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I. INTRODUCTION

Supersymmetry is a remarkable subject that has fascinated
particle physicists since it was originally introduced.l Although
supersymmetry is no longer a new ldea, we still do not know in what

form, if any, it plays a role in the proper description of nature.

The present status of supersymmetry might be compared very
roughly to the status of non-Abelian gauge theories twenty years ago.
It is a fascinating mathematical structure, and a reasonable exten-

sion of current ideas, but plagued with phenomenological difficulties.

In these lectures, I will present an introduction to supersym-—
metry, or at least to some aspects of this extensive subject. I
also will describe some recent results. Supersymmetry has the repu-
tation of a subject that is difficult to learn. I will try to at

least partially dispel this unjustified impression,

In these lectures we will discuss only global supersymmetry,

not supergravity.

*
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306 E. WITTEN

A number of useful reviews of supersymmetry are available,
which approach the subject from several points of view.2 Many as-
pects of supersymmetry that I will not be able to discuss are

treated in these review articles.
II. BOSE-FERMI SYMMETRY

If one considers a theory of two decoupled Bose fields, ¢l’ and

¢23 S0
4.1 2 2
L - Ja'x 53, 6% + (3 4,09 ¢h)

it is possible to combine ¢l and ¢2 into a conserved current
u = ¢l au ¢2 - ¢2 Bu ¢l even though they are not interacting.
Actually, since, for example, Ba ¢l or Ba BB ¢l satisfies the Klein-
Gordon equation just as ¢l does, one can form in the free field

theory additional conserved currents such as

Jua o ¢l au ¢2 - ¢2 au aa ¢l

<JuaB = aa 86 ¢l au ¢y - ¢y au %u aB 1 (2)

It is easy to check that these are conserved because V2¢l = V2¢2 = 0.

The reason that J is far more important than J o or‘JumB
that J can still be conserved in 1nteract1ng theories. One can add
to xﬁ a term like V(¢l + ¢2) that is 1nvar1ant under 6¢l ¢2,
6¢2 = —¢l. Ju is 'still conserved.

However, when interactions are included, Jua and JUGB are no
longer conserved. Moreover, it is not possible to redefine them (by
adding extra terms to allow for the interactiéns) so that they will
still be conserved. One may readily verify this in special cases.
In general, it is a consequence of the Coleman-Mandula theorem.3
Coleman and Mandula showed (basically by S matrix theory alone) that

in a theory with non-zero scattering amplitudes in more than 1+1

Y



INTRODUCTION TO SUPERSYMMETRY 307

dimensions tHe only possible conserved quantities that transform as
tensors under the Lorentz group are the following. The usual:space-
time symmetries are certainly allowed: the energy-momentum operator

Pu and the Lorentz transformations Md commute with the S matrix in

all of our usual theories. We may alSO have arbitrary Lorentz-
invariant conserved quantum numbers Qi (electric charge, baryon
number, etcs.). Finally, if all particles are massless, the Coleman-
Mandula theorem allows conformal invariance, which is not usually
realized, however, in field theories with interactions. The Coleman-
Mandula theorem forbids "exotic'" conservation laws — conservation
laws other than the usual space-time symmetries which do not commute

with Lorentz transformations.

For a proof, I refer you to reference (3); I will just give a
rough idea. The basic idea is that conservation of Pu and MaB
leaves only the scattering angle unknown in (say) a two body col-
lision. Additional, exotic conservation laws would determine the
scattering angle, leaving only a discrete set of possible angles.
Since the scattering amplitude is always an analytic function of

angle, it would actually then have to vanish at all angles.

Note that the argument obviously does not apply in 1+1 dimen-
sions. In 1+l dimensions, the only possible angles are 0 and TS
there is no such thing as analyticity as a function of scattering
angle. This is why, in 1+l dimensions, it is possible to have in-
teracting systems, such as the sine-gordon equation, with exotic

conservation laws.

pl

To illustrate the argument by a concrete example, suppose we
have a conserved traceless symmetric tensor QBY' This is an exotic
conservation law because, transforming as a temsor, it does not com
mute with Lorentz transformations. Its matrix element in a one
particle state of momentum p and (for simplicity) spin zero would

_ 1 2 . .
have to be <p| QBY |p> =Pg P, "7 8gy P s by Lorentz invariance.
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Applied to a two-body collision, with incident particles of momentum
Pys Pys and outgoing particles of momentum 47> 45 (figure (1)), the
conservation of QBY would tell us plB plY + p28 p2Y = q16 qlY +
q28 qu. This is possible only if the scattering angle is zero.
With more effort, the same type of argument works even if the par-

ticles have non-zero spin.

Now going back to the exotic conserved currents that we defined

in free field theory (equation (2)), the corresponding conserved

charges
- (43
Q, fd7x Jon
Q= [&x 3 ®)
af oof

are forbidden by the Coleman-Mandula theorem for theories with a
non-trivial S matrix in more than
1+1 dimension. ?his is why it is
impossible to add interactions to
the free field theory in a way that

preserves the conservation of Juu

dJ
an LB

Figure 1

*It is here assumed that the matrix element of QB in the two par-
ticle state lpl pP,> 1is th& sum of the matrix ele%ents in the states
lp > and |p2>. T%is is true if Q is the integral of a local cur-
reiit densit¥, or, more generally, fQ is defined in a way that
is "not too non-local”. By
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Instead of two non-interacting scalars, consider next a free
massless charged scalar ¢ and a free two component (left handed)

fermion wa. The Lagrangian is
L = fd (3, 6" "6 +% 1 5 ¥ (4)

Again — although the fields are non-interacting — one can define

*
coiserved currents connecting them. One of the simplest is
* O
= e v v W, (3)

It is easy to show 9 st = 0:
uoa

|V, * 0 U * o0 _u
3uS 0 (3u Wb Y YW+ (3c¢ Yoy au 12 (6)

The second term vanishes since Yu d ¢ = 0. For the first term, note
. .. " o u
Bu 80 Yy is symmetrlc in u and o, so we may replace y ¥y by
-l/2('yu Yc + Y YWy = g . We then have guo au 30¢* = 0.
Again, additional conserved currents can be defined. The only
property of ¢ that we used was the Dirac equation, which is also
satisfied by ayw, so

SUYC! = (36 v Y, BY w)a (7

is also conserved, that is, Bu Suya = 0.

The exciting fact that makes supersymmetry interesting is that,
although conservation of suya is always ruined when interactions are
included, it is possible to add interactions in such a way that suoz

is conserved. A simple example is

L = [d'x <au¢* Mo+ T 18- g ol* - ecs v, v+ h.el))
(8)

which is known as the '"massless Wess-Zumino model'. Although sua

is here a left-handed Weyl spinor, like ¢ itself. We will soon
gg over to a Majorana basis.
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as previously defined is not conserved in this model, by adding an

extra term

S +8 41 *2 %
ua pa T 18, ¢ ¥ (9)

One preserves conservation of the current in the presence of inter-
. * . -

action. (Here y is a right-handed two component spinor, the her-

mitian conjugate of Y, which is left-handed. See, for example, the

notes of Wess and Bagger2 for more details.)

Wh; S but’ i '
y can ne? ut’ not SUYG’ be conserved in the presence of

interactions? We can find out by studying the conserved charges

A 3
Qa a fd X Soa

~ _ 3 .
an = fd X Soya (10)
We cannot apply the Coleman-Mandula theorem directly to the aa and
Qg .
that transform as Lorentz tensors, while the Q transform as spinors

because the Coleman-Mandula theorem deals with conserved charges

(or vector-spinors). However, the Coleman-Mandula theorem can be
applied to phe bosonic conserved charges that can be formed from the
anticommutators of the 6. (It 1s the anti-commutators of the Q,that
we should consider, because Sua and SUYG’ being linear in fermi

fields, anti-commute at spacelike separation.)

Now Qa: being a left-handed spinor, transforms as il/z, 0)
under Lorentz transformations. Its hermitian adjoint, Q g» transforms
as (0, 1/2). The anticommutator of 6 with its adjoint 6*, which can-
not vanish (since the anticommutator of any operator with its hermit-
ian adjoint is non-zero), transforms as (1/2, 1/2) under Lorentz
transformations. The Coleman-Mandula theorem permits the conserva-
tion of précisely one operator that transforms as (1/2, 1/2), namely
the energy-momentum operator P“. But an, a vector-spinor, has com-

N ~%k
ponents of spin up to 3/2. The anti-commutator {QYa’ Q C_r}, which



INTRODUCTION TO SUPERSYMMETRY ’ 311

cannot vanish, for the reason noted above, has components of spin up
to three.: Since {Q o Q } is conserved if QY is, and since the
Coleman-Mandula theorem does not permit conservation of an operator
of spin three in an interacting theory, QYOLcannot be conserved in an

intetacting theory.

The Coleman-Mandula theorem does permit conservation of the Q .
Changing basis from the Q (not hermitian as I have defined them) to
a basis of four hermitian operators Qa that transform as a (real,

Majorana) Lorentz four-spinor, the algebra of the Qa turns out to be
= H
= 11
Q> Q! Yag By (11)

One may readily check that this is so in, for example, the free
field theory (4).

The right-hand side of (11) certainly contains only operators
that are permitted by the Coleman-Mandula theorem, but one might ask
whether there are more general possibilities. This question was
answvered by Haag, Sohnius, and Lopuszanski.4 Since Q transforms as
(1/2, 0) + (o0, 1/2), its anti-commutator with itself mlght contain
Pieces transforming as (1, 0), (0, 1), or (0, 0), apart from the
(1/2, 1/2) term we have already encountered. By the Coleman-Mandula
theorem, the only conserved operators transforming as (1, 0) or (0, 1)
are the Lorentz generators M o’ however, Haag, Sohinius, and Lopus-
zanski showed that it is 1mp0581ble to introduce M in (11) without
violating the Jacobi identity. As for the poss:Lb:Ll:Lty of adding to
(11) operators that transform as (0, 0) (in other words, operators .
that commute with Lorentz transformations), this is possible, but
only in the "extended supersymmetry" theories in which there are
several conserved spinors Qai' Beautiful though those theories are,
I believe that they are too restrictive to describe the physics we

*
know at energies much less than the Planck mass. At such high

The basic problem is that they require the charged fermions to form
a "real representation" of the gauge group.
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energies, they may, of course, be :relevant. 1In these lectures we
will only consider the simplest theories with a single conserved

spinor Q, and the basic algebra (11).

The algebra (1l) has some dramatic consequences. Since Qa is

hermitian, 66 = Q Ygﬁ; so (11) can be written

10, 9} 9 = Vog B, L (1)

If we multiply by Yga’ sum over B and a, and use the facts ('yo)2 =1,
Tr Yo ¥ = 450u, we get

4p = g {Qa, Q,} (13)

Here Po is, of course, the Hamiltonian H. For any operator A,

{A, A} = 2A2. Equation (13) is equivalent to

2
a

NI

H = ZQ (14)
a
which is one of the kéys to understanding supersymmetry.

It follows immediately from equation (14) that if supersym-

metry is not spontaneously broken — if the Qa annihilate the vacuum
|Q> — then the energy of the vacuum is zero. If Qa [Q> = 0 then
obviously

2

--.l =
H |[o> = 3 g Q o> =0 (15)

If conversely, supersymmetry is spontaneously broken, that is, if
Q, o> # 0, then

1 2 1 2
<@| H |@> =~5§ <l q | =31 lo, [e>]%> 0 (16)

*
so in this case the vacuum energy is positive.

*Usually, one is free to add a constant to the Hamiltonian, but here
the zero of energy is fixed in a natural way by equation(l4). When
asking what is the energy of the vacuum, we always have in mind the
definition (14) of H.
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Combining these remarks, we see that supersymmetry is spon-—
taneously broken "if and only if the energy of the vacuum is greater
than zero. This is often illustrated by the diagram of figure (2).
In figure (2(a)) a scalar field has a vacuum expectation value, pos-
sibly breaking some internal symmetry. However, supersymmetry is
unbroken because the ground state energy — the minimum of the poten-
tial — is zero. In figure (2(b)), the expectation value of the
scalar field is zero, but supersymmetry is spontaneously broken be-

cause the energy of the ground state is greater than zero.

If supersymmetry plays any role in pature it must be spontan-
eously broken. This follows immediately from the fact that the Qa

have spin 1/2, so acting on any particle they change its spin by £1/2:
Q, lspin s> n |spin s £1/2> - (17)

Since Qa commutes with the Hamiltonian it does not change the mass

of the particle on which it acts. Since we do not observe in nature
the degenéracies among particles of different spin that would be pre-
dicted by (17), supersymmetry must be spontaneously broken if it is

relevant to nature.

(a) (b)
Figure 2
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A puzzle immediately presents itself. Since broken supersym-
metry means a positive vacuum energy, why does not a cosmological
constant arise as soon as a supersymmetric theory is coupled to
gravity? No good answer is known to this question, and it certainly
is one of the most important questions that must be answered. Actual-
ly the positive vacuum energy of global supersymmetry does not neces-
sarily become a positive cosmological constant after coupling to
gravity, because the coupling to gravity introduces extra termd in
the scalar potential; these extra terms are not positive definite.
While a cancellation can occur,5 leaving zero cosmological constant,
such a cancellation apparently depends on a speciai choice of para-

meters, for which there is no known rationale.

Now, the subject of spontaneously broken supersynmetry has a
special flavor, which arises from the fact that (leavfng gravity
aside), supersymmetry is spontaneously broken if and only if the
ground state energy is positive. Suppose that in some theory an ap-
proximate calculation gives an effective potential such as the one
shown in fig. (3). 1In this approximation, the minimum of the potential
is zero, and supersymmetry is unbroken. Even if the approximation

in question is very accurate, one
cannot be certain, just from this
result, that subersymmetry really

is unbroken, because the errors in

v one's calculation may shift the
potential slightly away from V = 0
(figure (4)) (the approximate
¢ calculation and the exact result
are indicated in figure (4) by the
Figyre 3

solid and dotted line, respective-
ly).

1f, instead, an approximate calculation shows that supersymmetry

1is spontaneously broken, one can be confident in the result if
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Je
" | $

Figure /4 Figure 5

[

(figure (5)) the calculated vacuum energy E is much bigger than the

uncertainty AE in the calculation.

On the other hand, for ordinary symmetries, a reliable approx1-
mation (like perturbation theory, in a weakly coupled theory) can

reliably indicate whether the symmetry is spontanecusly broken.

I have discussed these matters in much more detail in a recent
paper.6 In that paper I also described a simple quantum mechanics
model in which tiny quantum effects shift the energy slightly away

from zero, as in figure (4).
ITII. SUPERSYMMETRY AND THE LARGE NUMBERS

Supersymmetry is a very beautiful idea, but I think it is fair
to say that no one knows what mysteries of nature (if any) it should
explain. To fix ideas, I will make some definite assumptions in the

next few lectures about what problems supersymmetry might solve.
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Certainly, the ultimate applications may be in a very different area.

Perhaps supersymmetry is spontaneously broken at very high
energies — energies that may be as high as the Planck mass lOl9 GeV.
We will assume instead in most of our discussion that supersymmetry

is, more or less, within reach of the new generation of accelerators.

What would we like to explain with supersymmetry? Of the many
possible answers, I will focus on Dirac's "problem of the large num-

ll7

bers,"’ which nowadays is often called the "gauge hierarchy problem."

As posed by Dirac, the question is why the Planck mass MPl is so much
larger than the nucleon mass MN: MPl/MN v 10+19. In a contemporary
version,8 one might ask why the mass scale My of presumed grand uni-
fication is so much larger than the mass scale MW of weak interac-
tions: MX/MW b 10+l3. Starting with Dirac, most physicists have be-
lieved that such large numbers should not be postulated arbitrarily

but must have a definite explanation.

We now know that the "normal" masses — the quark, lepton, and
W and Z masses — are determined by SU(2) x U(l) breaking. Specific-
ally, they are all proportional to the expectation value <¢> of the
Higgs boson. So the question is really why <¢> is spitin; compared
to the "large" masses — the mass scale of grand unification, or the

Planck mass.

Looking at the standard Higgs potential
2

m
V(9 =54t - 2 42 (18)

>

we have <¢> = m//—, so the real problem is to explain why m¢ <<D%l'
Why would supersymmetry be relevant .to this?

As we now understand it, bare mass terms for the quarks and
leptons are forbidden by SU(2) x.U(1) gauge invariance. Left-handed
quarks and leptons transform as doublets of SU(2) x U(1l), but ri%ht—
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handed quarks and leptons are singlets. So bare masses are impos-—
sible, and the quarks and leptons get masses only from SU(2) x U(l)
breaking. We do not know why <¢> is so small (relative to the large .
masses of physics) but if this could be explained, the lightness of
the quarks and leptons would follow.

»

The problem with the Higgs boson is that its bare mass does not
violate SU(2) x U(l), or any other gauge symmetry. Given any Higgs
; % a
multiplet ¢l, the mass term I ¢i ¢1 is always gauge invariant. We
i

would like a symmetry violated by m to explain why ¢ is so light.

¢’
The symmetry will hopefully be spontaneously broken, but only on a

very small mass scale, to explain why <¢> is tiny but non-zero.

Supersymmetrz can do this if it relates the Higgs doublet (i—)
to fermions like (e%)L whose masses violate SU(2) x U(l). Then
m¢ = 0 as long as supersymmetry and SU(2) x U(l) are unbroken. And
m¢ is small, solving the old problem of the "large numbers," if we

can understand that supersyhmetry and SU(2) x U(l) are weakly broken.

So that we can discuss these matters in a more tangible way,
we must have available the explicit form of some supersymmetric Lag-
rangians. Let us consider first supersymmetric theories with fields
of spin zero and spin one half only. 1In such theories, one may have
an arbitrary number of complex scalar fields Ai, their supersymmetric
partners being left-handed splnor fields w We introduce a functlon
W that depends only on the A , not on thelr complex conjugates A —
in other words, W is an analytic function of the AT, W is usually

called the "superspace potential'.

The Lagrangian is gﬁ = » Where

. . +
kinetic + scalar Yukawa

* i - i
kinetic =~ oy Ay 9, At Uy 1Ay

£ ~ogp B2
scalar i 23A1
I°W i j
Yukawa - = Yy v+ h.c.) (19)

aat sl
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For how this construction was discovered, I refer you-to the liter-
2 . , .
ature. The easiest way to show that this describes a supersymmetric
theory is to demonstrate that the supersymmetry current s¥ is con-
served. 'This current is
% %
W (A) p
%Y
9A,

i
The first term in (20) we have already seen in free field theory;

B * o p i . %
S LY O G wi N (20)

the second term is added due to the interactions.

Note that, for a renormalizable theory), W should be at most a
cubic function of the A*. 1If W is cubic, then (19) contains only
terms of dimension four or less, and this corresponds to a renormal-

izable theory.

For our purposes, the most important part of (19) is the formula

for the scalar potential,

W |2 ’

T (21)
A

i *
V(A™, A)) = 3
J i

4
Let us ask, under what conditions is supersymmetry spontaneously

broken at the tree level? Evidently, if for some value of the A'

the equations

Ho = 9 ' (22)
2A
are simultaneously satisfied, then for this value of the fields the
potential energy vanishes, classically. Supersymmetry is unbroken.
On the other hand, if the equations (22) are inconsistent — if they
are not satisfied for any choice of the Aj — then the minimum of the
potential is strictly positive, and supersymmetry is spontaneously

broken.

The simplest example is the O?Raifeartaigh model.9 There are

three fields, A, X, and Y, and the superspace potential is,

WA, X, ¥) = g AY + A X (A% - D) (23)
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Here g, A, and M are constants. This theory is technically natural,

*
because of global symmetries. The scalar potential -is

W |2 W2 oW |2
V(A, X, Y) ’_3—1\_’ + »—3—)_(‘ -+ ‘B—Y-

g2 [a]2 +2% |a%%)? + |g¥ + 22 ax|? (24)

.

This potential is strictly positive, and supersymmetry is spon-
taneously broken. In fact, 3W/3Y = 0 only if A = 0, and 3W/3X = 0
only if A = #M; these requirements are clearly inconsistent. If

g/MM is large enough, the minimum of the potential is at A = 0 and

the vacuum energy is Az M4, plus quantum cérrections. Expanding
around the minimum of the potential (and making use of our previous
formulas for the Yukawa couplings as well as the scalar interactions),
it is easy to see that the bosons and fermions have unequal masses,
which is expected, since the positive ground state energy indicates

spontaneous breaking of supersymmetry.

-~

We will have more to say about this model later, but fof the
moment let us consider a model of another kind. Let us consider a
theory with SU(5) symmetry, the only scalar field being a complex
field Aij in the adjoint representation of SU(5) (so Tr A = 0). The

most general choice 'of W would be

W o= —%—TrA,3+—2MTrA2' (25)

where g and M are constants. The equations BW/BAlj = 0 give

g((aH5 - £ty 1 A +waty -0 ‘ (26)

The tgeory is invariant under A > -A, Y > -Y and under Y » elaY,
X > e ®X. It should be noted that any transformation under which
W changes only by an overall phase is a symmetry operation (the
phase of W cancelsout of the scalar potential and can be removed
from the Yukawa couplings by a chiral transformation). '
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*
If we assume that A can be diagonalized by a unitary transformation,

then it is easy to see that there are three solutions:

Atj =0
1
, 1
Aty = éi 1
8 1
-4
2
. 2
Al_‘] =M 2
8 -3
-3 (27)

These three solutions correspond to the unbroken gauge groups SU(5),
SU(4) x U(1), and SU(3) x SU(2) x U(L), respectively. They each
correspond. to unbroken supersymmetry, and they are exactly degenerate
at zero energy at least in this approximation (figure (6)), because

they were all found by requiring BW/BAlj = 0.

Now, what really‘is the physics of this theory? It depends
entirely on the nature of the quantum corrections to the effective
potential. If really E = 0 for each of the three vacuum states, as
appears to be the case in the classical approximation, then this one
theory describes three different, inequivalent worlds. In one world,
the strong gauge group is SU(3) and a baryon is made from three
quarks; in one world, the strong gauge group is SU(4) and baryons are
bosons, made from four quarks; in one world the strong gauge group is

SU(5) and a baryon is made from five quarks.

If the quantum corrections break supersymmetry in, say, two of

*It is really when SU(5) is made into a gauge symmetry that. this
assumption is justified, because of extra terms that are then present
in the scalar potential. Since A is complex and not hermitian, it
cannot necessarily be diagonalized by a unitary transformation.
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the three worlds (figure (7)), then
the true vacuum is the one in which
E = 0 and the supersymmetry is not

spontaneously broken.

\
If supersymmetry is spontan-—
eously broken, and E # 0, in each
A
su(s)  |su(4) sut3) of the three worlds, then (figure
xu(ly  xsu(2) .
xua (8)) the true vacuum is the one in
. which supersymmetry is broken most
Figure 6

weakly and the vacuum energy is

least.

One might usually guess that such a degeneracy would be resolved,
in perturbation theory, by loop diagrams. Perhaps the vacuum energy
is of order g, coming from a one loop diagram,-or of order az, coming
from a two loop diagram. The loop diagrams would then be inducing

supersymmetry breaking. Some particles whose masses violate super—

Figure 7 Figure 8
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symmetry would get masses. Some scalars would get positive mass
squared; some would get negative mass squared. If the W bosoQ gets
a mass from a Higgs doublet that gets an. expectation value in this
way, we would get a hierarchy of some sort, with (MW/MX_)2 perhaps of
order a or az. This clearly would fall far short of the experimen-

tally observed hierarchy.

However, a most remarkable theoremlO states that this does not
"occur. It states that if at some point in field space the classical
potential vanishes, then the effective potential vanishes at that
point to all finite orders of perturbation theory. Our degeneracy

is not lifted in perturbation theory.

.

This fact is an example of the 'non-renormalization theorems"

of supersymmetry. Here are some other examples:

(1) There is no renormalization of W in perturbation theory —
neither finite nor infinite renormalization. (There is wave function
renormalization. There are quantum corrections tc the effective
potential. There is no renormalization of W, if properly defined in
terms of the coefficients of certain operators in the effective

potential.)

(2) As long as supersymmetry is unbroken, any particle that is
massless at the tree level is massless to all finite orders of per-
turbation theory — even if it was massless at the tree level only

because of an arbitrary adjustment of parameters.
These theorems have been proved — on the basis of details of

perturbation theory — but they are not well understood.

Returning to our model with the three degenerate vacuum states,
if the relation <Q@| H |2> = 0 were to break down in perturbation
theory, and if this breakdown were the origin of the "light" masses,

the resulting mass ratios would, as we have said, not be small enough
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3

to solve Dirac's problem of the large numbers. However, if the mys-
terious theorem concerning non-renormalization of <Q| H |0> were to
break down non-perturbatively — as it does in a quantum mechanics
model discussed in ref. (6) — then we might obtain a solution to
the large number problem. We might get a formula of the form
= " exp -1 (28)
MX il .

and this could solve the "large number" or ''gauge hierarchy" problem.

We are thus imagining a theory with two mass scales. At the
large mass' scale, the scale of grand unification, a unified group
breaks down to SU(3) x SU(2) x U(1), or some other phenomenologically
acceptable group, but supersymmetry remains unbroken. At a vastly
smaller mass scale, the non-renormalization theorems break down,
supersymmetry is spontaneously broken, and the Higgs boson gets an

expectation value, breaking SU(2) x U(1l) down to U(1l).

Whaf mechanism might be responsible for the tiny, non-pertur-
bative effects that make <Q| H'|Q> non-zero and break supersymmetry?
With the present state of our knowledge, there are two obvious can-
didates. The obvious candidates are strong gauge forces, and grand

unified instantons.

Let us discuss first the effects of strong gauge forces. Con-
sider, as an example, the SU(5) theory that we discussed earlier.
Assume that the SU(5) coupling is gauged; this can be done in a way
compatible with supersymmetry and with our previous remarks. In each
of the three vacuum states that exist in perturbation theory, there
is an unbroken non-Abelian interaction that will become strong at low
enough energies. For instance, in the vacuum Aij =.0, this is the
full SU(5) group. As we have learned in the last few years, strong
gauge forces cause a variety of non-perturbative effects, including
confinement, mass generation, and chiral symmetry breaking. Perhaps

in supersymmetric theories strong gauge forces also cause super-—
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symmetry breaking, presumably with the binding of a color singlet
6,11

Goldstone fermion.
Of course, in this SU(5) theory, the vacuum of most phenomenolo-

gical interest is the one in which the unbroken gauge group is

SU(3) x SU(2) x U(1l). 1In this vacuum there are strong SU(3) gauge

forces. But if they were responsible for supersymmetry breaking, we

would get bose-fermi mass differences of order AQCD (since that is

the energy at which SU(3) becomes strong), and this is clearly un-

satisfactory.

In the same theory a more promising mechanism would be "grand
unified instantons," that is, instantons of the SU(5) group which
do not lie in the unbroken SU(3) x SU(2) x U(l) subgroup. Such
instantons are not afflicted with infrared divergences. They have
a natural mass scale, the mass MX of grand unification, and a natural,

small coupling, the coupling o, of grand unification. If such in-

G
stantons were responsible for supersymmetry breaking, we would get

bose-fermi mass splittings roughly of the order

which might be reasonable, for a, of about 1/12.

Actually, the instanton mechanism seems to work in 2+1 dimen-
sions, but, apparently, not in 3+1 dimensions.6 This point is in

need of further clarification.

Clearly, we must learn to analyze supersymmetry breaking in a
non-perturbative way. Tomorrow, I will describe some steps in that
direction. We will be able to derive some constraints on the pos-

sibility of supersymmetry breaking by strong gauge forces.

v
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In our previous discussions we have seen that, in general, it
is difficult to determine from an approximate calculation whether
supersymmetry is spontaneously broken. Even if the supersymmetry
seems to be unbroken in some approximation, it is always possible
that a small, non-zero vacuum energy is induced by the correctg%hs

to the approximation in question.

To show that supersymmetry is unbroken in a, given theory one
must prove that the ground state energy is exactly zero. Since an
approximate calculation will not accomplish this, in general, we
must search for other methods. I will now describe an indirect
method which in some theories can be used to prove that the ground
state energy is exactly zero. Of course, a theory in which supersym-
metry is not broken is not a candidate for describing nature. The
purpose of proving that some theories do not break supersymmetry is

to cut down on the range of options that must be considered.

As a technical convenience, we will formulate our theories in a
finike volume, with periodic boundary conditions (such boundary con-
ditions respect supersymmetry). Our goal is to find criteria under
which we can prove that the ground state energy of a theory EO(V) is
zero in any finite volume V. Sinée the large V limit of zero is zero,
this implies that the ground state energy is also zero in the infinite
volume limit, and therefore that supersymmetry is not broken in the

infinite volume theory which is of real interest.

Supersymmetry implies that every state of E = 0 also has P =o0.
(Supersymmetry impiies E > 0 in each frame; by Lorentz invariance

; so a state of zero energy necessarily has

this requires E > |P
P = D.) So, in trying to determine whether the ground state energy
vanishes, we lose nothing by restricting ourselves to the sector of

Hilbert space consisting of states of 3 = 0.
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Let Q be any one of the (hermitian) supersymmetry generators.
There are several Qa’ of course, but we will only need one. In the
? = 0 sector, the supersymmetry algebra is particularly simple. It
is simply

.

1
Q" = 5 H (30)
(For nonzero f, g'would appear on the right-hand side of (30).)

Since Q2 =-% H, Q annihilates any states of zero energy. States
of non-zero energy are not annihilated by Q. Rather, they are paired
by the action of Q. Given any boson state !b> of non-zero energy E,
Q acting on [b> gives a fermion state of.lf>. Q acting on |f> gives

back [b>. To be precise
Q [b> = /(E [f>

|b> (31)

o)
-
v
1]
o~

if phases are chosen properly. (Because Q2 = %~H, the factors of
/fg are consistent with <b]b> = <f]f> = 1, and the fact that Q is
hermitian.)

I .should explain that when I refer to a boson state !b>, I do
not mean a one particle state (a concept that in a finite volume is
not really well defined) but any state of integral angular momentum.
Likewise, |f> is any state of half integral angular momentum. ‘Here,
"angular momentum" refers to the 90° rotations such as exp - %; JZ
which are well defined in the finite volume theory. If we define

the operator
F .
(-1) = exp - 2ri Jz (32)

which distinguishes bosons from germions, then a boson state |b> is
F . . ;
any state that obeys (-1) |b> =‘|b>, and-a fermion state ]f> is any

state that obeys (—l)F |f> = -|f>. A boson state could be, for
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example, any state that in the infinite volume limit goes over to a

configuration of 92 neutrons.

Although the states of non-zero energy form bose-fermi pairs
as indicated in equation (31), this is certainly not true for the
states of zero energy. Any zero energy state, boson or fermipn, is

just annihilated by Q:
Qlb, E=0>=Q|f, E=0> =0 (33)

. s s 2 1 .
Again, this is so because Q~ = E'H' The zero energy states are sin~

glets — one dimensional representations of supersymmetry.

The general form of the spectrum of a supersymmetric theory is
indicated in figure (9). The states of non-zero energy are in bose-
fermi pairs. The zero energy states are not paired in general since
each one is separately annihilated by Q. They need not be equal in
number. In the figure there are two boson states of zero energy,

and one fermion.
-

- What happens when we change the parameters of this theory?
(By "parameters", I mean the volume,
the bare mass, and the coupling

constant.)

E
Jox Under the change in parameters,
—To-% the states of zero energy will, of
—O% .
course, move around in energy.
—oe*— . .
However, they will move around in
Figure 9 bose-fermi pairs. It may happen

that as we change the parameters a

bose state will move down to zero

energy. If so, it will always be
Circles indicate bosons; an "x" accompanied (figure (10)) by a

indicates a fermion. fermi state moving down to zero
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Figure 10
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Figure 11

Circles indicate bosons; an "X" indicates a fermion.

~
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enérgy. Conversely, as we change the parameters, a zero energy

state may get a non-zero energy. If so, as soon as it gets non-

zero energy, it must have a partner (figure (11)), because states

of non-zero energy are always in bose-fermi pairs. It is not pos-
sible however, for a zero-energy state to simply appear or disappear.

In quantum mechanics states always move around continuously in
*
energy.

In the process of figures (10) and (11), the number of zero ¥,
energy states changes. However, the difference between the number
nBE=0 of zero energy states that are bosons and the number nFE=0

that are fermions does not change. This will be our basic tool.

Formally, the difference nBE=0 - nFE=0 may be interpreted as

F . .
the trace of the operator, (~1) , that distinguishes bosons from
fermions. Formally, the states of non-zero energy cancel out of the
trace of (—1)F because they come in bose~fermi pairs. The trace of

(—l)F can ‘therefore be evaluated among the zero energy states only,
BE=0 - nFE=0. We will henceforth refer to nBE=0 - nFE=0
as Tr(—l)F. However, this is only a definition, since Tr(—l)F is

and equals n

not absolutely convergent.

The fact that Tr(—l)F does not change when the parameters of a
supersymmetric theory are changed is an important fact, for the fol-

lowing reasons:

(1) 1f Tr(—l)F # 0, supersymmetry is definitely not spontane-

ously broken.

(2) Tr(—l)F can be calculated reliably even in quite compli-

cated theories.

*As discussed in detail in reference (12), there is really an impor-
tant caveat to be imposed here. One may not consider changes in
parameters that overwhelm the terms already present in the
Hamiltonian.
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Let me explain these points:

If Tr(—l)F # 0 then n E=0 #0o0rn E=0 # 0 or both. 1In any case,

B F
there are some zero energy states. Hence the ground state energy is
. . F., .
zero and supersymmetry is unbroken. (Since Tr(-1) is independent of
F
the volume, a non-zero value of Tr(~1) means that the ground state

energy is zero for any V and hence alsoc as V + «,)

Tr(—l)F can be calculated reliably because it is independent of
the parameters. We can calculate Tr(—l)F in some convenient limit,
such as small volume, large bare mass, and weak coupling. Almost any
theory simplifies enough in this limit (or some analogous limit) that

Tr(—l)F can be calculated reliably.

The results can then be applied to the situation of interest —
large volume, physical mass, and physical coupliné — because Tr(—l)F

is independent of all parameters.

It is important to realize that Tr(—l)F can be calculated
reliably even though, in general, we may be unable to tell which
states have exactly zero ‘energy. Suppose ‘that in soge approximation

we find in some theory the spectrum of figure (12(a)). 1In this ap-

BE=O = 2, nFE=O = 1, and Tr(—l)F = 1. Even if

the approximation is excellent we cannot be sure we' have calculated
E=0 E=0

HB or HF

mation, the true answer might be that of figure (12(b)). This cor-
BE=O =1, nFE=O = 0, and again Tr(él)F—= 1. The hypo-
thetical corrections to our approximation gave a small, non-zero

proximation we have n
correctly. As a result of small errors in any approxi-
responds to n

energy to one boson and therefore (by supersymmetry) also to one

fermion. The original épproximation gave nBE=O and nFE=O incorrectly,
but it gave Tr(—l)F correctly, essentiglly because the extra boson at

E = 0 has no potential fermion partner and so no way to get E # O.

Let me now explain the caltulation of Tr(--l)F in a simple model.

" I will consider the Wess-Zumino model, which wé have discussed
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Figure 12

earlier. This model contains a single complex field ¢ (and fermi

partner ) with

N

2

V() = g |¢?

a 2
- Hfl
g

. . - a
(There also is a Yukawa coupling, LYuk g o wa ¥" + h.c.). At the

(34)

tree level ¢ and ¥ are massive, their masses being equal to a, in
lowest order. Supersymmetry is unbroken at the tree level since
V=0 at ¢ = ta/g. Because of the non-renormalization theorems that
we discussed yesterday, it is known that supersymmetry is unbroken
to all finite orders of perturbation theory.l Let us now prove that
this is true independently of perturbation theory by showing that
r(-1F # o.

Actually, nothing could be easier. The potential has two minima,
at ¢ = *a/g. In each minimum of V, there is one zero energy state in

perturbation theory — the "vacuum'". It is a bosonic state, with
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zero angular momentum. Because ¢ and Y have non-zero mass, all
other states have (at least for weak coupling) a non-zero energy,
at least equal to the mass of the ¢ and ¥ particles. They do not
contribute to Tr(—l)F. Tr(—l)F receives one contribution from the
vacuum at ¢ = +a/g and one contribution from the vacuum at ¢ = -a/g.

Altogether Tr(--l)F = 2, so supersymmetry is unbroken.

Suppose instead that we wish to calculate Tr(—l)F in the mass-

less Wess-Zumino model — that is, with a 0 in (34). The potential

is now simply V(¢) = g2|¢]4.' Now m = m = 0, in perturbation theory.

¢ ¥

In addition to the "vacuum" (which now is a trickier concept), one
can have in perturbation theory states of approximately zero energy
by adding ¢ or ¥ quanta to the '"vacuum'" in momentum eigenstates of
B = 0. (Such states are normalizable in finite volume.) It is dif-
ficult to count these states because any number of ¢ particles may
have 3 = 0 and it is difficult — because of the non-linearity —

to know which of these states have E = 0 exactly, or to count them.

This makes it difficult to calculate Tr(—l)F.

The easiest way to calculate Tr(—l)F in the a = 0 mgdel is to
remember that Tr(—l)F is independent of a. So even if your interest
is a = 0, you can calculate Tr(—l)F by considering a to be non-zero
and large. This makes the calculation easy. So Tr(—l)F = 2. This
illustrates the utility of knowing Tr(—l)F to be independent of all

parameters.

Going back to the massive model, with a # 0, there actually is
a simpler argument to prove that supersymmetry is unbroken for small
enough g. For supersymmetry to be spontaneously broken,2 there
must be a massless Goldstone fermion. 1In this model, for a # 0 and
small enough g, the elementary fermion is certainly not massless.
Also, for small enough g the elementary ¢ and Y will certainly not

form massless bound states.
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So for small enough g, super-
symmetry must be unbroken, there
being no candidate Goldstone fer-
mion. However, one might have
believed that for large enough g
the fermion mass goes to zero and
supersymmetry is broken. Such
behavior is very common in the
case of global symmetries, but
the fact that Tr(-l)F = 2 shows
it cannot happen here — super-

symmetry is unbroken even for

strong coupling.

Also, the a = 0 model has a
massless fermion in perturbation

theory.

333

>4

Figure 13

What cannot happen in supersym-
metric theories: the fermion
becomes a Goldstone fermion for
large enough g,

Could not this particle become (at the non~perturbative

level, since it has been proved not to happen in perturbation theory)

a Goldstone fermion? The fact that Tr(-l)F =

not occur.

Now a few simple comments:

2 shows that this does

(1) 1f supers&mmetry is broken spontaneously at the tree level,

E=0 _

then at the tree level ng nF

states of any kind. So Tr(—l)F =0

E=0

= 0, there being no zero energy

(2) 1f Tr(—l)F # O supersymmetry is definitely unbroken. But

if Tr(—l)F=0 we do not know. We may have n =n =

supersymmetry broken, but we may equally well have n =

and supersymmetry unbroken.

E=0 B0 _ 0 .nd

B nFE=O #0,

B F E=0

(3) As in the a # 0 Wess-Zumino model, it is easy to calculate

F
Tr(-1) in any model where supersymmetry is unbroken at the tree

level and all particles have mass.

It is easy because, there being
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no massless particles, only the "vacuum states" have E = O in per-
turbation theory. The vacuum states are all (spin zero) bosons so
Tr(-—l)F is equal to the number of zeros of the classical potential
(there are some since supersymmetry is assumed unbroken at the tree
level). So in all theories with no massless particles at- the tree
level, Tr(—l)F is positive, and supersymmetry is not spontaneously

broken.

Finally, let us discuss a case in which these methods really
yield interesting results — supersymmetric non-Abelian gauge theo-
ries. In the simplest such theory, the oﬁly fields are the gauge
field Ai and its partner, the fermi field wz, also in the adjoint
representation of the gauge group. The Lagrangian is

L= - % (Fi\))2 TS N (35)

The easiest way to show that this is a supersytmmetric theory is té
show that the supersymmetry current

_ aBa a
S_u = 9,8 F Y, ¥ - (36)

is conserved. This is readily demonstrated, with the aid of some

Dirac algebra and the use of fermi statistics.

This theory is tricky to deal with because of the zero momentum

modes of the massless particles.

The main problem is the gauge field. Only a finite number of
; = 0 fermions can fit in the box, and we could count those states.

But the ; = 0 mode of the gauge field is a problem.

In infinite volume the 3 = 0 mode of the gauge field can gauged
away. If Au = Cu (the CU being constants), then Au = 3u€, with
€ =Cuxu. Here the constant can't be gauge away because the gauge

parameter £ isn't periodic.
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More generally, the guage invariant
Tr P exp 1 gf A11 dx11 37

for a contour (figure (14)) that runs "around the box" is different
at A = constant from its value at A = 0, proving that the zero

momentum mode can't be gauge away.

It is possible to come to grips with this problem,12 but in the
case of the gauge group SU(N), there is a much simpler approach.
One can choose boundary conditions that the zero momentum mode does
not satisfy. Such boundary conditions are the 'twisted boundary
conditions" of 't I—Iooft.l3 In a special case that is general enough
for our purposes, the twisted boundary conditions, in a box of length

L, mean that

1

P¢ (x+L,y,z) P
Q@ (oy+l,z) Q7
¢ (x,y,z+L) (38)

6(x,y,2)

~

where ¢ may be Au or Y. For
P=Q = 1 this would describe con--

ventional periodic boundary condi~

tions. 'T Hooft instead requires

P and Q to be constant matrices

that obey fYYJW ™

PQ = QP exp 2ri/N ' (39) 4

Explicit matrices P and Q that

obey (39) are easily found. For

instance, we may take Figure 14

ey
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is
216

e(N--l)iG

(40)
where § = 27/N, and o and B are constants chosen to ensure det P =

det Q = 1.

We are entitled to adopt the twisted boundary conditions be-
cause, in the large volume limit, the physics is expected to be
independent of the boundary conditions. If we can show that, with
twisted boundary conditions, the ground state energy vanishes for
any value of the volume, then, in the large volume limit, the energy
vanishes, and supersymmetry is unbroken, for any choice .of the

boundary conditioms.

Accoarding to 't Hooft, the theory formulated as in (38) des-
cribes a world with '"one unit of magnetic flux:in the z direction."
The motivation for that terminology is not essential for our pur-
poses. For our purposes the key point is that the twisted boundary
conditions eliminate the ; = 0 mode. It just doesn't satisfy the

boundary condition.

The zero momentum mode ¢O of a field ¢ that satisfies (38)

would have to obey

6 =P ¢ PrT=-q¢ Qt (41)

(o}

It is easy to see that for ¢o in the Lie algebra of SU(N), (41)
requires ¢, = 0. (To commute with Q, ¢, must be diagonal. But a
traceless, diagonal matrix that commutes with P must vanish.) There-

fore, the twisted boundary conditions remove the zero momentum mode.

t
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With this accomplished, evaluating Tr(—l)F is as easy as in the
Wess-Zumino model. Only the "vacuum states'" have E = 0. Other
states have energy at least equal to the lowest allowed momentum for

modes of ron-zero momentum in the box of length L.

One .can expand .around Ai = 0; this "vacuum" contributes one to
Tr(—l)F. There are other vacuum states that can be obtained from
A2 =0 by topologically non-trivial gauge transformations. 1In a
wgrld defined by a given value of the vacuum angle © th?re are still
N sectors of configurations of Fiv = 0 (they are created from Ai =0
by the gauge transformations which, according to 't Hooft, measure
the electric flux in the z direction). So altogether, for SU(N),

Tr(—l)F = N, and supersymmetry is not spéntaneously broken.

Twisted boundary conditions may be introduced for any group
whicb has a non-trivial center. However, for groups other than SU(N),
the twisted boundary conditions are not very useful in calculating
Tr(—l)F. The problem is that, for other groups, the twisted bound-
ary conditiong do not eliminate the zero momentum mode because the

condition analogous to (41) does not imply ¢o = 0.

However, it is possible to calculate Tr(—l)F with untwisted
boundary conditions, by quantizing the zero momentum modes in a
Born-Oppenheimer approximation. One finds12 that for a simple non-
Abelian Lie group of rank r, Tr(—l)F = r+l1. Thus, spontaneous super-

symmetry breaking does not occur in these theories.

What hapbens if additional matter fields are added? If the ad-
ditional fields are in a real representation 6f the gauge~group, bare
masses m; are possible for all of the matter fields. In this case
all states containing the new quanta have non-zero energy, equal to
or greater than the smallest of the m; . The new fields do not con-
tribute to Tr(—l)F. So supersymmetry is unbroken, just as if the

new fields were not present.
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This argument shows that the ground state energy is zero for any
non-zero values of the m, . Taking now the limit as m; > 0, the ground
state energy must remain zero. Theonly assumption needed here is that
the zero mass limit should exist. We conclude that supersymmetry is
unbroken for a theory with massless charged matter fields, as long as
they lie in a representation of the gauge group such that they could

have had bare masses.

In the very interesting case of theories with massless fields
in a complex representation of the gauge group — so that gauge in-
variant bare masses are impossible — I do not know how to calculate
Tr(—l)F. For reasons explained elsewhere,12 there are difficulties

even in formulating the prablem.

I should also mention that for a theory with gauge group U(1),
Tr(—l)F = 0, as long as all charged fields have or could have had
bare masses. It is nonetheless possible to prove by a variant of
the concept of Tr(-—l)F that dynamical supersymmetry breaking Yoes
not occur in any U(l) gauge theory in which the Hamiltonian commutes
with charge conjugation invariance (or in which charge conjugation
invariance is broken only by Yukawa couplings, and not by the gauge

couplings or the Fayet-Iliopoulos D term).

Likewise, in a theory with a simple gauge group that is spon-
taneously broken at the tree level to a subgroup such as SU(3) x

SU(2) x U(l) that contains a U(l) factor, Tr(—l)F = Q.

Clearly, these results impose significant restrictions on the
possibility of supersymmetry breaking by strong gauge forces. How-
’ever, loopholes remain, such as the question of matter fields in a
complex represemtation of the gauge group. It also remains for the
future to determine whether these methods can shed light on the
apparent difficulties in 3+1 dimensions in supersymmetry breaking by

instantons.
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V. ANOTHER ,APPROACH TO MASS HIERARCHIES

In this last lecture I would like to describe a different ap-

proach to the gauge hierarchy problem.

It is usually assumed, in thinking about the hierarchy prqglem,
that the "large" masses (the mass scale of grand unification a;d the.
Planck mass) are the fundamental ones. The problem then is to ex—
plain why the "small" masses (the masses of ordinary particle physics)
are so small. One may seek to explain this by finding a non-pertur-
bative mechanism that generates tiny masses. It was this possibility
that motivated the discussion of dynamical supersymmetry breaking in

the last few lectures.

Another possibility is to assume that the small masses are the
fundamental ones. One must then explain why the large masses are so

large.

.

This apprqach was actually followed by Dirac7 in his original
approach to the problem of the large numbers. Dirac assumed that

the elect}on and proton masses were the basic ones. To account for
the fact that the Planck mass is enormously larger, Dirac postulated
that the Planck mass' is not constant in time but increases in time as
the universe grows older. The enormous present value of the Planck
mass was thus attribated by Dirac to the fact that (in elementary
partfcle units) the pr;sent universe is extremely old. Unfortunate-
ly, this beautiful idea has some serious empirical difficulties,

which I will mention later.

Today I will be describing a class of supersymmetric theories14
which spontaneously generate a mass scale vastly larger than the
mass scale postulated in the Lagrangian. 1In these theories it is
conceivable that the fundamental mass scale of nature could be com—
parable to the mass scale of the Weinberg-Salam model. All larger

masses would be dynamically generated. As we will see, these
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theories have something in common with Dirac's approach, and we can,
but need not, retrieve Dirac's idea that the "constants'" of nature

are slowly varying functions of time.

In our previous discussions we emphasized dynamical (non-per-
turbative) symmetry breaking. WNow, however, we will consider theo-
ries in which supersymmetry is spontaneously broken at the tree
level (classically). There will be no mystery about supersymmetry
breaking; we will simply choose a scalar potential,whose minimum is
not invariant under supersymmetry. The problem will be to extract

the consequences of supersymmetry breaking.

To understand the idea, let us consider one of the simplest
models with supersymmetry spontaneously broken at the tree level —
the 0'Raifeartaigh model. As we discussed before, in this model
there are three complex fields A, X, and Y of spin zero. The super—
space potential is W(A,X,Y) = AX(Az—MZ) + g Y A, and the ordinary
potential energy is V(A,X,Y) = |aw/aA|2 + ]aw/ax|2 + |aw/aY|2 or

V(A,X,Y) = A2 |A2—M2| + g2 ]Al2 + |2x AX + ngz . (42)

This potential is strictly positive, so supersymmetry is spontaneously

broken.

We determine A by minimizing the first two terms. For (g/AM)2>2
one finds A = 0; for (g/AM)2<2 one finds A=Vg - g2/4A2. Supersym-
metry is spontaneously broken in either case.

a
-

Although minimization of the potential determines A, it does not
determine X and Y uniquely. Since the only term in the potential that

depends on X and Y is IZA AX+g Y|2, we can choose any X, as long as
Y=-2XAX/g (43)

Classically, X may be arbitrarily large; the energy is minimized as

long as (43) is satisfied.
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This degeneracy is not a property of this one model alomne.
Such degeneracies occur in many models in which supersymmetry is
gpontaneously broken at the tree level. )

Although the energy is independent of X, the particle masses
are not. A glance at (42) shows that for X >> M the mass of the A
particle is approximately 2)3X. If X >> M, the theory has at least
two different energy scales. The small scale is the mass M in the
Lagrangian. The large scale is the vacuum expectationiValue of X,
which is undetermined by the classical Lagrangian. In an extended
version of this model, we may try to interpret these as the scales

of weak interactions and of grand unification, respectively.

However, we should not arbitrarily assume X >> M. We should
determine X by calculating quantum corrections that remove the clas-

sical degeneracy.

Let us recall how this goes.15 For bosons, the zero point
energy per unit volume is positive and has the form
3
1 _1 ok fr 0
st Jo, =5n ] [ 3 + M (%) : (44)
i (2m

‘The sum on the right-hand side of (44) is a sum over the spin states

of the various bosons; the Mi are the masses of the bosons, which
depend on X. For fermions we have instead the negative energy from

filling the Dirac sea. It is

3
1 d’k 2 .
- —h - k + M% (X
5 JZ..I(Z-]T)B i ) (45)

where now the sum runs over the fermion spin states.

If supersymmetry is unbroken at the tree level, the bosons and
fermions have the same masses. Then (44) and (45) cancel. This is
an illustration of the "non-renormalization" theorems: the ground
state energy is zero to all finite orders if it is zero classically.

We are, however, interested in cases in which supersymmetry is
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spontaneously broken at the tree level; the integrals do not cancel.

Both integrals (44) and (45) are quartically divergent. The
quartic divergence cancels because the bosons and fermions have the
same number of spin states. The quadratic divergence cancels be-
cause of a sum rule of supersymmetric theories. Finally, the logar-
ithmic. divergence is removed by the renormalization counterterms that

make the Green's functions finite.

After renormalization, and after doing the integrals, the final,

finite expression for the O(h) corrections to the energy is

W =h ] D v (0% 1n (46)

“2 i 2 ~

F . ¢
where (~1) is plus one for bosons, and minus one for fermions, and

where u is a renormalization mass.

Equation (46) shows that for large X, the main contribution to
AV comes from the particles-that become heavy as X + », namely A and
its supersymmetric partner wA' It is not difficlut to evaluatektheir
contribution.” Assuming for $implicity that g/AM >> 1, the potential
to this order, including the lowest order result and the one loop
correction, is
4 Az 2,2 2
M (1 +——3— In [X][“/w) + o(1/]%]%) (47)
8n
. . . 16
This result was first derived by Hug.

V(X) = 22

The logarithmic correction in (47) is characteristic of renor-
malizable theories. 1Its positive coefficient means that X cannot
become large — the energy increases with [XI. This model develops
ne;big mass hierarchy from a spontaneous large vacuym expectation

value.

The logarithmic equation (47) always arises, and always has a

positive coefficient, in theories of particles of spins 0 and %-only.
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This fact has a simple renormalization group interpretation. The

logarithm in equation (47) can be understood as a replacement of the

bare coupling Az with an effective coupling XZ(X) =

A1+ s
87 1

tive because theories of spin 0 and spin 5 fields only are not

1n |X|2/M2). The coefficient of the logarithm is posi-

asymptotically free. The effective coupling A(X) increases with X.
»

i
As this reasoning suggests, a different result can be obtained
by enlarging the O'Raifeartaigh model to include non-Abelian gauge
fields. 1 first wish to discuss this in a qualitative way. In a
gauge invariant generalization of the O'Raifeartaigh model, the one

loop corrections have the form

v = ax? u* (1 + 1A% - ce?) 1n |x|%nd) (48)
where A is a scalar coupling, e is the gauge coupling, and a, b, and

c are positive constants, of order one.

.

We see that if bk2 - ce2 < 0, a runaway behavior occurs. It is

favorable for X to become large since the potential is a decreasing
function of X (figure (15)). 1In
fact, (48) seems to show that the
potential V becomes negative as
X + =, This is impossible; in
supersymmetric theories V(X) > 0

for all X. The fact that (48)

&

becomes negative for very large X
just means that, as one might ex-
pect, perturbation theory breaks

down when e’ 1n IXIZ/M2 "ol

[ log X

Figure 15

The classical potential (dotted
line) and effective potential
(solid line). The horizontal
scale is logarithmic.
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What happens for very large |X| when perturbation theory breaks
down? One possibility is that for very large |X|} the potential
eventually ceases to decrease and begins increasing (figure (16a)).
The potential would thus have a stable minimum at e2 1n |X]/M AV
or equivalently at X v M exp +-%. The theory would have at least
two vastly different mass scales, M and X. As mentioned earlier,
one might try to interpret these as the mass scales of weak inter—

actions and of grand unification, respectively. .

Another possibility is that the potential might decrease in-
definitely as X becomes larger. Since V is bounded below by zero,
it would have to approach a limit for large X (figure (16b)); the
limit could be positive or zero. As we will discuss later, this cor-

<,

responds to a theory in which, as envisaged by Dirac, the constants

of nature are slowly changing functions of time. In most of this

talk, we will assume that the potential has a stable minimum at

large X.
v . v '
|
log X log X
< (a) (b)
» . Figure 16

The potential may devélop a stable minimum for very large X or may
decrease indefinitely ((a) and (b) respectively). The horizontal
scale is again logarithmic.
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 More complicated possibilities can also be imagined. Conceiv-
ably, in some theories the potential has an oscillatory dependence
on X for large X.

It is possible to use the renormalization group to improve upon
the one loop approximation of equation (48). 1In this way one can,
to a large extent, decide between the various possibilities just
described. One finds that the behavior of figure (1l6a) and also

that of figure (16b) occur in a significant class of examples.

I will now describe a simple model14 which exhibits such run-
away behavior. Let us consider an SU(5) theory with two complex
fields A'j and Ylj in the adjoint representation of SU(5) and one

singlet X. The superspace potential we choose to be
W(A,X,Y) = A Tr A°Y + gX (Tr a>2) (49)

This is the most general choice of W compatible with certain global

symmetries, analogous to those of O'Raifeartaigh model.

Supersymmetry is spontaneously broken because the equations
BW/aX'=Y0 and aW/aYlj = 0 are inconsistent. As in the O'Raifeartaigh
model, minimization of the potential uniquely determines A. One

finds

A = —8H8 2 (50)

However, X is once again undetermined at the tree level. One may

choose any X as long as
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v-£x 2 (51)

If X becomes large, the large expectation value of Y will strongly
break SU(5) down to SU(3) x SU(2) x U(1).

To determine X, we perform a one loop calculation. This cal-
culation is again dominated by the particles whose masses are, for
large X, proportional to X. With the one loop correction included,

we find

IS

2 2 2
VE® =V (1 E 293 =50e_ 4 1|2y + o(1/|x]%)

2
(52)

g 2" /30 80m

-

where Vo is the lowest order potential. We see that X will become

large if 29>\2 - 508 < 0. )

This theory has two mass scales. The mass scale of SU(5) break-
»ing is of order X because of the large vacuum expectation value of-Y.
However, supersymmetry is broken only at a mass of order M. 1In fact,
only <A> violates supersymmetry and the ground state energ& is of
order MA. Perhaps the large ratio X/M is related to the "big numbers"

of physics.

Although we have obtained a hierarchy of symmetry breaking at
vastly different mass scales, we have not yet addressed the original
&
hierarchy problem. We wish SU(2) x U(1l) symmetry breaking to occur

as part of the low energy symmetry breaking.

To allow for this, we must include additional fields. A simple
approach is to add an extra singlet Z and fields ¢ and Dj in the .5
and 5 representation of SU(5). To the superspace potential we add

a new term
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M =gz (Ch D, - ) +aaly oI D, (53)

-

We assume that M is of order M. Minimization of the potential forces
C and D to obtain vacuum expectation values, spontaneously breaking

SU(2) x U(1l) down to U(l).

In this model, SU(5) is broken to SU(3) x SU(2) x U(l) at the
energy scale X, but supersymmetry is broken, and SU(2) x U(l) is
broken down to U(l), at the far lower scale M. We thus obt;in the
desired pattern of symmetry breaking.' However, there are some severe

difficulties.

Perhaps the most severe difficulty is related to the fact that
the color triplet components of Ci and Dj are relatively "light'',
with masses of order M. After introducing quarks and leptons in the
model, we must couple the SU(2) x U(1l) doublet components of C and D
to the quarks and leptons, in order to account for their bare masses.
However, SU(5) then requires that we also couple the color triplet
components of C and D to the quarks and leptons. Unfortunately,
these color triplets then mediate a very rapid decay of the proton,

the lifetime being a small fraction of a second.

This particular problem can be avoided if we replace the rtoup-
ling Aij Cj Di in equation (53) with a term Yij Cj Di. In this case,
for reasons explained in reference (14), the color triplet components
of C and D automatically become superheavy without any special ad-
justment of paraheters. We can now couple C and D to quarks and
leptons, so as to account for the quark and lepton masses, without

inducing a rapid proton decay.

Unfortunately,14 the new coupling also modifies the pattern of
symmetry breaking. The vacuum expectation value of Y is changed.
We now find that SU(5) is strongly broken down to SU(3) x U(l) x U(l)
at the large mass scale X; SU(3) x U(1) x U(l) is then broken to

SU(3) x U(l) at energies of order M. In this model the neutral
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currents have roughly the strength that they actually have in nature,

but the charged currents are greatly suppressed.

It is difficult to simultaneously obtain the right pattern of
symmetry breaking and a suitably long proton lifetime. Recently,
Georgi has described18 an attempt to do this, based on a model with

fields Ylgl in the 75 dimensional representation of SU(5).

There is another crucial fact which must be borne in mind in
thinking about the phenomenology of these models. It turns out that
in the models as I have written them, the Goldstone fermion decouyles
in the limit as X becomes very large.* This %eans that although
supersymmetry is broken, the bosons and fermions are degenerate to
within terms of much less than M. (Clearly, this is a very unaccept~
able state of affairs if M is interpreted as the mass scale of weak

interactions.

It is possible to avoid this decoupling of the Goldstone fermion,
and obtain models with base-fermi splittings that really are of order
M, by adding additional fields. However, the resulting models seem

somewhat contrived.

It is equally interesting to explore the physical content of
our models such as (49) more carefully, bearing in mind the decoup-
ling of the Goldstone fermion. A more careful study of the model
based on equation (49) shows that, at the tree level, many particles
have masses much less than M. The SU(3) x SU(2) x U(1l) gauge mesons
and their fermionic partners are massless at the tree level. All
components of Y except the component with a vacuum expectation value
have masses of order M2/X. (As X becomes large, A becomes heavy and
decouples; as A decouples, Y becomes massless.) One would naively

expect that these light particles would receive masses of order aM

*
I wish to thank T. Banks for convincing me of this.

-~
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or perhaps aZM from one or two loop diagrams. Because of the de-
coupling of the Goldstone fermion and the non-renermalization theo-
rems of unbroken supersymmetry, this is not true. The particles
whose masses are of order M2/X or less at the tree level receive mass

corrections at most of order aMz/X from the loop diagrams.

These theories thus have three mass scales, X, M, and MZ/X, if
we do not attempt to tamper with the decoupling of the Goldstone
fermion that occurs for large X in the simplest models. The fascinat-
ing possibility exists that it is the smallest of these scales, the
scale MZ/X, which is the mass scale of particle physics as we know it.
One reason that this possibility is interesting is that at energies
of order M2/X, supersymmetry appears to be explicitly (but softly)
broken. To write an effective Lagrangian describing this system in

which the supersymmetry is spontaneously broken, one must re-introduce

some of the degrees of freedom with masses of order M.

O0f course, soft, explicit breaking of supersymmetry greatly
weakens the constraints associated with supersymmetry and thereby
alleviates the problems in finding a realistic model. The question
of fin&ing a realistic model in which the mass scale of weak inter-
actions is the smallest scale, MZ/X, is therefore very much worthy
of attention. I will return to this matter elsewhere.19 One must,
of course, decide on an appropriate identification of X and M.
Plausibly, in this approach, X mlght be of order the Planck mass;

M would then have to be about lO GeV.

-

Let us now conclude by discussing a few general questions.

In a theory in which the fundamental mass scale of nature is
relatively "small” and the mass of grand unification is a derived
quantity, we do not wish to assume that the Planck mass MPl is a
fundamental constant of nature. If it is, we are left with the large
and unexplained ratio MPl/M. Rather, we should assume that the large

value of the Planck mass is spontaneously generated along with the
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large value of the mass scale of grand unification.

This possibility is not as bizarre as it might sound. The
usual kinetic energy of the gravitational field is MiyR, Mo being
the bare Planck mass and R the Ricei scalar. Another possible coup-
ling is the dimension four Brans-Dicke coupling |X| R, X being the
scalar field that will eventually obtain a large vacuum expectation
value. (Such couplings actually arise almost inevitably when theo-
ries of global supersymmetry are coupled taq gravity.) We thus
imagine the grawitational action to be

2 2 1,12
VZGrav = M R+ A |x]“ R (54)

where A is a constant of order one.
2 2 2 2
Clearly, the observed Planck mass would be MPl = Mo + A ]X| .

For large X, the Planck mass is simply AX, unrelated to the original

constant Mo'

Let us now return to the' question of how the effective potential
behaves when X becomes very large. As we discussed earlier, while it
is possible that a stable minimum develops for large X, it is equally
possible that the potential dJecreases indefinitely with increasing X,

as in figure (16b).

This possibility corresponds to a world without a stable vacuum.
However, it is possible to expand.about a 'cosmological solution" in
which X is regarded as a function of time. For large times, X would
change very slowly, because the potential (being bounded below) is

nearly independent of X for large X.

For instance, if V(X) ~ lX|—p for some p, then, by solving the

cosmological equations (with the gravitational action taking the: form

(54)), it is easy to show that for large t, X v t2/(2+p)'
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Since the masses and couplings of the elementary particles
depend on X, this corresponds to Dirac's idea that the "constants"
of nature are slowly evolving functions of time. For instance,
Newton's constant G = 1/MP12 scales with X as 1/X2, because M . n X.

~4/(2+p) pl

So Gt t being the age of the universe. This may be, eom—

pared to the behavior G ~ 1/t which Dirac advocated in order to ac—_

i
count for the value of G in today's universe.

Present day experiments aimed at measuring G/G are not yet sen-—
sitive enough to confirm or refute Dirac's suggestion. However,
there are two good reasons to doubt that G is changing at this rate.
First, if G scales like a power of t, then G was vastly larger in
the early universe. This would ruin the 5successful calculations of
nucleosynthesis in the big bang. Second, the measurements of &/

(a is the ordinary fiide structure contant, o = e2/hc), are far more
accurate than the measurements of G/G. (A recent review has been
given by Dyson.zo) A change iﬁ X would produce a change in o through
renpfmalization éffects,lz+ at a rate which is ruled out by experiment
if X is changing as rapidly as Dirac's approach to the hierarchy prob-

lem would require.

It is theréfore most prudent -to assume that the potential energy

V(X) has a stable minimum at some large but finite X.

All of this, however, requires a note of caution. In particle
physics discussions we usually ignore gravity. We argue that the
Planck mass is larger than other masses of interest; but the real
réason for ignoring gravity is, of course, that we simply do not know
how to take gravitational effects into account. In the approach I
have been discussing, it is not at all clear that it is valid to neg-
lect gravity. As I have explained, in this approach the 'bare"
Planck mass should probably be of order M, the fundamental mass scale
of the theory. The observed Planck mass is then larger in today's

universe because of a sort of renormalization effect — the large,
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spontaneously generated expectation value of X. But the mass scale
of grand unification is also determined by X, in this approach. So
when we discuss grand unification we are really working at energies
above the underlying energy scale of gravitation. It is not at all
clear that it is sensible, under these conditions, to assume that

gravity is a small effect. However, for the time being, it is the

best that we can do.

Finally, I would like to draw attention to a possible consequence

of this framework.

As I have mentioned, in the simplest méﬁels of this type, there
are many particles with masses of order M2/X — so many that one may
wish to interpret M2/X as the mass scale of particle physics as we

know it. I believe that this is the most promising approach.

However, there is another approach, which in fact was the first
possibility raised at the beginning of this lecture (and suggested
in reference (14)). In variants of these models, arranged so~that
the Goldstone fermion does not decouple as X becomes largg, almost
all of the particles have masses of order M, perhaps multiplied by a
small power of the fine structure constant a. In this case, it is
plausible to assume that the fundamental mass scale M of the theory
is not too much larger than the mass scale of the Weinberé—Salam

theory.

But there is one particle whose mass is always in the range M2/X.
This is the X particle itself. Indeed, the effective potential de-
pends on X only very weakly. It has the general form

v = ¥ F (@ 1n |X[2/M) (55)

where F is a dimensionless function of the dimensionless variable
o 1n IX[Z/M2 which arises in loop diagrams. To one loop order, F is’
given (in a particular model) in equation (52).
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Taking the second derivative of (55) with respect to X, we see
that the mass of the X particle is of order aM /X. 1If M /X is the
mass scale of weak interactions, this is not remarkably small, and
the very weak couplings of the X particle (diseussed below) would
render it unobservable. However, if the fundamental mass scale M
is idéntified as the scale of weak interactions, then the X particle
is extremely light, so light that its Compton wave-length AX is mac-

roscopic. ‘For 10 15 GeV < X < 10 19 GeV we would expect lO2 cm > AX

> 10—3 cm. o~

The X particle is a scalar and can have coherent couplings to
matter. Actually, at the tree level, X does not couple to ordinary,
lngt particles. X has such a large expectation value that anything
that couples to X at the tree level is not lighe! However, coherent
couplings of X to matter are generated by loop diagrams. The most
important effect is a coupling of X to gluons, induced by a diagram
containing heavy, color-bearing particles (figure (17)). This diag-
ram induces a coupling of X to

— Tr F Fuv, where Fuv is the

<x> Ry

gluon field strength. As

a Tr F Fuv is essentially the
s uv

trace of the energy momentum ten—

sor in QCD, whose matrix element

in a nucleon state is the nucleon

mass my, We see that the coupling ;".____
of X to a nucleon is of order

mN/<X>. w

Figure 17
This may be compared to the

gravitational coupling, which in-
volves mN/MPl' We see that if
<X> ~n MPl’ the new force is com-
parable to gravitation, at dis-

tances less than AX. If <X>'\:lO15
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GeV the force due to X exchange may be lO8 times stronger than
3

gravity at distances less than Ax ~ 1077 cm!

New, coherent, short-range forces have been suggested in the
recent past, on several different grounds.21 Laboratory measure-
ments of gravity at short distances place interesting bounds22 but
certainly do not exclude the possibility of such a new force. For
instance, neither these experiments nor measurements, of the Casimir
effect23rule out the possible existence of a new force lO8 times

. . -3
stronger than gravity at a distance of 10 cm.

These comments really refer to the magnitude of the X field.
It may be shown that the phase of the X field behaves rather like a
Peccei-Quinn-Weinberg-Wilczek axion, even if there is no underlying

U(1l) axial symmetry.

A previous version of these lectures was given at the Inter-
national Center for Theoretical Physics July, 1981. Sections 7Y and
IV of these notes are adapted from notes circqulated there. I would
like to acknowledge the hospitality of the ICTP as well as that, of

the school on sub-nuclear physics at Erice.
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