
10To gain some intuition for this, consider the classic problem of choosing the level of consumption of a good

causing a negative externality. Each individual reports her schedule of harms and the optimal level of the externality
is determined by equating demand to the vertical sum of the harm schedules. As Tideman (1983) observes, the
Vickrey payment is the externality on other individuals of a given individual’s report, which is the area between
private demand and the cost curve for all other individuals between the quantity that would prevail absent an
individual’s report and the quantity that prevails with this report. Note that this is a deadweight loss triangle and,
as such, grows quadratically in the change in quantity induced by the individual’s report.

9



3.1 Model

We consider an environment of symmetric, independent private values, analogous to the most
canonical models of double auctions (Satterthwaite and Williams, 1989). There are N voters
i = 1, . . . , N . Each voter is characterized by a value, ui; these are drawn independently and
identically from a continuous probability distribution F supported by a finite interval [u, u],
with associated density f and u < 0 < u.11 For normalization, we assume that the numeraire has
been scaled so that min(|u|, u) ≥ 1. We denote by µ, σ2 and µ3 respectively the mean, variance
and raw third moment of u under F , and we assume that f is smooth and bounded away from
0 on [u, u]. Each individual knows her own value, but knows nothing about those of the other
agents except that they were obtained by random sampling from F .

Each individual buys vi votes, where vi ∈ R, and earns utility

uiΨ(V )− v2
i (3)

where V ≡
∑N

i=1 vi.
12 Voters are expected wealth maximizers; thus, voter i chooses vi to maxi-

mize
E [uiΨ (V−i + vi)]− v2

i , (4)

where V−i ≡
∑

j 6=i vi is the sum of all votes cast. The payoff function Ψ : R→ [−1, 1] is a smoothed
proxy for the Heaviside function (viz. a discontinuous jump from −1 to 1 at 0): we assume that
it is an odd, nondecreasing, C∞ function such that for some δ < 1/

√
2,

Ψ(x) = sgn(x) for all |x| ≥ δ

and such that Ψ is strictly increasing, with positive derivative, on the interval (−δ, δ). Thus,
the derivative ψ = Ψ′ is twice an even probability density with support [−δ, δ] that is strictly
positive on (−δ, δ). The assumption that δ <

√
2 ensures that a voter with value vi ≤ −1 would

find it worthwhile to purchase 2δ votes to sway the election in the event that the sum V−i of the
other votes were exactly +δ. This in turn implies that there must exist pairs of values (α,w) with
−δ < w < δ and α ≥ δ such that (1−Ψ(w)) |u|−(δ−w)2 is positive, and so there will exist extrema
for the difference. We shall assume throughout that the following steepness hypothesis (roughly
stating that there is a unique extremal at which the second derivative is negative) holds.

11Weyl (2015a) use heuristic arguments to conjecturally extend our analysis to the case of unbounded distribu-
tions and find that the decay of inefficiency is slower in this case if the value distribution has fat tails and µ 6= 0,
occurring at rate Na−1/a+1, where a is the rate of decay of the Pareto tail of the distribution of sign opposite to that
of µ. For a = 3, a reasonable approximation to the US income distribution, this leads to a much slower decay of
inefficiency as 1/

√
N and EI of several percentage points even in populations of many thousands. However, once we

reach population sizes in the millions EI is again negligible.
12Again we do not focus on the the refunding of revenue raised as it has no impact on incentives under QV so long

as, e.g. each individual receives back the same share of revenue or only receives revenues raised from individuals
other than herself. However, note that QV may be budget balanced in a variety of ways without impacting any of
the analysis that follows.
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Assumption 1. There exists w ∈ [−δ, δ] such that

(1−Ψ(w)) |u| > (δ − w)2.

Furthermore, there exist a unique pair (α,w) of real numbers such that −δ ≤ w < δ < α and

(1−Ψ(w)) |u| = (α− w)2 and (5)

(1−Ψ(w′)) |u| ≤ (α− w′)2 for all w′ 6= w,

and that
2 + ψ′(w) |u| > 0.

For δ < 1/
√

2 this hypothesis holds generically among the class of C∞ payoff functions Ψ.
While we use Ψ to determine payoffs in lieu of the Heaviside function primarily for tech-

nical convenience, the function Ψ can also be interpreted as representing some exogenous un-
certainty around close elections, arising from judicially supervised recount procedures such as
those during the 2000 United States Presidential election.13 We conjecture our results also hold
if the Heaviside function is used, but we have not been able to prove them formally without the
exogenous smoothness provided by Ψ.14

We define the expected inefficiency resulting as EI ≡ 1
2
− E[UΨ(V )]

2E[|U |] ∈ [0, 1]. This is the unique
negative monotone linear transformation of aggregate utility realized UΨ(V ) that is normalized
to have range of the unit interval.

3.2 Existence of Equilibria

Lemma 2. For any N > 1 there exists a type-symmetric Bayes-Nash Equilibrium v that is mono-
tone increasing.

This result follows directly from Reny (2011)’s Theorem 4.5 for symmetric games.15

Now consider the optimal behavior of an individual in such an equilibrium, given that the
other individuals use the Bayes-Nash strategy v(·).16 The expected utility of an individual with
value u who buys votes v is E [uΨ (v + VN−1)]− v2, where VN−1 is the sum of N − 1 independent
draws of v(u), where u has distribution F . By smoothness of Ψ, maximization of expected utility

13Ψ may also be interpreted as representing the possibility of only-partial victories in sufficiently tight elections.
14All the constant calculations and numerical results quoted from Weyl (2015a) use the Heaviside function.
15All of Reny’s conditions can easily be checked, so we highlight only the less obvious ones. Continuity of payoffs

in actions follows from the smoothed payoffs imposed through Ψ. Type-conditional utility is only bounded from
above, not below, but boundedness from below can easily be restored by simply deleting for each value type u votes
of magnitude greater

√
2 |u|. The existence of a monotone best-response follows from the clear super-modularity of

payoffs.
16We conjecture that these results are true of asymmetric equilibria as well, given that the “smallness” of each

agent rules out significant asymmetries. However, we have not proved this.
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implies the necessary condition

uE [ψ (v + VN−1)] = 2v =⇒ v =
1

p(v)
u,

where p(x) ≡ 2
E[ψ(x+VN−1)]

is the price perceived by an individual buying votes x. This price
now has the rigorous interpretation of the inverse of the chance of an individual being pivotal
in changing the outcome.

3.3 Efficiency

The following theorem follows directly from the explicit characterizations of Bayes-Nash equi-
libria discussed in the following sections.

Theorem 2. For a given sampling distribution F and payoff function Ψ satisfying the hypotheses
specified above, there exist constants αN > 0 satisfying limαN = 0 such that for any type-
symmetric Bayes-Nash equilibrium, EI is bounded above by αN .

We conjecture that αN = w/(N − 1) for some constant w, and we give explicit expressions for
w in terms of F in the next two subsections. These depend on whether µ = 0 or µ 6= 0 and we
can prove this rate of decay holds for the latter case.

3.4 Characterization of equilibrium in the zero mean case

The reason for this dependence is that the structure of Bayes-Nash equilibrium differs radically
depending on whether µ = 0 or µ 6= 0. Although non-generic, the case µ = 0 corresponds
most closely to the simplest intuition for why p is approximately constant in the limit and may
arise frequently in the equilibrium of a broader political game where candidates or candidate
initiatives converge toward efficiency (Ledyard, 1984).

Theorem 3. For any sampling distribution F with mean µ = 0 that satisfies the hypotheses
of Subsection 3.1 there exist constants εN → 0 such that in any type-symmetric Bayes-Nash
equilibrium, v(u) is C∞ on [u, u] and satisfies the following approximate proportionality rule:∣∣∣∣v(u)

u
− 1

pN

∣∣∣∣ ≤ εN
pN

where pN =

√
σ 4
√
π(N − 1)
4
√

2
. (6)

Furthermore, there exist constants αN , βN → 0 such that in any equilibrium the vote total V = VN

and expected inefficiency satisfy

EI < αN and |E [V ]| ≤ βN
√

var(V ). (7)
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Thus, in any equilibrium agents buy votes approximately in proportion to their values ui,
which corresponds to their behavior under price-taking, as described in the previous section.
This approximate proportionality rule, as the proof makes clear, holds because in any equilibrium
each voter perceives approximately the same pivot probability, that is, the probability that the
vote total V will be in the range [−δ, δ] where a small increment to one’s vote would move Ψ and
thus the same price. Given that this is true (though not nearly as easy as it sounds to prove), it
is not difficult to understand why the number of votes bought by a typical voter should decay
as 1/ 4√N. For if the vote function v(u) in a Bayes-Nash equilibrium follows a proportionality rule
v(u) ≈ βu then the constant β must be the consensus pivot probability; on the other hand, by the
local limit theorem of probability (Feller, 1971) if β = CN for some constants a, C > 0 then the
chance that V ∈ [−δ, δ] would be of order Nα− 1

2 , and so a must be 1/4.
Weyl (2015a) use heuristics to argue that the inefficiency of QV decays like µ23/16σ6(N−1). They

consider an example calibrated to California’s 2008 gay marriage referendum with uniform
value distributions and the fraction of non-gays supporting gay marriage adjusted to ensure
a 0 mean in aggregate. In this example, the value of the constant is approximately 4.5. Con-
sequently, in a community of 101 individuals, inefficiency is inefficiency is 4.5%, all resulting
from gay marriage being too frequently defeated as it would be with near-certainty in democ-
racy. In a city of 100, 001 it is a negligible .0045%. They also find that these limiting constants
typically overstate EI by 2-3 times in more precise numerical calculations for fixed and moderate
population sizes.

3.5 Characterization of equilibrium in the non-zero mean case

When µ is not zero the nature of equilibrium is quite different: for sufficiently large N , any type-
symmetric Bayes-Nash equilibrium has a massive jump discontinuity in the extreme tail of the
value distribution.17

Theorem 4. Assume that the sampling distribution F has mean µ > 0 and satisfies the hypothe-
ses of Subsection 3.1, and that the payoff function satisfies Assumption 1. Then for any ε > 0, if
N is sufficiently large then for any Bayes-Nash equilibrium v(u),

(i) v(u) has a single discontinuity at u∗, where |u∗ + |u| − γ(N − 1)−2| < ε(N − 1)−2;
(ii) |v(u) +

√
2|u|| < ε for u ∈ [u, u∗);

(iii) |v(u)− Cu/N−1| < εN/N−1 where C = f(u)ψ(w)/µ and εN → 0 as N →∞; and
(iv) P{|V − α| > ε} < ε.

Here γ > 0 is a constant that depends only on the distribution F .

Thus, an agent with value u will buy approximately CN−1u votes, where C is a constant
C > 0 depending on the sampling distribution F , unless u is in the extreme lower tail of F , in

17Without loss of generality we focus on the case when µ > 0.
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which case the agent will buy approximately α−w ≈ −
√

2|u| votes, enough to single-handedly
win the election. Agents of the first type will be called moderates, and agents of the second kind
extremists. Because the tail region in which extremists reside has F−probability on the order
N−2, the sample of agents will contain an extremist with probability only on the order N−1, and
will contain two or more extremists with probability on the order N−2. Given that the sample
contains no extremists, the conditional probability that |V − α| > ε is O(e−%n) for some % > 0, by
standard large deviations estimates, and so the event that V < 0 essentially coincides with the
event that the sample contains an extremist. Thus, we have the following corollary.

Corollary 2. Under the hypotheses of Theorem 4, EI is of order 1/N.

Weyl (2015a) use heuristic arguments to derive a constant of |u|/µ on this rate and calibrate it in
the gay marriage example (without adjusting the proportion of gay marriage backers among the
straight population) to a bit more than twice its value in the µ = 0 case of the previous subsection.
Thus inefficiency remains very small in reasonable populations (say more than a few thousand)
in this case, and more precise numerical simulations suggest that these calculations overstate EI
by 2-3 times for moderate population sizes.

Why does equilibrium take this somewhat counter-intuitive form in this case? For an agent i
with value ui in the “bulk” of the value distribution F , there is very little information about the
vote total V in the agent’s value ui, and so for most such agents their perceived price p (v (ui)) will
be approximately p ≡ 2/E[ψ(V )]; that is the price will be approximately its average value. Thus, in
the bulk of the distribution the function v(u) will be approximately linear in u. Therefore, by the
law of large numbers, the vote total will, with high probability, be near µ/p. Since µ > 0, agents
with negative values will, with high probability, be on the losing side of the election.

However, if the price p were too large – large enough that µN/p is not much greater than δ –
then agents with values near u would be able to swing the whole election at cost 4δ2 < 2 |u|,
which they would clearly find it in their interest to do. They cannot “steal” the election in
this way with non-vanishing probability in equilibrium, however, as it would raise the piv-
otal chance greatly, thereby reducing p, given that the extremist must also satisfy her necessary
optimization condition and the price she perceives can only be smaller than that perceived by
moderates by the probability of her existence on which she conditions. On the other hand, p
cannot be so small that it would no longer be worthwhile for any extremist to steal the election,
because then the probability of the status quo being maintained would be exponentially small
implying that the pivotal event would be exponentially small and thus p would be exponen-
tially large. The unique limiting equilibrium described above is the only point balancing these
two considerations.
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4 Discussion

While the preceding results motivate an interest in QV as a potentially useful mechanism, economists
have proposed several other mechanisms with similar or even superior efficiency properties in
the simple game theoretic environment we studied in the previous section. As we discuss below,
these mechanism are widely viewed, even by economists, as being of little practical value. In
this section we briefly discuss some companion work that has led us to the tentative conclusion
that QV has a better chance of being practically relevant.

4.1 Robustness and comparison to other mechanisms

Weyl (2015b) explores the performance of QV under a range of modeling environments be-
yond the canonical one we study in the previous section where other mechanisms proposed
by economists have proved very fragile. We now very briefly summarize leading conclusions of
this work.18

4.1.1 Collusion and fraud

The best-known efficient mechanism for collective decision-making in the environment of the
previous section is that proposed by Vickrey (1961), Clarke (1971) and Groves (1973) (VCG),
which is fully efficient even in finite populations. However this mechanism is now almost uni-
versally rejected by market designs as practically useful for collective decision-making (Ausubel
and Milgrom, 2005; Rothkopf, 2007). Perhaps the leading concern is its sensitivity to collusion;
typically any two colluding individuals or any one individuals who can fraudulently represent
herself as two can obtain whatever outcome they/she desire(s) at no cost to themselves and in
(at least approximate) equilibrium.

Collusion and fraud are therefore an important concerns with QV; they typically benefits
those perpetrating them and may harm the efficiency of QV. However, three forces that limit
the harm created by collusion and fraud in market economies also do so in QV: the collusive
group or fraudulent misrepresentation must be large to significantly dent efficiency, collusion
creates incentives for unilateral deviation and both cause reactions by other agents that may
make these activities self-defeating. Weyl shows that the first two forces put significant limits on
the plausibility of collusion and fraud in the µ = 0 case and the third force puts significant limits
in the µ 6= 0 case. Even in the worst case, collusion in a population of a million will require on
the order of thousands of participants to be effective against these limits. When combined with
the sorts of legal prohibitions against collusion used in market economies, these seem likely to
make collusion and fraud significant, but not devastating, challenges for QV.

18These results are all based on approximate calculations and thus are conjectural to greater and lesser degrees,
as discussed in Weyl.
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4.1.2 Aggregate uncertainty

Another class of well-known mechanisms (Arrow, 1979; d’Aspremont and Gérard-Varet, 1979;
Ledyard and Palfrey, 1994, 2002; Krishna and Morgan, 2001; Goeree and Zhang, 2013) are only
defined if the value distribution is common knowledge, as we assumed above, but again are
typically more efficient than QV under this assumption.19 A natural question is then how QV
performs when there is some aggregate uncertainty about the distribution of values, leading
potentially to different individuals differing in their estimates of the price.

Weyl does not derive any general results, but explores several examples. In most cases QV is
not fully efficient under aggregate uncertainty even in arbitrarily large populations. However,
its inefficiency is quite small, never greater than 10% and almost always much smaller than this.
It nearly always greatly outperforms 1p1v, except in a few cases when the value distribution,
conditional on the aggregate uncertainty, is known to be symmetric. Weyl also explores an ex-
ample that additionally incorporates common values, but violates Feddersen and Pesendorfer
(1997)’s conditions for 1p1v to aggregate information, in which QV still manages to aggregate
information; this conclusion seems less robust, however, given the complexity of the common
values environment.

4.1.3 Voter behavior

Ledyard (1984), and Myerson (2000) and Krishna and Morgan (Forthcoming) after him, argued
that, under some very special conditions 1p1v could be efficient if the costs of voting deterred
nearly all (but the most intense or lowest cost) individuals from voting. In practice we see large
turnouts that suggest voters are either not as rational as this model requires or are motivated by
factors other than changing the outcome of the election (Blais, 2000).

While such behavior destroys the efficiency of costly 1p1v (Ledyard, 1984), Weyl shows that it
can sometimes actually enhance the efficiency of QV, almost never leads it to perform worse than
1p1v and usually only slightly reduces its efficiency. He studies two models, one where voters
are motivated to express their preferences through their votes and one where they misestimate
their chance of being pivotal. In both cases these motives help deter extremists, accelerating
convergence towards efficiency, but they may introduce noise into the process which can cause
some limiting inefficiency if and only if µ = 0. In experiments on QV in the laboratory (Goeree
and Zhang, 2013) and the field (Cárdenas et al., 2014) this logic appears to play out: QV is highly
efficient because individuals buy votes close to in proportion to their values, but not because
the standard game theoretic equilibrium developed in the previous section is played. Instead,
individuals buy more votes on average than they “should”, but do so in proportion to their
values on average, maintainin efficiency.

19Many of these further rely on this common knowledge extends to the mechanism designer who can condition
the mechanism on it, which clearly our analysis above does not.
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4.1.4 Small populations

Weyl (2015a)’s bounds on inefficiency that we cited above are essentially vacuous for reasonable
parameter values in population sizes below 50 or so. This contrasts sharply with mechanisms
like VCG which, in their focal equilibrium, are perfectly efficient in any population size. How-
ever, Weyl also solves computationally for the equilibria of QV for a variety of distributions
in finite population and find that our bounds are vastly conservative in all cases they consider.
They do not have any examples with greater than 4% EI and usually it is much less, while 1p1v is
often highly inefficient. This suggests that while our analytic results apply to large populations,
QV may perform quite well even in fairly small groups.

4.2 Applications

The robustness of QV to these different environments and in experiments (Goeree and Zhang,
2013; Cárdenas et al., 2014) has led us to believe has a real chance of being a useful paradigm for
practical collective decision-making. As a result we are pursuing a variety practical implemen-
tations of it, ranging from the near-term, commercial and small-scale to longer-term but higher
impact aspirations.

In this first category, we have created a commercial venture, Collective Decision Engines,
with Eric Posner and Kevin Slavin to commercialize implementations and variations on QV,
initially for applications to market research but eventually in other domains. In the second
category, we have written a series of articles jointly with Eric Posner exploring philosophical,
practical and legal issues related to using QV for bankruptcy restructuring (Posner and Weyl,
2013), corporate governance (Posner and Weyl, 2014) and large-scale public decisions (Posner
and Weyl, Forthcoming). Our hope is that lessons learned and validation gained from the first
category of applications will eventually allow the second to become more practically plausible
as QV moves from being a simple mechanism to a richly articulated governance paradigm.

5 Conclusion

Economists have typically been skeptical of the possibility of public decisions being taken as effi-
ciently as private goods are allocated, as reflected in the formal results of Arrow (1951), Samuel-
son (1954), Gibbard (1973) and Satterthwaite (1975) and in informal attitudes in work such as
Friedman (1962). In this paper we have argued that this attitude may be an artifact of particu-
lar institutions. Public goods do not appear to pose a fundamentally harder mechanism design
problem than that posed by private goods. We highlighted a number of symmetries between
QV and market mechanisms for the allocation of private goods, such as the double auction.

In addition to results explicitly described above, a variety of on-going work, by us and others,
articulates these ideas further and builds on the work here. Building off of Hylland and Zeck-
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hauser (1980), we plan a collaboration with Hylland and Zeckhauser to show that the welfare
theorems apply to an economy where public goods are allocated by QV and that if strategy-
proofness is relaxed in precisely the same way that makes the double auction to be “approxi-
mately strategy-proof” in large markets the welfare theorems can be approximated using QV
in finite populations. We also plan to explore variations on QV that expand the range of cases
where it can be applied.

In collaboration with Jerry Green and Scott Duke Kominers we are proposing an alternative
to eminent domain as a procedure for the assembly of complements and studying its fairness
and efficiency properties. Public Choice plans a special issue for 2017, the fortieth anniversary of
its special issue on the use of the VCG mechanism for public choice, on QV for which (roughly
twelve) papers representing a variety of disciplines and perspectives (e.g. law, history of eco-
nomic thought, etc.) have been commissioned.
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Appendix

In this appendix we prove Theorems 3 and 4. We take as given the model assumptions laid
out in Subsection 3.1 of the text, though we adopt some slightly altered notation for convenience:
in particular, we assume that the sampling distribution F = FU is supported by a finite interval
[u, u], that its mean µ = µU is nonnegative, and that its density is smooth and strictly positive on
this interval; and we assume that the payoff function Ψ satisfies Assumption 1. For notational
convenience we shall write n = N + 1 for the number of voters minus one and Sn for the vote
total of the first n voters. For brevity, we shall refer to type-symmetric Bayes-Nash equilibria as
Nash equilibria and we drop the brackets following the expectation operator E in cases where
this does not cause confusion. Except when explicitly noted otherwise, all references to sections
and subsections in this appendix are internal.

The proofs of both Theorems 3 and 4 will rely on a number of auxiliary properties of Nash
equilibria that will be established in Sections B and C. In Section B we will prove that for every
mixed-strategy Nash equilibrium there is an equivalent pure-strategy Nash equilibrium u 7→
v(u), and we will show that this must satisfy the fundamental necessary condition

Eψ(Sn + v(u))u = 2v(u) (8)

where Sn =
∑n

i=1 v(Ui) denotes the vote total for n = N−1 independent voters, all employing the
strategy v(u), whose values Ui are independently drawn from FU . We will then proceed to use
this necessary condition to deduce a series of properties that any Nash equilibrium must have, at
least when n is sufficiently large. The reader should take note that a priori we know nothing about
the function v(u), and so even though we have made strong assumptions about the distribution
of the utility values Ui we cannot appeal to the classical laws of probability governing sums
of independent, identically distributed random variables to deduce anything about the sums
Sn =

∑n
i=1 v(Ui) until we know more about the function v(u). Thus, in establishing the needed

properties of Nash equilibria we shall be forced to bootstrap our way.
Following is a brief synopsis of the main steps.

1. Strict monotonicity: First we shall establish (Lemma 4) the relatively straightforward result
that any type-symmetric equilibrium strategies must be strictly monotone. This then im-
plies that any equilibrium strategy is continuous except at perhaps countably many points,
which in turn implies that any type-symmetric Bayes-Nash equilibrium almost surely co-
incides with a pure-strategy Bayes-Nash equilibrium (Lemma 3).

2. Weak consensus: We will then consider voters in the “bulk” of the value distribution. We
will prove (Lemma 6) that for any such voter the conditional distribution (given the voter’s
value u) of the vote total nearly coincides with the unconditional distribution, and use this
to deduce from the necessary condition (8) that the ratio v(u)/u is bounded above and
below by positive constants independent of n and of the particular equilibrium.

3. Concentration: The equality (8) implies that a voter with value u will purchase a large num-
ber |v(u)| of votes only if the distribution of Sn is highly concentrated in the interval [−δ, δ]
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where ψ is non-zero. Using the weak consensus estimates on v(u)/u, we will show that
concentration inequalities for sums of i.i.d. random variables imply (Lemma 7) that when
n is large either |v(u)| is bounded above by C/

√
n in the bulk of the distribution, for some

small C, or no voter (including extremists) will buy more than a vanishingly small number
of votes. We will then deduce from this that the FU−probability of the extremist regions
cannot be larger than n−3/2 for large n.

4. Discontinuity size and smoothness: Next we will show (Lemma 11), using the necessary con-
dition (8) and another concentration argument, that the size of a discontinuity in the equi-
librium vote function v(u) must be bounded below. In view of the concentration results
discussed above, this will imply that discontinuities can only occur at values u within dis-
tance O(n−3/2) of one of the endpoints u, u. By differentiating in the necessary condition
(using the smoothness of ψ = Ψ′) we will then obtain a first-order differential equation for
v(u) that has no singularities in the region where v is continuous; this will imply that v is
smooth up to within distance O(n−3/2) of one of the endpoints u, u.

5. Approximate proportionality: The various results on the size of the vote function v(u) in the
bulk of the distribution, the size and location of discontinuities, and concentration of the
vote total will then be brought to bear on the necessary condition (8) to prove the approx-
imate proportionality rule for Bayes-Nash equilibria (Lemma 6): in the bulk of the value
distribution (up to within distance O(n−3/2) of one of the endpoints), the ratio v(u)/u must
be almost constant, with relative error converging to zero uniformly as n → ∞. Further-
more, if v has no discontinuities then the approximate proportionality rule extends all the
way to the endpoints u, u. Given the approximate proportionality of the vote function
v(u), concentration inequalities and uniform versions of the Central Limit Theorem (the
Berry-Esseen Theorem) can then be deduced for the vote total.

Once these properties of Nash equilibria have been established, we will then prove Theorems
3 and 4 from Subsections 3.4 and 3.5 of the main text, respectively.

A Terminology

A pure strategy is a Borel measurable function v : [u, u]→ [−
√

2 |u|,
√

2u]; when a pure strategy v
is adopted, each agent buys v(u) votes, where u is the agent’s utility. A mixed strategy is a Borel
measurable20 function πV : [u, u]→ Π, where Π is the collection of Borel probability measures on
[−
√

2 |u|,
√

2u]; when a mixed strategy πV is adopted, each agent i will buy a random number Vi
of votes, where V1, V2, . . . are conditionally independent given the utilities U1, U2, . . . and Vi has
conditional distribution πV (Ui). Clearly, the set of mixed strategies contains the pure strategies.

A best response for an agent with utility u to a strategy (either pure or mixed) is a value v such
that

EΨ(v + Sn)u− v2 = sup
ṽ
EΨ(ṽ + Sn)u− ṽ2, (9)

where Sn is the sum of the votes of the other n agents when these agents all play the specified
strategy and E denotes expectation. (Thus, under E, the random variables Vi of the n other

20The space of Borel probability measures on [−
√

2 |u|,
√

2u] is given the topology of weak convergence; Borel
measurability of a function with range Π is relative to the Borel field induced by this topology. Proposition 3 below
implies that in the Quadratic Voting game only pure strategies are relevant, so measurability issues will play no role
in this paper.
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voters are distributed in accordance with the strategy and the sampling rule for utility values
Ui described above.) Since Ψ is continuous and bounded, the equation (9) and the dominated
convergence theorem imply that for each u the set of best responses is closed, and hence has
well-defined maximal and minimal elements v+(u), v−(u).

A mixed strategy πV is a Nash equilibrium if for every u ∈ [u, u] the measure πV (u) is supported
by the set of best responses to πV for an agent with utility u.

B Necessary Conditions for Nash Equilibrium

Let πV be a mixed-strategy Nash equilibrium, and let Sn be the sum of the votes of n agents with
utilities Ui gotten by random sampling from Fu, all acting in accordance with the strategy πV .
For an agent with utility u, a best response v must satisfy equation (9), and so in particular for
every ∆ > 0, if u > 0 then

E {Ψ(Sn + v + ∆)−Ψ(Sn + v)}u ≤ 2∆v + ∆2 and (10)
E {Ψ(Sn + v −∆)−Ψ(Sn + v)}u ≤ −2∆v + ∆2

Similarly, if u < 0 and ∆ > 0 then

E {Ψ(Sn + v −∆)−Ψ(Sn + v)}u ≤ −2∆v + ∆2 and (11)
E {Ψ(Sn + v + ∆)−Ψ(Sn + v)}u ≤ 2∆v + ∆2

Since Ψ is C∞ and its derivative ψ has compact support, differentiation under the expectation if
permissible. Thus, we have the following necessary condition.

Lemma 3. If πV is a mixed-strategy Nash equilibrium then for every u a best response v must
satisfy

Eψ(Sn + v)u = 2v. (12)

Consequently, every pure-strategy Nash equilibrium v(u) must satisfy the functional equation

Eψ(Sn + v(u))u = 2v(u). (13)

Lemma 4. Let πV be a mixed-strategy Nash equilibrium, and let v, ṽ be best responses for agents
with utilities u, ũ, respectively. If u = 0 then v = 0, and if u < ũ, then v ≤ ṽ. Consequently, any
pure-strategy Nash equilibrium v(u) is a nondecreasing function of u, and therefore has at most
countably many discontinuities and is differentiable almost everywhere.

Proof. It is obvious that the only best response for an agent with u = 0 is v = 0, and the mono-
tonicity of the payoff function Ψ implies that a best response v for an agent with utility u must
be of the same sign as u. If v, ṽ are best responses for agents with utilities 0 ≤ u < ũ, then by
definition

EΨ(ṽ + Sn)ũ− ṽ2 ≥ EΨ(v + Sn)ũ− v2 and
EΨ(v + Sn)u− v2 ≥ EΨ(ṽ + Sn)u− ṽ2,
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and so, after re-arrangement of terms,

(EΨ(ṽ + Sn)− EΨ(v + Sn))ũ ≥ ṽ2 − v2 and
(EΨ(ṽ + Sn)− EΨ(v + Sn))u ≤ ṽ2 − v2.

Hence,
(EΨ(ṽ + Sn)− EΨ(v + Sn))(ũ− u) ≥ 0.

The monotonicity of Ψ implies that if 0 ≤ ṽ < v then EΨ(ṽ+Sn) ≤ EΨ(v+Sn), and so it follows
that the two expectations must be equal, since ũ− u > 0. But if the two expectations were equal
then v could not possibly be a best response at u, because an agent with utility u could obtain
the same expected payoff EΨ(v + Sn)u at a lower vote cost by purchasing ṽ votes. This proves
that if 0 ≤ u < ũ then best responses v, ṽ for agents with utilities u, ũ must satisfy 0 ≤ v ≤ ṽ. A
similar argument shows that if u < ũ ≤ 0 then best responses v, ṽ for agents with utilities u, ũ
must satisfy v ≤ ṽ ≤ 0.

Proposition 3. If a mixed strategy πV is a Nash equilibrium, then the set of utility values u ∈ [u, u]
for which there is more than one best response (and hence the set of values u such that πV (u) is
not supported by just a single point v(u)) is at most countable.

Proof of Proposition 3. For each u denote by v−(u) and v+(u) the minimal and maximal best re-
sponses at u. Proposition 4 implies that if u < ũ then v+(u) ≤ v−(ũ). Consequently, for any
ε > 0 the set of utilities values u at which v+(u) − v−(u) ≥ ε must be finite, because otherwise
v+(u)→∞ as u→ u, which is impossible since best responses must take values between−

√
2 |u|

and
√

2u.

Since by hypothesis the values Ui are sampled from a distribution F that is absolutely contin-
uous with respect to Lebesgue measure, there is zero probability that one of the votes i will have
utility value Ui equal to one of the countably many values where there is more than one best
response. Consequently, for every Nash equilibrium there is an equivalent pure-strategy Nash
equilibrium v(u). Henceforth, we shall consider only pure-strategy Nash equilibria; whenever
we refer to a Nash equilibrium we will mean a pure-strategy Nash equilibrium.

Corollary 4. Every pure-strategy Nash equilibrium v(u) is a strictly increasing function of u ∈
[u, u], and therefore is continuous except at possibly countably many points.

Lemma 5. If v(u) is a Nash equilibrium, then v(u) 6= 0 for all u 6= 0.

Proof. If v(u) = 0 for some u > 0 then by Proposition 4 v(u′) = 0 for all u′ ∈ (0, u). Since the
utility density fU(u) is strictly positive on [u, u], it follows that there is positive probability p that
every agent in the sample casts vote Vi = 0. But then an agent with utility u could improve her
expectation by buying ε > 0 votes, where ε � uψ(0)p, because then the expected utility gain
would be at least

uΨ(ε)p ∼ uψ(0)pε

at a cost of ε2. Since by hypothesis ψ(0) > 0, the expected utility gain would overwhelm the
increased vote cost for small ε > 0.

Corollary 5. Any Nash equilibrium v(u) is strictly monotone on [u, u].
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Proof. Propositions 3 and 5 imply that Eψ(Sn + v(u)) > 0 for every u 6= 0. Now differentiation of
the necessary condition (13) gives

Eψ(Sn + v(u)) = (2− Eψ′(Sn + v(u)))v′(u)

at every u where v(u) is differentiable. Since such points are dense in [u, u], and since ψ and ψ′

are C∞ functions with compact support, it follows that v′(u) 6= 0 on a dense set. But v′(u) ≥ 0 at
every point where the derivative exists, so it follows that v′(u) > 0 almost everywhere, and this
implies that v is strictly monotone.

C Continuity and Smoothness

C.1 Weak consensus bounds

According to Lemma 3, in any Nash equilibrium the number of votes v(u) purchased by an
agent with utility u must satisfy the necessary condition (13). It is natural to expect that when
the sample size n+ 1 is large the effect of adding a single vote v to the aggregate total Sn should
be small, and so the function v(u) should satisfy the approximate proportionality rule

2v(u) ≈ Eψ(Sn)u.

As we will show later, this naive approximation can fail badly for utility values u in the extreme
tails of the distribution FU , and even in the bulk of the distribution the relative error in the ap-
proximation can be significant. Nevertheless, the idea of approximate population consensus on
the expectations Eψ(v(u) + Sn) can be used to obtain weak bounds that we will find useful. The
following lemma states, roughly, that if it is optimal for some agent in the bulk of the population
to buy a moderately large number of votes, then most agents will be forced to buy a moderately
large number of votes.

Lemma 6. For every ε > 0 there exist constants α, β > 0 such that for all sufficiently large n and
any Nash equilibrium v(u)

v(u)

u
≥ αmax(−v(u+ ε), v(u− ε))− e−βn for all |u| > 2ε. (14)

Proof. It suffices to establish the lower bound αv(u − ε) − e−βn, as the other half of (14) can be
proved in virtually the same way. The main idea is that, for an agent with utility u not in the
tails of the distribution FU , the joint distribution of the sample U1, U2, . . . , Un+1 conditional on the
agent’s value u is not appreciably different than the unconditional distribution; that is, the agent
gets very little information from knowing her own utility value u.

Set uε = u − ε and pε = 1 − FU(uε) where FU is the cumulative distribution function of the
utility distribution. Let N = Nε be the number of points in the sample U1, U2, . . . , Un that fall in
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the interval [u− ε, u], and let U = Un+1 be independent of U1, U2, . . . , Un. Then

E(ψ(v(U) + Sn) |U < uε) =
∑
m≥0

(
n

m

)
pmε (1− pε)n−mE(ψ(v(U) + Sn) |U < uε, N = m),

E(ψ(v(U) + Sn) |U ≥ uε) =
∑
m≥0

(
n

m

)
pmε (1− pε)n−mE(ψ(v(U) + Sn) |U ≥ uε, N = m)

Now conditional on N = m, the sample U1, U2, . . . , Un is obtained by choosing m points at ran-
dom according to the conditional distribution of U given U ≥ uε and n − m according to the
conditional distribution of U given U < uε. Consequently, for each m ≥ 0,

E(ψ(v(U) + Sn) |U ≥ uε, N = m) = E(ψ(v(U) + Sn) |U < uε, N = m+ 1).

Furthermore, for any small ε′ > 0 and for m in the range [npε − nε′, npε + nε′], the ratio(
n

m

)
pmε (1− pε)n−m

/(
n

m+ 1

)
pm+1
ε (1− pε)n−m−1

is between 1/2 and 2. Since the binomial-(n, pε) distribution puts only an exponentially small
(in n) mass outside the interval [npε − nε′, npε + nε′], it follows that for some constants α′, β′

depending on ε but not n,

E(ψ(v(U) + Sn) |U < uε) ≥ α′E(ψ(v(U) + Sn) |U ≥ uε)− e−β
′n (15)

for all sufficiently large n.
A similar argument proves that for suitable constants α′′, β′′ > 0, and for any interval J ⊂

[u, u] of length ε not overlapping [u− ε, u],

E(ψ(v(U) + Sn) |U ∈ J) ≥ α′′E(ψ(v(U) + Sn) |U ≥ uε)− e−β
′′n. (16)

To see this, let N be the number of points in the sample U1, U2, . . . , Un that fall in the interval [u−
ε, u], and let N ′ be the number of points in the sample that fall in J . Decompose the conditional
expectations E(ψ(v(U) + Sn) |U ∈ J) and E(ψ(v(U) + Sn) |U > uε) according to the values of N
and N ′, and use the identity

E(ψ(v(U) + Sn) |U ∈ J,N = m+ 1, N ′ = m′) = E(ψ(v(U) + Sn) |U > uε, N = m,N ′ = m′ + 1).

As in the proof of (15), the ratio

P{N = m+ 1, N ′ = m′}
P{N = m,N ′ = m′ + 1}

is near one for all pairs (m,m′) except those in the tails of the joint distribution, and the tails are
exponentially small, by standard estimates for the multinomial distribution.

Now recall that any Nash equilibrium v(u) is monotone, and satisfies the necessary condition
2v(u) = Eψ(v(u) +Sn)u. Since any u ∈ [ε, uε− ε] is the right endpoint of an interval J = [u− ε, u]
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of length ε that does not intersect [uε, u], it follows that for any such u,

Eψ(v(u) + Sn) ≥ E(ψ(v(U) + Sn) |U ∈ [u− ε, u])

≥ α′′E(ψ(v(U) + Sn) |U ≥ uε)− e−β
′′n

≥ α′′Eψ(v(uε + Sn))− e−β′′n

= α′′v(uε)/u− e−β
′′n

and similarly for any u ∈ [u + 2ε,−ε]. The assertion (14) now follows from another application
of the necessary condition (13).

C.2 Concentration and size constraints

Since the vote total Sn is the sum of independent, identically distributed random variables v(Ui)
(albeit with unknown distribution), its distribution is subject to concentration restrictions, such
as those imposed by the following lemma.

Lemma 7. For any ε > 0 there exists a constant γ = γ(ε) < ∞ such that for all sufficiently large
values of n and any Nash equilibrium v(u), if

max(v(u− ε),−v(u+ ε) ≥ γ/
√
n, (17)

then
P{|Sn + v| ≤ δ} < ε for all v ∈ R (18)

and therefore
|2v(u)|
|u|

≤ ε‖ψ‖∞ for all u ∈ [u, u] . (19)

We will deduce Lemma 7 from the following general fact about sums of independent, identi-
cally distributed random variables.

Lemma 8. Fix δ > 0. For any ε > 0 and any C < ∞ there exists C ′ = C ′(ε, C) > 0 and
n′ = n′(ε, C) < ∞ such that the following statement is true: if n ≥ n′ and Y1, Y2, . . . , Yn are
independent random variables such that

E|Y1 − EY1|3 ≤ Cvar(Y1)3/2 and var(Y1) ≥ C ′/n (20)

then for every interval J ⊂ R of length δ or greater, the sum Sn =
∑n

i=1 Yi satisfies

P{Sn ∈ J} ≤ ε|J |/δ. (21)

The proof of the proposition, a routine exercise in the use of Fourier methods, is relegated to
Section F, at the end of this appendix.

Proof of Lemma 7. Inequality (19) follows from (18), by the necessary condition (13) for Nash equi-
libria. Hence, it suffices to show that (17) implies (18).

Lemma 6 implies that there are constants α, β > 0 such that for every u ∈ [u, u] \ [−2ε, 2ε] the
ratio v(u)/u is at least αv(uε) − e−βn, where uε = u − ε. Since the utility density fU is bounded
below, it follows that for suitable constants 0 < C < ∞ and p > 0, for every sufficiently large n
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and every Nash equilibrium v(u) there is an interval [u′, u′′] ⊂ [u/2, u) of probability p such that
u′ < uε < u′′ and

v(uε) ≤ Cv(u′′) ≤ C2v(u′). (22)

Similarly, there exists an interval [u∗, u∗∗] ⊂ [u, 0] of probability p such that

|v(u∗)| ≤ C|v(u∗∗)|. (23)

Let N? be the number of points Ui in the sample U1, U2, . . . , Un that fall in [u∗, u∗∗] ∪ [u′, u′′],
and let S∗n be the sum of the votes v(Ui) for those agents whose utility values fall in this range.
Observe that N has the binomial-(n, 2p) distribution, and that conditional on the event N? = m
and Sn−S∗n = w, the random variable S∗n is the sum ofm independent random variables Yi whose
variance is at least v(u′)2/4 and whose third moment obeys the restriction (20) (this follows from
the inequalities (22)–(23)). Consequently, by Lemma 8, if v(uε)

√
n is sufficiently large then the

conditional probability, given N? = n ≥ np and Sn−S∗n = w, that S∗n lies in any interval of length
δ is bounded above by ε/2. Since P{N ≤ np} is, for large n, much less than ε/2, the inequality
(18) follows.

Lemma 7 implies that for any ε > 0, if n is sufficiently large then for any Nash equilibrium
v(u) the absolute value |v(u)| can assume large values only at utility values u within distance ε
of one of the endpoints u, u. The following proposition improves this to the extreme tails of the
distribution.

Lemma 9. For any 0 < C < ∞ there exists C ′ > 0 such that for all sufficiently large n and any
Nash equilibrium v(u) satisfies the inequality

|v(u)| ≤ C for all u ∈
[
u+ C ′n−3/2, u− C ′n−3/2

]
. (24)

Proof. Fix C > 0, and suppose that 2v(u∗) ≥ C for some u∗ > 0. Since any Nash equilibrium v is
monotone, we must have 2v(u) ≥ C for all u ≥ u∗, and by the necessary condition (13) it follows
that

Eψ(v(u) + Sn)u ≥ C =⇒ Eψ(v(u) + Sn) ≥ C/u ∀u ≥ u∗. (25)

Consequently, the distribution of Sn is concentrated: since the function ψ has support [−δ, δ], the
probability that Sn + v(u) ∈ [−δ, δ] must be at least C/u‖ψ′‖∞. Thus, Lemma 7 implies that for
any ε > 0 there exists γε > 0 (depending on both ε and C, but not on n) such that

max (−v (u+ ε) , v(u− ε)) ≤ γε/
√
n. (26)

In particular, for all sufficiently large n,

v(u/2) ≤
γu/2√
n

=⇒ Eψ(v(u/2) + Sn) ≤
2γu/2
u
√
n

=⇒ Eψ(Sn) ≤
2γu/2
u
√
n

+ ‖ψ′‖∞v(u/2)

=⇒ Eψ(Sn) ≤
Cu/2√
n

(27)

for a constant Cu/2 <∞ that may depend on u/2 and C but not on either n or the particular Nash
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equilibrium.
Fix C ′ large, and suppose that 2v(u∗) ≥ C for u∗ = u−C ′n−3/2. LetN∗ be the number of points

Ui in the sample U1, U2, . . . , Un that fall in the interval [u∗, u]; by our assumptions concerning the
sampling procedure, the random variable N∗ has the binomial distribution with mean

EN∗ = n

ˆ u

u∗

fU(u) du = C ′Cfn
−1/2

where Cf is the mean value of fU on the interval [u∗, u] (which for large n will be close to fU(u) >
0). Since EN∗ is vanishingly small for large n, the assumption v(u∗) ≥ C implies that

Eψ(v(u) + Sn)1{N∗ = 0} ≥ C/2u for all u ≥ u∗. (28)

This expectation can be decomposed by partitioning the probability space into the event G =
{Un ∈ [u+ ε, u− ε]} and its complement. On the event G, the contribution of v(Un) to the vote
total Sn is at most γε/

√
n in absolute value, by (26). On the complementary eventGc the integrand

is bounded above by ‖ψ‖∞. Therefore,

Eψ(v(u) + Sn)1{N∗ = 0} ≤ P (Gc)‖ψ‖∞ + Eψ(v(u) + Sn)1{N∗ = 0}1G
≤ P (Gc)‖ψ‖∞ + Eψ(v(u) + Sn−1)1{N∗ = 0}+ ‖ψ′‖∞(γε/

√
n)

≤ ε′ + Eψ(v(u) + Sn−1)1{N∗ = 0}

where ε′ > 0 can be made arbitrarily small by choosing ε > 0 small and n large. This together
with inequality (28) implies that for large n,

Eψ(v(u) + Sn−1)1{N∗ = 0} ≥ C/4u for all u ≥ u∗. (29)

Now consider the conditional distribution of Sn given that N∗ = 1: this can be simulated by
generating Sn−1 from the conditional distribution of Sn−1 given that N∗ = 0 and then adding
an independent v(U) where U = Un is drawn from the conditional distribution of U given that
U ≥ u∗. Consequently, by inequality (29),

E(ψ(Sn) |N∗ = 1) = E(ψ(Sn−1 + v(U)) |N∗ = 0) ≥ C/4u.

But this implies that

E(ψ(Sn)) ≥ (C/2u)P{N∗ ≥ 1} ≈ CC ′Cf/(2u
√
n).

For large C ′ this is incompatible with inequality (27) when n is sufficiently large.

C.3 Discontinuities

Since any Nash equilibrium v(u) is monotone in the utility u, it can have at most countably
many discontinuities. Moreover, since any Nash equilibrium is bounded in absolute value by√

2 max (|u| , u) (as no agent will pay more for votes than she could gain in expected utility) the
sum of the jumps is bounded by

√
2 max (|u| , u). We will now show that there is a lower bound

on the size of |v| at a discontinuity.
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Lemma 10. Let v(u) be a Nash equilibrium. If v is discontinuous at u ∈ (u, u) then

Eψ′(ṽ + Sn)u = 2 (30)

for some ṽ ∈ [v−, v+], where v− and v+ are the left and right limits of v(u′) as u′ → u.

Proof. The necessary condition (13) holds at all u′ in a neighborhood of u, so by monotonicity of
v and continuity of ψ, the Equation (13) must hold when v(u) is replaced by either of v±, that is,

2v+ = Eψ(v+ + Sn)u and
2v− = Eψ(v− + Sn)u.

Subtracting one equation from the other and using the differentiability of ψ we obtain

2v+ − 2v− = uE

ˆ v+

v−

ψ′(t+ Sn) dt = u

ˆ v+

v−

Eψ′(t+ Sn) dt.

The result then follows from the mean value theorem of calculus.

Lemma 11. There is a constant ∆ > 0 such that for all sufficiently large n, at any point u of
discontinuity of a Nash equilibrium,

v(u+) ≥ ∆ if u ≥ 0 and (31)
v(u−) ≤ −∆ if u ≤ 0.

Consequently, there is a constant β < ∞ not depending on the sample size n such that for all
sufficiently large n no Nash equilibrium v(u) has a discontinuity at a point u at distance greater
than βn−3/2 from one of the endpoints u, u.

Proof. Since the function ψ has support contained in the interval [−δ, δ], equation (30) implies
that v can have a discontinuity only if the distribution of Sn is highly concentrated: specifically,

P{Sn + ṽ ∈ [−δ, δ]} ≥ 2

‖ψ′‖max (|u| , u)
. (32)

In fact, since ψ′ vanishes at the endpoints of [−δ, δ], there exists 0 < δ′ < δ such that

P{Sn + ṽ ∈ [−δ′, δ′]} ≥ 1

‖ψ′‖max (|u| , u)
. (33)

Lemma 7 asserts that strong concentration of the distribution of Sn can occur only if |v(u)| is
vanishingly small in the interior of the interval [u, u]. In particular, if ε < (‖ψ′‖max (|u| , u))−1

and n is sufficiently large then |v(u)| < γε/
√
n for all u ∈ [+ε, u− ε]. But v(u) must satisfy the

necessary condition (13) at all such u, so

Eψ(v(u) + Sn)|u| ≤ 2γε/
√
n

for all u ∈ [u+ ε, u− ε]. Since the function ψ is positive and bounded away from 0 in any interval
[−δ′′, δ′′] where 0 < δ′′ < δ, it follows from (33) that for sufficiently large n,

|ṽ| ≥ (δ − δ′)/3 := ∆.
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Thus, by the monotonicity of Nash equilibria, at every point u of discontinuity we must have
(31). Lemma 9 now implies that any such discontinuities can occur only within a distance βn−3/2

of one of the endpoints u, u.

C.4 Smoothness

Since Nash equilibria are monotone, by Lemma 4, they are necessarily differentiable almost ev-
erywhere. We will show that in fact differentiability must hold at every u, except near the end-
points u, u.

Lemma 12. If v(u) is a Nash equilibrium then at every u where v is differentiable,

Eψ(Sn + v(u)) + Eψ′(Sn + v(u))uv′(u) = 2v′(u). (34)

Proof. This is a routine consequence of the necessary condition (13) and the smoothness of the
function ψ.

Equation (34) can be rewritten as a first-order differential equation:

v′(u) =
Eψ(Sn + v(u))

2− Eψ′(Sn + v(u))u
. (35)

This differential equation becomes singular at any point where the denominator approaches 0,
but is regular in any interval where Eψ′(Sn + v(u))u ≤ 1. The following lemma implies that this
will be the case on any interval where |v(u)| remains sufficiently small.

Lemma 13. For any α > 0 there exists a constant β = βα > 0 such that for any strategy v(u), any
ṽ ∈ R, any u ∈ [u, u], and all n,

E|ψ′(ṽ + Sn)u| ≥ α =⇒ Eψ(ṽ + Sn)|u| ≥ β and (36)
E|ψ′′(ṽ + Sn)u| ≥ α =⇒ Eψ(ṽ + Sn)|u| ≥ β.

Proof. Recall that ψ/2 is a C∞ probability density with support [−δ, δ] and such that ψ is strictly
positive in the open interval (−δ, δ). Consequently, on any interval J ⊂ (−δ, δ) where |ψ′| (or
|ψ′′|) is bounded below by a positive number, so is ψ.

Fix ε > 0 so small that εmax (u, u) < α/2. In order that E|ψ′(ṽ+Sn)u| ≥ α, it must be the case
that the event {|ψ′(ṽ + Sn)| ≥ ε} contributes at least α/2 to the expectation; hence,

P{|ψ′(ṽ + Sn)| ≥ ε} ≥ α

2‖ψ′‖∞max (u, u)
.

But on this event the random variable ψ(ṽ + Sn) is bounded below by a positive number η = ηε,
so it follows that

Eψ(ṽ + Sn)|u| ≥ ηα

2‖ψ′‖∞max (u, u)
.

A similar argument proves the corresponding result for ψ′′.

Lemma 14. There exist constants C, α > 0 such that for all sufficiently large n, any Nash equi-
librium v(u) is continuously differentiable on any interval where |v(u)| ≤ C (and therefore, by
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Proposition 9, on
(
u+ C ′n−3/2, u− C ′n−3/2

)
), and the derivative satisfies

α ≤ v′(u)

Eψ(v(u) + Sn)
≤ α−1. (37)

Proof. The function v(u) is differentiable almost everywhere, by Lemma 4, and at every point
u where v(u) is differentiable the differential equation (35) holds. By Lemma 11, the sizes of
discontinuities are bounded below, and so if C > 0 is sufficiently small then a Nash equilibrium
v(u) can have no discontinuities on any interval where |v(u)| ≤ C. Furthermore, if C > 0 is
sufficiently small then by Lemma 13 and the necessary condition (13), we must have Eψ′(v(u) +
Sn) ≤ 1 on any interval where |v(u)| ≤ C. Since the functions v 7→ Eψ(Sn + v) and v 7→
Eψ′(Sn + v) are continuous (by dominated convergence), it now follows from Equation (35) that
if C > 0 is sufficiently small then on any interval where |v(u)| ≤ C the function v′(u) extends to
a continuous function. Finally, since the denominator in equation (35) is at least 1 and no larger
than 2 + ‖ψ′‖∞, the inequalities (37) follow.

Similar arguments show that Nash equilibria have derivatives of higher orders provided
the sample size is sufficiently large. The proof of Theorem 3 in Section E below will require
information about the second derivative v′′(u). This can be obtained by differentiating under the
expectations in (35):

v′′(u) = Eψ′(v(u)+Sn)v′(u)
2−Eψ′(Sn+v(u))u

+ Eψ(v(u)+Sn)(Eψ′′(v(u)+Sn)v′(u)u+Eψ′(v(u)+Sn)
(2−Eψ′(Sn+v(u)u))2

. (38)

A repetition of the proof of Lemma 14 now shows that for suitable constants C, β > 0 and
all sufficiently large n, any Nash equilibrium v(u) is twice continuously differentiable on any
interval where |v(u)| ≤ C and satisfies the inequalities

β ≤ v′′(u)

Eψ(v(u) + Sn)
≤ β−1. (39)

C.5 Approximate proportionality

The information that we now have about the form of Nash equilibria can be used to sharpen the
heuristic argument given in Subsection C.1 to support the “approximate proportionality rule”.
Recall that in a Nash equilibrium the number of votes v(u) purchased by an agent with utility
u must satisfy the equation 2v(u) = Eψ(v(u) + Sn)u. We have shown in Proposition 9 that
for any Nash equilibrium, v(u) must be small except in the extreme tails of the distribution
(in particular, for all u at distance much more than n−3/2 from both endpoints u, u). Since ψ is
uniformly continuous, it follows that the expectation Eψ(v(u) + Sn) cannot differ by very much
from Eψ(Sn).

Unfortunately, this argument only shows that the approximation 2v(u) ≈ Eψ(Sn)u is valid
up to an error of size εn|u| where εn → 0 as n → ∞. However, as n → ∞ the expectation
Eψ(Sn)→ 0, and so the error in the approximation above might be considerably larger than the
approximation itself. Proposition 6 makes the stronger assertion that when n is large the relative
error in the approximate proportionality rule is small.

Proposition 6. For any ε > 0 there exist constants nε < ∞ and C < ∞ such that if n ≥ nε then
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for any Nash equilibrium v(u) and for all u ∈
[
u+ Cn−3/2, u− Cn−3/2

]
,

(1− ε)Eψ(Sn)|u| ≤ |2v(u)| ≤ (1 + ε)Eψ(Sn)|u|. (40)

Furthermore, for all sufficiently large n any Nash equilibrium v(u) with no discontinuities must
satisfy (40) for all u ∈ [u, u].

Proof of Proposition 6. Since ψ has compact support, it and all of its derivatives are uniformly
continuous and uniformly bounded, and so the function v 7→ Eψ(v + Sn) is differentiable with
derivative Eψ′(v+Sn). Consequently, by Taylor’s theorem, for every u there exists ṽ(u) interme-
diate between 0 and v(u) such that

2v(u) = Eψ(v(u) + Sn)u = Eψ(Sn)u+ Eψ′(ṽ(u) + Sn)v(u)u. (41)

We will argue that for all C > 0 sufficiently small, if |v(u)| ≤ C then the expectation Eψ′(ṽ(u) +
Sn) remains below ε in absolute value, provided n is sufficiently large. Proposition 9 will then
imply that there exists C ′ < ∞ such that (40) holds for all u ∈ (u, u) at distance greater than
C ′n−3/2 from the endpoints u, u.

If |2v(u)| ≤ C then |Eψ(v(u) + Sn)| ≤ C/max (|u| , u), by the necessary condition (13). By
Lemma 11, if C < ∆, where ∆ is the discontinuity threshold, then v(u) is continuous on any
interval [0, uC ] where |v(u)| ≤ C, and so for each u in this interval there is a u′ ∈ [0, u] such that
ṽ(u) = v(u′). Consequently, |Eψ(ṽ(u) + Sn)| ≤ C/max (|u| , u). But Lemma 13 implies that for
any ε > 0, if C > 0 is sufficiently small then for all n and any Nash equilibrium v(u),

|Eψ′(ṽ(u) + Sn)| < ε

on any interval [0, uC ] where |v(u)| ≤ C. Thus, the error in the approximation (41) will be small
when n is large and |v(u)| < C, for u > 0. A similar argument applies for u ≤ 0.

Finally, suppose that v(u) is a Nash equilibrium with no discontinuities. By Lemma 9, for any
C > 0 there exists C ′ < ∞ such that |v(u)| ≤ C/2 except at arguments u within distance C ′/n3/2

of one of the endpoints. Moreover, Lemma 14 implies that if C is sufficiently small then on any
interval where |v(u)| ≤ C the function v is differentiable, with derivative v′(u) ≤ C ′′ for some
constant C ′′ <∞ not depending on n or on the particular Nash equilibrium. It then follows that

v(u) ≤ C/2 + C ′C ′′n−3/2 ≤ C

provided n is large. Since C > 0 can be chosen arbitrarily small, it follows that v(u) must satisfy
the proportionality relations (40) on [0, u]. A similar argument applies to the interval [u, 0].

C.6 Consequences of Proposition 6

Proposition 6 puts strong constraints on the distribution of the vote total Sn in a Nash equi-
librium. According to this proposition, the approximate proportionality rule (40) holds for all
u ∈ [u, u] except those values u within distance Cn−3/2 of one of the endpoints u, u. Call such
values extremists, and denote by G the event that the sample U1, U2, . . . , Un contains no extrem-
ists. By Proposition 6, on the event G the approximate proportionality rule (40) will apply for
each agent; furthermore, for Nash equilibria with no discontinuities, (40) holds for all u ∈ [u, u].
Thus, conditional on the event G (or, for continuous Nash equilibria, unconditionally) the random
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variables v(Ui) are (at least for sufficiently large n) bounded above and below by Eψ(Sn)u and
Eψ(Sn)u, and so Hoeffding’s inequality applies.

Corollary 7. LetG be the event that the sample Ui contains no extremists. Then for all sufficiently
large n and any Nash equilibrium v(u),

P (|Sn − ESn| ≥ tEψ(Sn) |G) ≤ exp{−2t2/nmax
(
|u|2 , u2

)
}; (42)

and for any Nash equilibrium with no discontinuities,

P (|Sn − ESn| ≥ tEψ(Sn)) ≤ exp{−2t2/nmax
(
|u|2 , u2

)
}. (43)

Proposition 6 also implies uniformity in the normal approximation to the distribution of Sn,
because the proportionality rule (40) guarantees that the ratio of the third moment to the 3/2
power of the variance of v(Ui) is uniformly bounded. Hence, by the Berry-Esseen theorem, we
have the following corollary.

Corollary 8. There exists κ < ∞ such that for all sufficiently large n and any Nash equilibrium
v(u), the vote total Sn satisfies

sup |P ((Sn − ESn) ≤ t
√

var(Sn) |G)− Φ(t)| ≤ κn−1/2; (44)

and for any Nash equilibrium with no discontinuities,

sup |P ((Sn − ESn) ≤ t
√

var(Sn))− Φ(t)| ≤ κn−1/2. (45)

Here Φ denotes the standard normal cumulative distribution function.

D Unbalanced Populations: Proof of Theorem 4

D.1 Concentration of the vote total

Lemma 15. If µ > 0 then for all large n no Nash equilibrium v(u) has a discontinuity at a non-
negative value of u. Moreover, if µ > 0 then for any ε > 0, if n is sufficiently large then in any
Nash equilibrium the vote total Sn must satisfy

(i) ESn ∈ [δ − ε, δ + ε+
√

2 |u|] and
(ii) P{|Sn − ESn| > ε} < ε.

Furthermore, there is a constant γ > 0 such that for any ε > 0, if n is sufficiently large and v(u) is
a Nash equilibrium with no discontinuities, then
(iii) P{|Sn − ESn| > ε} < e−γn.

Proof. By Lemma 11, a Nash equilibrium v(u) can have no discontinuities at distance greater
than Cn−3/2 of one of the endpoints u, u. Agents with such utilities are designated extremists; the
event G that the sample U1, U2, . . . , Un contains no extremists has probability 1−O(n−1/2).

By Proposition 6, any Nash equilibrium v(u) obeys the approximate proportionality Rule (40)
except in the extremist regime. The contribution of extremists to ESn is vanishingly small for
large n, since P (Gc) = O(n−1/2) and |v| ≤ max(

√
2 |u|,

√
2u). Consequently, (40) implies that for

any ε > 0, if n is large then

Eψ(Sn)µU(1− ε) ≤ ESn/n ≤ Eψ(Sn)µU(1 + ε). (46)
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Since µU > 0, this implies that ESn ≥ 0 for all sufficiently large n.
Suppose now that ESn < δ − 2ε′ for some small ε′ > 0. If ε > 0 is sufficiently small relative

to ε′ then (46) implies that nEψ(Sn)µU ≤ δ − ε′/2. But then Hoeffding’s inequality (42) (for this
a weaker Chebyshev bound would suffice), together with the fact that P (Gc) ≤ Kn−1/2, implies
that

P{Sn ∈ [−δ/2, δ − ε′/4]} ≥ 1− ε

for large n. This is impossible, though, because we would then have

Eψ(Sn) ≥ (1− ε) min
v∈[−δ/2,δ−ε′/4]

ψ(v),

and since ψ is bounded away from 0 on any compact sub-interval of (−δ, δ) this contradicts the
fact that nEψ(Sn) < δ−ε′/2. This proves that for all large n and all Nash equilibria, ESn ≥ δ−2ε′.

Next suppose that ESn > δ+
√

2 |u|+2ε′, where ε′ > 0. The proportionality rule (40) (applied
with some ε > 0 small relative to ε′) then implies that nEψ(Sn) > δ +

√
2 |u| + ε′. Hence, by the

Hoeffding inequality (42), there exists γ = γ(ε′) > 0 such that

P (Sn ≤ δ +
√

2 |u| |G) ≤ e−γn,

because on the event Sn ≤ δ+
√

2 |u| the sum Sn must deviate from its expectation by more than
nEψ(Sn)ε′. Hence, for all v ∈ [−

√
2 |u|, 0] ≤ 0,

Eψ(v + Sn) ≤ e−γn‖ψ‖∞ + P (Gc)‖ψ‖∞.

Thus, |v (u) | must be vanishingly small, and so by Lemma 11 there can be no discontinuities in
[u, 0]. But this implies that the proportionality rule (40) holds for all u ∈

[
u, u− Cn−3/2

]
, and

so another application of Hoeffding’s inequality (coupled with the observation that v(u)/u ≥
(1 − ε)Eψ(Sn) holds for all u ∈ [u, u] if v has no discontinuities at negative values of u) implies
that

P (Sn ≤ δ +
√

2 |u|) ≤ e−γn =⇒ Eψ(Sn) ≤ e−γn‖ψ‖∞,

which is a contradiction. This proves assertion (i).
Since ESn is now bounded away from 0 and∞, it follows as before that nEψ(Sn) is bounded

away from 0 and∞, and so the proportionality rule (40) implies that the conditional variance of
Sn given the event G is O(n−1). The assertion (ii) therefore follows from Chebyshev’s inequality
and the bound P (Gc) = O(n−1/2). Given (i) and (ii), we can now conclude that there can be no
discontinuities at nonnegative values of u, because in view of Proposition 11, the monotonicity
of Nash equilibria, and the necessary condition (13), this would entail that

Eψ(v(u) + Sn)u ≥ 2∆,

which is incompatible with (i) and (ii).
Finally, if v is a Nash equilibrium with no discontinuities then Corollary 7 implies the expo-

nential bound (iii).

D.2 Proof of Theorem 4

Lemma 15 implies that for large n the distribution of Sn must be highly concentrated near ESn
in any Nash equilibrium, and for any ε > 0 there exists γ > 0 such that for any Nash equilibrium
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with no discontinuities,
P{|Sn − ESn| ≥ ε} ≤ e−γn.

Hence, if ESn > δ + ε then Eψ(Sn) < e−γn. But Proposition 6 asserts that if a Nash equilibrium
v(u) has no discontinuities then the proportionality rule (40) holds for all u ∈ [u, u], and so

ESn ≤ (1 + ε′)nEψ(Sn) ≤ (1 + ε′)ne−γn,

contradicting the fact that ESn ≥ δ − ε. This proves that for large n, any Nash equilibrium v(u)
with no discontinuities must satisfy ESn < δ + ε.

Suppose that ESn < α − 2ε for some ε > 0. If ε > 0 is sufficiently small, then for some ε′ > 0
depending on ε,

(1−Ψ(w + ε)))(|u| − ε′) > (α− ε− w)2.

Consequently, if ESn ≤ α − 2ε, then an agent with utility u ∈ [u, u+ ε′] purchasing α + ε − w
votes would have expected payoff at least

−Ψ(w + ε)) (|u| − ε′)P{Sn ≤ α− ε} − (α− ε− w)2.

This strictly dominates the expected payoff ≈ uP{Sn ≥ α − 3ε} for buying votes in accordance
with the approximate proportionality rule (40). But any Nash equilibrium must satisfy the rule
(40) except in the extremist regime, so we have a contradiction. This proves that for all suffi-
ciently large n, in any Nash equilibrium we must have ESn > α − 2ε. It follows that for all
sufficiently large n, every Nash equilibrium has a discontinuity. The discontinuity must be lo-
cated within distance Cn−3/2 of the endpoint u, by Lemma 11.

Now suppose that ESn > α + 3ε. Then, by Hoeffding’s inequality, P (Sn ≤ α + 2ε |G) is
exponentially small for large n. Furthermore, since (α,w) is the unique pair satisfying (5),

(1−Ψ(w′ + ε))) |u|+ 2 |u| e−γn < (α + 2ε− w′)2 for all w′ ∈ [−δ, δ]

and so it would be suboptimal for an agent with utility value u to buy more than α+2ε−δ votes.
Clearly it would also be suboptimal to buy more than ∆ but no more than α+2ε−δ votes, where
∆ is the discontinuity threshold (cf. Lemma 11), because this would leave the expected utility
payoff below u(1 − e−γn). Consequently, if ESn > α + 3ε then for large n no Nash equilibrium
would have a discontinuity; since we have shown that for large n every Nash equilibrium has
a discontinuity it follows that ESn cannot exceed α + 3ε for large n. We have therefore proved
that for any ε > 0, if n is sufficiently large then (a) every Nash equilibrium has a discontinuity
in the extremist regime near u; and (b) |ESn − α| < ε. Assertion (iv) of the theorem follows, by
Proposition 15.

Let v(u) be a Nash equilibrium, and let u∗ be the rightmost point u∗ of discontinuity of v.
Consider the strategy v(u) for an agent with utility value u < u∗: since v is monotone, v(u) ≤ −∆.
Moreover, the expected payoff for an agent with utility umust exceed the expected payoff under
the alternative strategy of buying no votes. The latter expectation is approximately u, because
Sn is highly concentrated near ESn > α− ε and so EΨ(Sn) ≈ 1. On the other hand, the expected
payoff at u for an agent playing the Nash strategy v is approximately

Ψ(α− v(u)) (u)− v(u)2.
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Consequently, since (α,w) is the unique pair such that relations (5) hold, we must have

|v(u)| ≈ α− w.

This proves assertion (ii).
That v has only a single point of discontinuity u∗ follows from the hypothesis (5). Recall (cf.

Lemma 10) that if v is discontinuous at u then Eψ′(ṽ + Sn) = 2 for some ṽ intermediate between
the right and left limits v(u+) and v(u−). But any discontinuity u must occur within distance
βn−3/2 of u, and if u < u∗ then v(u) ≈ −α+w. Hence, since the distribution of Sn is concentrated
in a neighborhood of α,

Eψ′(v(u±) + Sn) ≈ ψ′(w),

and so by Assumption 1, for u ∈ [u, u∗) there cannot be a value ṽ ∈ [v(u−), v(u+)] satisfying the
necessary condition Eψ′(ṽ + Sn) = 2 for a discontinuity.

Finally, since u∗ must be within distance Cn−3/2 of u, the conditional probability that there
are at least two extremists in the sample U1, U2, . . . , Un given that there is at least one is of order
O(n−1/2). Consequently,

Eψ(Sn) = ψ(w)fU (u) (u∗ + |u|) +O(n−1/2(u∗ + |u|)).

On the other hand, since ESn ≈ α, the proportionality rule (40) implies that nEψ(Sn) ≈ α.
Therefore,

u∗ + u ∼ γn−2

where γ is the unique solution of the equation α = γψ(w)fU (u). This proves assertions (i) and
(iii).

E Balanced Populations: Proof of Theorem 3

E.1 Continuity of Nash equilibria

Proposition 9. If µ = 0, then for all sufficiently large values of the sample size n no Nash equi-
librium v(u) has a discontinuity in [u, u]. Moreover, for any ε > 0, if n is sufficiently large then
every Nash equilibrium v(u) satisfies

‖v‖∞ ≤ ε. (47)

Proof. The size of any discontinuity is bounded below by a positive constant ∆, by Proposi-
tion 11, so it suffices to prove the assertion (47). By Proposition 7, for any ε > 0 there exists
γ = γ(ε) such that if n is sufficiently large then any Nash equilibrium v(u) satisfying ‖v‖∞ > ε
must also satisfy |v(u)| ≤ γ/

√
n for all u not within distance ε of one of the endpoints u, u. Hence,

the approximate proportionality relation (40) implies that

Eψ(Sn) ≤ C√
n

(48)

for a suitable C = C(γ). Since v(u)/u is within a factor (1 + ε)±1 of Eψ(Sn) for all u not within
distance C ′εn−3/2 of u or u, it follows from Chebyshev’s inequality that for any α > 0 there exists
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β = β(α) such that
P{|Sn − ESn| ≥ β} ≤ α.

On the other hand, if ‖v‖∞ ≥ ε, then by the necessary condition (13), there is some u such
that

P{Sn + v(u) ∈ [−δ, δ]} ≥ ε

‖ψ‖∞max (|u| , u)
.

Since Sn is concentrated around ESn, it follows that ESn must be at bounded distance from v(u),
and so the Berry–Esseen bound (44) implies that P{Sn ∈ [−δ/2, δ/2]} is bounded below. But this
in turn implies that Eψ(Sn) is bounded below, which for large n is impossible in view of (48).
Thus, if n is sufficiently large then no Nash equilibrium v(u) can have ‖v‖∞ ≥ ε.

Since ‖v‖∞ is small for any Nash equilibrium v, the distribution of the vote total Sn cannot
be too highly concentrated. This in turn implies that the proportionality constant Eψ(Sn) in (40)
cannot be too small.

Lemma 16. For any C < ∞ there exists nC < ∞ such that for all n ≥ nC and every Nash
equilibrium,

nEψ(Sn) ≥ C. (49)

Proof. By the approximate proportionality rule (40) and the necessary condition (13), for any
ε > 0 and all sufficiently large n,

|ESn| ≤ nεEψ(Sn)E|U |.

Thus, by Hoeffding’s inequality (Corollary 7), if nEψ(Sn) < C then the distribution of Sn must
be highly concentrated in a neighborhood of 0. But if this were so we would have, for all large
n,

Eψ(Sn) ≈ ψ(0) > 0,

which is a contradiction.

E.2 Edgeworth expansions

For the analysis of the case µU = 0 refined estimates of the errors in the approximate propor-
tionality rule (40) will be necessary. These we will derive from the Edgeworth expansion for the
density of a sum of independent, identically distributed random variables (cf. Feller (1971), Ch.
XVI, sec. 2, Th. 2). The relevant summands here are the random variables v(Ui), and since the
function v(u) depends on the particular Nash equilibrium (and hence also on n), it will be neces-
sary to have a version of the Edgeworth expansion in which the error is precisely quantified. The
following variant of Feller’s Theorem 2 (which can be proved in the same manner as in Feller)
will suffice for our purposes.

Proposition 10. Let Y1, Y2, . . . , Yn be independent, identically distributed random variables with
mean EY1 = 0, variance EY 2

1 = 1, and finite 2rth moment E|Y1|2r = µ2r ≤ m2r. Assume that the
distribution of Y1 has a density f1(y) whose Fourier transform f̂1 satisfies |f̂1(θ)| ≤ g(θ), where g
is a C2r function such that g ∈ Lν for some ν ≥ 1 and such that for every ε > 0,

sup
|θ|≥ε

g(θ) < 1. (50)

39



Then there is a sequence εn → 0 depending only on m2r and on the function g such that the
density fn(y) of

∑n
i=1 Yi/

√
n satisfies∣∣∣∣fn(x)− e−x

2/2

√
2πn

(
1 +

2r∑
k=3

n−(k−2)/2Pk(x)

)∣∣∣∣ ≤ εn
n−r+1

(51)

for all x ∈ R, where Pk(x) = CkHk(x) is a multiple of the kth Hermite polynomial Hk(x), and Ck
is a continuous function of the moments µ3, µ4, . . . , µk of Y1.

The following lemma ensures that in any Nash equilibrium the sums Sn =
∑n

i=1 v(Ui), after
suitable renormalization, meet the requirements of Proposition 10.

Lemma 17. There exist constants 0 < σ1 < σ2 < m2r < ∞ and a function g(θ) satisfying the
hypotheses of Proposition 10 (with r = 4) such that for all sufficiently large n and any Nash
equilibrium v(u) the following statement holds. If w(u) = 2v(u)/Eψ(Sn) then

(a) σ2
1 < var(w(Ui)) < σ2

2 ;
(b) E|w(Ui)− Ew(Ui)|2r ≤ m2r; and
(c) the random variables w(Ui) have density fW (w) whose Fourier transform is bounded in

absolute value by g.

Proof. These statements are consequences of the proportionality relations (40) and the smooth-
ness of Nash equilibria. By Proposition 9, Nash equilibria are continuous on [u, u] and for large
n satisfy ‖v‖∞ < ε, where ε > 0 is any small constant. Consequently, by Proposition 6, the pro-
portionality relations (40) hold on the entire interval [u, u]. Since EU1 = 0, it follows that for any
ε > 0, if n is sufficiently large then |Ew(Ui)| < ε, and so assertions (a)–(b) follow routinely from
(40).

The existence of the density fW (w) follows from the smoothness of Nash equilibria, which
was established in Subsection C.4. In particular, by Proposition 14, inequalities (39), and the
proportionality relations (40), if the sample size n is sufficiently large and v is any continuous
Nash equilibrium then v is twice continuously differentiable on [u, u], and there are constants
α, β > 0 not depending on n or on the particular Nash equilibrium such that the derivatives
satisfy

α ≤ v′(u)

Eψ(Sn)
≤ α−1 and β ≤ v′′(u)

Eψ(Sn)
≤ β−1 (52)

for all u ∈ [u, u]. Consequently, if U is a random variable with density fU(u) then the random
variable W := 2v(U)/Eψ(Sn) has density

fW (w) = fU(u)Eψ(Sn)/(2v′(u)) where w = 2v(u)/Eψ(Sn). (53)

Furthermore, the density fW (w) is continuously differentiable, and its derivative

f ′W (w) =
f ′U(u)(Eψ(Sn))2

4v′(u)2
− fU(u)(Eψ(Sn))2v′′(u)

4v′(u)3

satisfies
|f ′W (w)| ≤ κ (54)

where κ <∞ is a constant that does not depend on either n or on the choice of Nash equilibrium.
It remains to prove the existence of a dominating function g(θ) for the Fourier transform of

fW . This will be done in three pieces: (i) for values |θ| ≤ γ, where γ > 0 is a small fixed constant;
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(ii) for values |θ| ≥ K, where K is a large but fixed constant; and (iii) for γ < |θ| < K. Region
(i) is easily dealt with, in view of the bounds (a)–(b) on the second and third moments and the
estimate |Ew(U)| < ε′, as these together with Taylor’s theorem imply that for all |θ| < 1,

|f̂W (θ)− (1 + iθEw(U)− θ2var(w(U))/2| ≤ m3|θ|3.

Next consider region (ii), where |θ| is large. Integration by parts shows that

f̂W (θ) =

ˆ w(u)

wu

fW (w)eiθw dw = −
ˆ w(u)

wu

eiθw

iθ
f ′W (w) dw +

eiθw

iθ
fW (w)

∣∣∣∣w(u)

wu

;

since fW (w) is uniformly bounded at wu and w(u), by (52) and (53), and since |f ′W (w)| ≤ κ, by
(54), it follows that there is a constant C < ∞ such that for all sufficiently large n and all Nash
equilibria,

|f̂W (θ)| ≤ C/|θ| ∀ θ 6= 0.

Thus, setting g(θ) = C/|θ| for all |θ| ≥ 2C, we have a uniform bound for the Fourier transforms
f̂W (θ) in the region (ii).

Finally, to bound |f̂W (θ)| in the region (iii) of intermediate θ−values, we use the proportion-
ality rule once again to deduce that |w(u)− u| < ε. Therefore,

f̂W (θ) =

ˆ u

u

eiθw(u)fU(u) du

=

ˆ u

u

eiθufU(u) du+

ˆ u

u

(eiθw(u) − eiθu)fU(u) du

= f̂U(θ) +R(θ)

where |R(θ)| < ε′ uniformly for |θ| ≤ C and ε′ → 0 as ε→ 0. Since f̂U is the Fourier transform of
an absolutely continuous probability density, its absolute value is bounded away from 1 on the
complement of [−γ, γ], for any γ > 0. Since ε > 0 can be made arbitrarily small (cf. Proposition 6),
it follows that there is a continuous, positive function g(θ) that is bounded away from 1 on
|θ| ∈ [γ, C] such that |f̂W )θ| ≤ g(θ) for all |θ| ∈ [γ, C]. The extension of g to the whole real line
can now be done by smoothly interpolating at the boundaries of regions (i), (ii), and (iii).

E.3 Proof of Theorem 3

Since the function ψ is smooth and has compact support, differentiation under the expectation
in the necessary condition 2v(u) = Eψ(v(u) + Sn)u is permissible, and so for every u ∈ [−u, u]
there exists ṽ(u) intermediate between 0 and v(u) such that

2v(u) = Eψ(Sn)u+ Eψ′(Sn + ṽ(u))v(u)u. (55)

The proof of Theorem 3 will hinge on the use of the Edgeworth expansion (Proposition 10) to
approximate each of the two expectations in (55) precisely.

As in Lemma 17, let w(u) = 2v(u)/Eψ(Sn). We have already observed, in the proof of
Lemma 17, that for any ε > 0, if n is sufficiently large then for any Nash equilibrium, |Ew(U)| < ε.
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It therefore follows from the proportionality rule that∣∣∣∣ 4 var(v(U))

(Eψ(Sn))2σ2
U

− 1

∣∣∣∣ ≤ ε and
∣∣∣∣E|v(u)− Ev(u)|k

(Eψ(Sn))kE|U |k

∣∣∣∣ < ε ∀ k ≤ 8. (56)

Moreover, Lemma 17 and Proposition 10 imply that the distribution of Sn has a density with an
Edgeworth expansion, and so for any continuous function ϕ : [−δ, δ]→ R,

Eϕ(Sn) =

ˆ δ

−δ
ϕ(x)

e−y
2/2

√
2πnσV

(
1 +

m∑
k=3

n−(k−2)/2Pk(y)

)
dx+ rn(ϕ) (57)

where

σ2
V := var(v(U)),

y = y(x) = (x− ESn)/
√

var(Sn),

and Pk(y) = CkH3(y) is a multiple of the kth Hermite polynomial. The constants Ck depend only
on the first k moments of w(U), and consequently are uniformly bounded by constants C ′k not
depending on n or on the choice of Nash equilibrium. The error term rn(ϕ) satisfies

|rn(ϕ)| ≤ εn
n(m−2)/2

ˆ δ

−δ

|ϕ(x)|√
2πvar(Sn)

dx. (58)

In the special case ϕ = ψ, (57) and the remainder estimate (58) (with m = 4) imply that

Eψ(Sn) ≤ 1√
2πnσV

ˆ δ

−δ
ψ(x) dx+ o(n−1σ−1

V ).

Since 4σ2
V ≈ (Eψ(Sn))2σ2

U for large n, this implies that for a suitable constant κ <∞,

Eψ(Sn) ≤ κ
4
√
n
. (59)

Claim 11. There exist constants αn →∞ such that in every Nash equilibrium,

|ESn| ≤ α−1
n

√
var(Sn) and (60)

var(Sn) ≥ α2
n. (61)

Proof of Theorem 3. Before we begin the proof of the claim, we indicate how it will imply Theo-
rem 3. If (60) and (61) hold, then for every x ∈ [−δ, δ],

|y(x)| ≤ (1 + 2δ)/αn → 0.

Consequently, the dominant term in the Edgeworth expansion (57) for ϕ = ψ (with m = 4), is
the first, and so for any ε > 0, if n is sufficiently large,

Eψ(Sn) =
1√

2πnσV

ˆ δ

−δ
ψ(x) dx(1± ε).
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(Here the notation (1 ± ε) means that the ratio of the two sides is bounded above and below by
(1± ε).) Since 4σ2

V ≈ (Eψ(Sn))2σ2
U this will imply that

√
πn/2σU(Eψ(Sn))2 =

ˆ δ

−δ
ψ(x) dx(1± ε) = 2± 2ε,

proving the assertion (7).

Proof of Claim 11. First we deal with the remainder term rn(ϕ) in the Edgeworth expansion (57).
By Lemma 16, the expectation Eψ(Sn) is at least C/n for large n, and so by (56) the variance of
Sn must be at least C ′/n. Consequently, by (58), the remainder term rn(ϕ) in (57) satisfies

|rn(ϕ)| ≤ C ′′
εn‖ϕ‖1

n(m−2)/2
√

var(Sn)
≤ C ′′′

εn‖ϕ‖1

n(m−3)/2
.

Suitable choice of m will make this bound small compared to any desired monomial n−A, and so
we may ignore the remainder term in the arguments to follow.

Suppose that there were a constant C <∞ such that along some sequence n→∞ there were
Nash equilibria satisfying var(Sn) ≤ C. By (56), this would force C/n ≤ Eψ(Sn) ≤ C ′/

√
n. This

in turn would force
C ′′var(Sn) log n ≥ |ESn|2 ≥ C ′′′var(Sn) log n, (62)

because otherwise the dominant term in the Edgeworth series for Eψ(Sn) would be either too
large or too small asymptotically (along the sequence n → ∞) to match the requirement that
C/n ≤ Eψ(Sn) ≤ C ′/

√
n. (Observe that since the ratio |ESn|2/var(Sn) is bounded above by

C ′′ log n, the terms e−y2/2Pk(y) in the integral (57) are of size at most (log n)A for some A depend-
ing on m, and so the first term in the Edgeworth series is dominant.) We will show that (62)
leads to a contradiction.

Suppose that ESn > 0 (the case ESn < 0 is similar). The Taylor expansion (55) for v(u) and
the hypothesis EU = 0 implies that

2Ev(U) = Eψ′(Sn + ṽ(U))v(U)U. (63)

The Edgeworth expansion (57) for Eψ′(Sn + ṽ(u)) together with the independence of Sn and U
and the inequalities (62), implies that for any ε > 0, if n is sufficiently large then

Eψ′(Sn + ṽ(u))

=
1√

2πvar(Sn)

ˆ δ

−δ
ψ′(x) exp{−(x+ ṽ(u)− ESn)2/2var(Sn)} dx(1± ε). (64)

Now since ψ and ψ′ have support [−δ, δ], integration by parts yields

ˆ δ

−δ
ψ′(x) exp{−(x+ ṽ(u)− ESn)2/2var(Sn)} dx

=

ˆ δ

−δ
ψ(x) exp{−(x+ ṽ(u)− ESn)2/2var(Sn)}x+ ṽ(u)− ESn

var(Sn)
dx, (65)
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and since x+ ṽ(u) is of smaller order of magnitude than ESn, it follows that for large n

Eψ′(Sn + ṽ(u)) = − ESn
var(Sn)

Eψ(Sn)(1± ε). (66)

But it now follows from the Taylor series for 2Ev(Ui) (by summing over i) that

2ESn = −n ESn
var(Sn)

Eψ(Sn)Ev(U)U(1± ε), (67)

which is a contradiction, because the right side is negative and the left side positive. This proves
the assertion (61).

The proof of inequality (60) is similar. Suppose that for some C > 0 there were Nash equi-
libria along a sequence n → ∞ for which ESn ≥ C

√
var(Sn). In view of (61), this implies in

particular that ESn → ∞, and also that |y(x)| ≥ C/2 for all x ∈ [−δ, δ]. Thus, the Edgeworth
approximation (64) remains valid, as does the integration by parts identity (65). Since ESn →∞,
the terms x+ ṽ(u) are of smaller order of magnitude that ESn, and so once again (66) and there-
fore (67) follow. This is, once again, a contradiction, because the right side of (67) is negative
while the left side diverges to +∞.

F Proof of Lemma 8

Lemma 8. Fix δ > 0. For any ε > 0 and anyC <∞ there exists β = β(ε, C) > 0 and n′ = n′(ε, C) <∞
such that the following statement is true: if n ≥ n′ and Y1, Y2, . . . , Yn are independent random variables
such that

E|Y1 − EY1|3 ≤ Cvar(Y1)3/2 and var(Y1) ≥ β/n (68)

then for every interval J ⊂ R of length δ or greater, the sum Sn =
∑n

i=1 Yi satisfies

P{Sn ∈ J} ≤ ε|J |/δ. (69)

Proof. It suffices to prove this for intervals of length δ, because any interval of length nδ can be
partitioned into n pairwise disjoint intervals each of length δ. Without loss of generality, EY1 = 0
and δ = 1 (if not, translate and re-scale). Let g be a nonnegative, even,C∞ function with ‖g‖∞ = 1
that takes the value 1 on [−1

2
, 1

2
] and is identically zero outside [−1, 1]. It is enough to show that

for any x ∈ R,
Eg(Sn + x) ≤ ε.

Since g is C∞ and has compact support, its Fourier transform is real-valued and integrable, so
the Fourier inversion theorem implies that

Eg(Sn + x) =
1

2π

ˆ
ĝ(θ)ϕ(−θ)ne−iθx dθ,

where ϕ(θ) = EeiθY1 is the characteristic function of Y1. Because EY1 = 0, the derivative of the
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characteristic function at θ = 0 is 0, and hence ϕ has Taylor expansion

|1− ϕ(θ)− 1

2
EY 2

1 θ
2| ≤ 1

6
E|Y1|3|θ|3.

Consequently, if the hypotheses (20) hold then for any γ > 0, if n is sufficiently large,

|ϕ(θ)n| ≤ e−β
2θ2/4

for all |θ| ≤ γ. This implies (since |ĝ| ≤ 2) that

Eg(Sn + x) ≤ 1

π

ˆ
|θ|<γ

e−β
2θ2/4 dθ +

1

2π

ˆ
|θ|≥γ
|ĝ(θ)| dθ.

Since ĝ is integrable, the constant γ can be chosen so that the second integral is less that ε/2, and
if β is sufficiently large then the first integral will be bounded by ε/2.
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