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! HOLOMORPHIC MORSE INEQUALITIES -

Edward Witten

Given a holomorphic vector field V on a compact complex manifold M,
the Atiyah-Bott holamorphic Lefschetz formula expresses the Chern nunbers of
M in terms of the zeros of V. In this article, it is shown that if M is a
Kahler manifold and V generates an isametry of M, the holamorphic Lefschetz
formula can be generalized to a system of inequalities, analogous to the

’

Morse inequalities for real manifolds.

The celebrated Morse inequalities bound the cohomology of a manifold
in terms of the critical points of an arbitrary smooth function h. Thus,

let N be a compact oriented manifold of dimension n. Let Bk be the kth

Betti number of N. Let Mk be the kth Morse number of the function h — that
is, the number of critical points that are unstable in k directions. Let t
be an arbitrary real number. Then the Morse inequalities assert that

n n—-1 -
K= B tF+ (14r) I thr‘
k=0

o
M
k=c;k

k=0

X (1N

where the Qk are non-negative integers that depend on h.
We could instead consider the Morse Eunction -h. 'This changes the
sign of the Hessian at each critical point, so it exchanges Mk with Mn—k'

The result gained by applying (1) to the Morse function -h is

. N k n x n=1 x”
kzo M, b= kzo B, £+ (14t) kzo 0 t (2)
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and this is precisely what we could have learned by-supplementing (1) by
Pbi'ncaré duality (13k = Bn—k) and replaéing t with 1/¢.
In the’speciai case t = -1, the Morse inequalities give a formula

n

n
] kM = § -n%B (3)
k=0 k k=0 k

for the Euler characteristic of the manifold M. This formula is essentially
a special case of Hopf's trEeorem expressing the Buler characteristic of N in
terms of the zeros of an arbitrary vector field. (Introducing an arbitrary
Riemannian metric Y on M, the zeros of the "gradient" vector field Wi =

T"j —hj- are the critical points of h; and for a critical point of Morse
3

index k, the corresponding zero of W has index (—1)k.)

Hopf's theorem has a generalization to complex manifolds — the
Atiyah-Bott fixed point theorem! or holomorphic Lefschetz formula. Let M be
a compact complex manifold of complex dimension n, and let V be a holomor-
phic vector field. Let E be a holomorphic vector bundle over M, such that
the action of V on M.can be lifted to a holomorphic action on E. ILet 1 be
the kD 5 cohomology group of M, with coefficients in E.

In this situation, the action of V on E induces a linear transforma—

tion on Hk Iat us denote this linear transformation as Sk and define Hk(e)

Although the holomorphic lefschetz formula does not require these
assumptions, let us, with later applications in mind, specialize to the case
that M is a Kahler manifold and V leaves invariant some Kahler metric on M.
V is then a generator of a compact isometry group. For siyplicity only
{this assumption will play no crucial role in what follows) let us assume
that V generates a U(1) action on M. Let us assume as well (the relaxing of
this assumption is discussed at the end of this paper) that the zeros of V

are isolated points pl...pq. Then near any zero pa, we have V =

n .

¥ Aia z —-?-I- with some non-zero integers 1? and lacal holomorphic coor-—
=1 3z

dinates z'. %

318



The action of V on E induces a linear transformation, which we will

call T., on the fiber E(p>) of E at p®. Iet E_(8) = Tr exp (i6T_).
a a E(Pa) -

And finally, define the "index" n® of the vector field V at pa to be the
number of 1? that are negative.

We can finally state the holomorphic Lefschetz formula:

’ . ‘—ix‘;‘e
L=n 2 E Q) Tg —_— *t;\” £ .0 H'(0)
a A.7>0 lkie li <0 -1Aie k
(4)
On the left-hand side of (4), the "holomorphic determinant” has been written
in a slightly unusual way that will be useful.

Now equation(4) is a sort of generalization to complex manifolds of
Hopf's formula for the Euler characteristic of a real manifold. and Hopf's
formula appears in Morse theory by setting t = -1 in the Morse inequalities.
Our goal in this article is to establish a system of inegualities which one
might think of as a holomorphic form of the Morse inequalities; the holcmor-
phic Lefschetz formula of equation (4) follows from the holomorphic Morse
inequalities by setting t = -1, just as (a special case of )Hopf's formula
follows from the usual Morse inequalities in this way. The inequalities
that we will establish requirk one assumption not yet stated --we must sup-
pose V does have at least one zéro.

The holomorphic Morse inequalities which will be established here

assert that

. a
i|x]e
ny '71’ 1 ’T‘T- e 1
I t Ea(e) a - | a . a
a A0, e A0 e1|A11e
=7 K 650 + (vt T 80 (o) (5)
K k k

where each function Qk(e) is positive in the sense that Qk has a Pourier

expansion
Qe = I g e™ 6)

T~

in which each coefficient Qe is a non-negative integer. (ka(e) will in
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general be singular at'6 = d As the discussion will make clear, the re-
sulting ambiquity in the Fbt_:rier-.expansion of Qk(G) is to be settled by
analytically continuing in © and writing an expansion that converges for
0 < |z| ’< ] where z = eie.)

Setting t = -1, the inequalities (5) reduce to the holomorphic
Lefschetz formula of equation (4). But there is one important difference
between the usual Morse inequalities and the holomorphic ones. While in
many important cases, the usual Morse inequalities are exact and the Qk@f
equation (1} vanish, this never occurs in the holomorphic case. On the
contrary, there are always an infinite number of non-zero ka in equation
(6).

To obtain strong information in the holomorphic case, we must supple-
ment equation {5) with additional information that can be obtained by
considering the vector field -V instead of V. Replacing V by -V, all of th
Aia change sign; if one also substitutes 8 + -8 the inequality (5) for the

vector field -V is

!
—11.9 %
n—-na —’ I e 1 l I 1
It E_(8) —_ —_—
a A; %0 -ixfe a,%0 -i|af]e
1-e 1-e
= }Z(tk H (6) + (14t) }{( £ 8,.(0) (7)

where ch is again positive in the sense of equation (6) (one takes an expan—
sion of 'Qc that converges for |eie|>1). The relation between (7) and (5) is
like the relation between (2) and (1). (7) différs from (5) by Serre dual-
ity in the following sense. Let E be the dual bundle of E tensored with the
canonical line bundle of M. Replacing E by E in {5), using Serre duality,
and substituting t + 1/t, one arrives at (7).

As we will see, (5) and (7) taken together are very restrictive; we
will give some examples of "perfect vector fields" — examples in which (5)

and (7) are strong enough to determine the Hk(e) in terms of Ea(B) and the .

a

AL,
1

Now let K be the Kahler form of the Kahler manifold M. It is a closed
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. form of type (1,1). Let u'= iv~K-be the interior produgt of the holomorphic
vector field V with K. u is a form of type (0,1). Then 3n = 0 (since V is
holomorphic and K is closed}, and therefore at least locally we can write b
= 3¢ with some zero-form ¢.

In this article we will restrict ourselves to the case in which u =0
as an element of H9’1(M) so that u = 3¢ can be satisfied globally. This is
certainly true if the first Betti number of M is zero, for then HY’l(M) = O.

It is also true if V has at least one zero, for in this case the orbits
generated by the action of Von M (which are closed, since we assume V
generates a U{1) action) vanish in x!(M), and u vanishes in H! and in HO’L.

From the assumption that V generates an isometry of M, it follows that
¢ can be chosen to be real. For, if u* is the form of type (1,0) that is
conélex conjugate to u, the condition that V is an isometry is 3w + u* .= 0.
In terms of ¢ this means 33¢ + 33¢* = 0, so the imaginary part of ¢ obeys
99 Imé = 39 Im ¢ = 0. For compact M this means that Im¢ is a constant which
we can choose to be zero.

Let us think of the smooth, real-valued function ¢ as a Morse function
on M. 1Its critical points are precisely the zeros of V. ¢ is a non-

degenerate Morse function if and only if the zeros of V are isolated, and in

this case it is easy to see that ¢ is necessarily a perfect Morse function.

For, near an isolated zero pa where V can be written Vv = £ Al z* -—ii-
9z
i i

we have ¢ =1 A 2, The Morse index of ¢ at pa is twice the number or’

|z
negative A, since each zi corresponds to two real coordinates. Since the
Morse index of ¢ is even at each critical point, it follows, by the lacunary
principle of Morse theory, that ¢ is-a perfect Morse function — its Morse
indices give the Betti numbers exactly.

What we will now see is that ¢ also plays a role as a "holomorphic
Morse function.” BAs indicated earlier, we will discuss the 3 cohomology of
M with ocoefficients in an arbitrary holomorphic bundle E that admits the

action of V. Let E be the tensor product of E with the bundle of forms of
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type (0.q). We have the 3 operators .
7: 3. g )
and the oochamology group HY defined as a quotient

i ker (3: B3 1) (9)
~ im (3 : 977 » g9)

Now, by analogy with a recent discussion of the Morse inequalities,? intro-

duce an arbitrary real number s and define 55 : Ed » gT+! by

9y = (exp ~ 5¢4) 3 (exp s¢) [110)
We, also define the quotient space

N +1
ud =l-:er{'as‘:E:q+!:‘.q )

; (1)

im (5_: 6%+ &)

Since 5-,5 differs from 3 only by eonjugation.by the invertible operator
exp s¢, the information contained in Hqs is independent of s in the sense

that

# (o) = ™ g %V, (12)

is independent of s.

On the other hand, let us define

dg* = (exp op) 3* (exp -—sp)

=.-"'*_ 3 3 * ‘
As 95 35+35 as (13)

(The adjoint ?* is defined relative to a V-invariant Hermitian structure on
E.) If we let qu = ke;: (AS : 99 Eq) then it follows from standard argu-

ments (Jjust as at s = 0) that Hqs can be identified with qu. It follows,

then, that *
(e = ™ g el (14)

5

for any s.

Just as in reference (2), the utility of this fotmulation is that for

]

large s, the spectrum of AS simplifies considerably; it can be calculated

explicitly as an asymptotic series in powers of 1/s. By studying the large
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P
s behavior of A g¢ e will obtain the inequalities stated earlier i'(equations
(5) and (7)),

It is useful to work out a detailed formula for AL Let A= 23% 4
3%. let |V|? denote the norm of the vector field V, relative to the Kahler
metric. Iet :Cv be the infinitesimal generator of the action of V on E.
(If E is constructed from the tangent or cotangent bundle of M, then Ly may

be chosen to be the Lie derivative.) 7Then one easily calculates
b,=0+s2 |V2-sL +s¥ (15)

where  is an operator of degree zero (no derivatives), the details of which
depend on E and fv. By analogy with reference (2}, the basic idea in our
analysis will be that for s ®, the term s& [VIz in {15) forces the eigen-
functions of As with small eigenvalue to be concentrated near the zeros of
V.  The eigenvalue problem then simplifies and the spectrum can be obtained
as an asymptotic expansion in powers of 1/s. Our goal 1s to bound the co-
homology by counting the eigenvalues that wanish as s S,

However, the presence in (15) of a first order temm (s {v) causes a
subtlety that }am not arise in reference (2). Asactually has an infinite
number of eigenvalues that converge (exponentially fast) to zero as s o0,
Moreover, the convergence to the large s behavior is nonuniform in the
following sense. Although any given eigenfunction of AS becomes
concentrated near the zeros of V for large s, no macter how large s is,
there are eigenfunctions with small eigenvalue that are not oo'ncentrated
near the zeros of V. '

To proceed, we must note that because V is assumed to generate an

isometry, we have

(L] =0. (16)
We therefore may look for solutions of the joint eigenvalue problem

Lot = oy

a VY= Ay ' (7

Note that the eigenvalues of 'fv are integers, because we have assumed that

{V generates a circle action.

LY
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Our strategy will be to fix the integer n — the eigenvalue of rf v

and study the large s limit of AS. For fixed n, fv

integer n in (15), and the large s behavior of the resulting operator is

can be replaced by the

straightforward — analogous to the problems treated in reference {2). The
spectrum of A gt for fixed n and large s, can be worked cout by means of the
. Rayleigh-Schrodinger perturbation theory.® The low-lying eigenvalues are

uniformly concentrated near the zeros of V, and all but a finite number of

the eigenvalues diverge in proportion to s as s becomes large.

Let EX" be the subspace of i consisting of form ¢ such that Efvlp =
ny. Let a o be the number of eigenvalues of As’ restricted to EZ'", which
r
vanish in the limit of large s. We will determine a shortly. Let 1 (n)
[

be the Fourier coefficients of the quantity Hk(e) defined earlier. ‘'hus,

g0) = § & #*nm) . (18)
n

The Hk(n) are nomr-negative integers; Hk(n) is simply the number of zero
eigenvalues of 4 or A 5t restricted to EX/D,
Since the number of eigenvalues that are identically zero for any s

must be no bigger than the number of eigenvalues that vanish in the large s

limit, we have immediately the inequality \
a o B¥(n) (19)

This is analogous to the weak form of the Morse inequalities. But we can
assert a stronger inequality. The eigenfunctions that correspond to eigen—
values that do not diverge when s is increased form a model for 3 ocohamology
(in other words, since 58 commutes with A s the 58 oohamology is unchanged
if 3 is restricted to the low-lying eigenfunctions). Just as in conven—
tional Morse theory, we can deduce from this an inequality much stronger
than (19):

1 %y n e - ));lﬂk(n) £ = (14e) ! 9n e* (20)
Here the Qk,n are non-negative integers,
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Bguation (20) is precisely the result announced earlier (equations (5)
and (6))}, provided that we can show that
o, i3]0
tkema=):taEa(6)1‘E Ia ’r}; e
>0 ixje A %o iaf[s
1= 1 1o !

%,n

k'n a A]'.

(21)
'(The series on the left-hand side converges for |eie|<1.) Our next goal is,
therefore, to establish (21).
To understand how {2{) comes about, assume first that E is a trivial
line bundle, the complex manifold M is just the complex plane, and V =
Az :—z—. (In the following discussion, whenever E is trivial, we take afv to
be the Lie derivative on differential forms.) In this case, zéro eigen-

walues of As are either zero forms F(z,z*) with

(5%?4- siz) F{z,z*) = 0 ‘ (22)
or one fonrs'G(z,z*) dz* with ’

(- :_z + shz*) G(z,z*) (23)
The solutions of these equations are

Fm(z,z*) = " exp — {sizz*)

Gm(z,z*) dz* = z*™" dg* exp (sizz*) (24)

withm= 0,1,2,....
Now let us take s + +», (The result of s + -= is discussed later.)

In this case, if X > 0 only the zero forms are nommalizable. Since
% m m
‘v (z" exp — Aszz*) = mX (2 exp - Aszz*) m=0,1,2,... (25)

we have a, = 1forn=0.,2\... and zero ‘otherwise, while a = 0 for
”

1,n
P ’ ’
all n. On the other hand, if X < 0, only the tne forms are normdlizable, so

ao,n = 0 for all n. Since

Bev (dz* Z*" exp - Aszz*) -J\(mI-I)(dz*z*m exp - Aszz*) (26)

we have in this case a, n'= 1 for n = -1, -2\, =31, ... and zero otherwise.
r

So we 'find
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_— k _in® inA 1
- A>0: ¥ a £t e =] e = ——ay
k,n k/m n=o 1-e"
: - infA|
A0 §oa e oy | it b (27)
k,n 7 n=1 1-e

-
L

‘for the case where V gencrates a rotation of the complex plane.

Now suppose that E is still a trivial line bundle, but that M is ch
noo. . .
with Vv = } a gt -—a-l—. The eigenvalue problem for As trivially separates
i=1 9z
into n one dimensional problems, and t a o tk eme
r

mediately — it is just the product of the one dimensicnal formulae (27).

can be evaluated im-

If r is the number of negative A, we get

ilx.]e
J
4 e
k in8 _  r 1
]):cnak,nt e =t AI>IO %6 ll<[0 i, (28
’ i 1-e 3 1-~e J

Continuing to let E be a trivial line bundle, let us now choose M to
be an arbitrary compact Kahler manifold of complex dimension n. We assume
that V has isolated zeros pa, near any one of which V can be approximated,

n .
in some holomorphic coordinates, as v = ) '@ 21

—ai—. The eigenvalue
i=1 3z

problem for 4  now cannot be solved explicitly, but for large s the spectrum'
can be calculated in an asymptotic expansion in powers of 1/s. For large s, ’
there are low-lying eigenfunctions near any zero p” of V, and the leading
approximation to thed spectrum of A gt On eigenfunctions concentrated near

pa,, coincides with"the spectrum of the operator on C' that we discussed in

the previous paragraph. Including the contribution of each zero p® we

therefore get

i1, A
i|». %8

. n i
Z, ak 0 tk elne = I £
kn 77 a

(29)

where n? is the number of negative A?.

Finally, permitting E to be an arbitrary holomorphic bundle that
admits a holomorphic action of Vv, the contribution of each zero pa is just

’
multiplied by the function Ea(e) defined prior to equation (4). (Introduc-
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ing a non—trivial E does not ctiange the large s behavior of the spectrum
near pa, but it shifts the eigenvalues of Bﬁv, introducing a factor Ea(aj.)
We therefore obtain the desired result (21), and this completes the demon—-
stration of the holomorphic Morse inequalities (5).

As has been previously mentioned, there is a second inequality that
can be obtained in this way. It is equation (7). Eguation (7) can be ob-
tained by applying (5) to the tensor product of the dual bundle of E with
the canonical line bundle of M, and then using Serre duality. Alternative-
ly, (7) follows if one takes s + ==, (In this case, the unnormalizable
forms in (24) become normalizable, and vice-versa, and the subsequent
formulas are all modified, leading to equation (7).)

The remainder of this paper is devoted mainly to a few applications of
these inequalities. The first application is aimed to give some feeling for
the ocontent of the holomorphic inequalities. We will give an exanple of
what one might regard as the holomorphic analogue of a perfect Morse
functien.

Let M be CPl, and let V be the generator of one of the rotations of’
CP!. As we know, any such V has two zeros. Near one of them, which we
shall call P, we have V= + 2 _g-z_ with a suitable holomorphic coordinate z;
near the other zero, Q, we have V= - w -27 with a suitable w.

Now, let L be a line bundle over CP! which admits the action of V. Of

course we know what the possible line bundles are, but instead of using this

knowledge, let us see what can be learned just by use of the holomorphic
Morse inequalities.

Given that an action of V on L exists, an arbitrary additive constant
enters in defining this action. We are free to define the action of V so
that the action on the fiber of L at P is trivial, but then, fot given Ls
the action on the fiber at Q is uniquely determined. We thus assume that
ER(G) = 1, while E:Q(B) = eire, where r is an integer characteristic of L.
W& will see that the holomorphic Morse inequalities are strong enough to

determine the 3 cohamology of CP! with coefficients in L in terms of r. °

(]
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Lat us first consider equation (5). The contribution of P to the

left-hand side of (5) is 1/(1 - e'°) vhile the contribution of Q is °
RITRIL 8

t /(1 —¢e ). Soweget
1 t ei(r+1)6 0 !
- i + P HO(8) + t H1(8) + (1+t) Q(0) (30)

where Q(8) has a Fourier expansion with non-negative coefficients. In more

detail, (30) reads

v

¥ in® o ) eln? . ! (#%n) + £ Hi(n)) ein®
n=o n=r+1 n=-—=
e ind
+ (1+t) § g e™® (31)
n:-—m

Here the @7, H(n), and H!(n) are all non-negative integers.

To indicate the nature of the argument, let us first consider the
special case r » 0. In this case we immediately see from (31) that H%(n) =
H!(n) = 0 for n < 0, because of the positivity of Q" and the fact that the
coefficient of eine vanishes in the left of (31) for n < 0.

For n » 0 (31) is too weak to determine the Hk(n). To proceed, we
mist use inequality (7). Inequality (7) gives in this case

-i0 ire

+—S = = HO(8) + t HY(0) + (1+t) Q(O) (32)
1 ~e

where Q has non-negative Fourier coefficients or (expanding the left-hand
side in a series that converges for Iele| > 1)

-1

. r . . :
Z t eme + Z e=_~m9 = E Ho(n) eme + t ZHl(n) elne
n=—"s o
+ (140) T P N8 (33)

We now see that the coefficient of eirle on the left-hand side vanishes for
n>r, so%n) =8'(n) =0 if n> r.
For 0 €< n € r we see from either (31) or (33) that H! (n) = 0 because

for such values of n, the coefficient of t <=.~ma vanishes on the left of both

(31) and (33). We now know that H!(n) vanishes for all n, and we may invoke

what is essentially the lacunary pgi.nciple of Morse theory. Since, for 0 <
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. f
n < r, the coefficient of el on the left of (31) or (33) is independent of
}:,wenusthav\eqn-a’wOfor0<n<r. We can then read off from (31)

or (33) that H'(n) = 1 for 0 < n € r.

X
{ einﬁ
n=0
Hi(e) = 0 (34)

for v » 0. The same sort of reasoning determines HY(6) and H!(8) for other
values of r. For r = -1 we get HY(0) = H!(8) = 0, and for r < ~2 we get
HY(8) 0

-1
I einB (35)

=r+1

g (8) =

These conclusions are, of course, in agreement with known results. The

bundle L is necessarily the r:':h power of the Hopf bundle, and the above

results agree with standard determinations of the coharo?l.ogy of these line
bundles.

As a further application, let us see that we can partly retrieve a
theorem of Carrell and Liberman.“ Those authors proved the following. Let M
be a Kahler manifold, and suppose that on M there is a holomorphic vector
field V with only isolated zeros. Then the cohomclogy groups Hk"'“are Zero
for k # L.

Their proof does not reguire the assumption that V generates an
isometry of M. However, if we make this assumption, then thé vanishing of
gt for k # L follows from the holomorphic Morse inequalities, as we will
now see.

k.

is simply <he k3

Let us first prove that u% - 0 for x # 0. HO
ocohomology group of M with ooefficients in the trivial line bundle. So to
study H9'¥ we must set the functions E_(8) in equations (5) and {7) equal to
1. -

In equation (5), We now see that any term proportional to a non-zero

power of-t has a positive power of eie. For the mmerator of (5) contains
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sy @
) i|x.%le .
an explicit factor of e 1 fo‘r every negative A ia,‘ and at least one of

them must be negative to give aipositive power of t on the left side of (5).
(Recall that the denominators in (5) are to be expanded in positive powers
of ei'e.) This means that H°'k(9), for k > 0, contains only strictly
positive powers of eiﬂ.

However, on the left-hand side of (7), any term proportional to a non-
zero power of t is proportional to a strictly negative power of eie (there
is an explicit factor exp —(ilie) in the numerator for every positive A}.

. i0
Hence HO' k(e), for k > 0, contains only strictly negative powers of el’.

/7
~

Cambining these bits of information, we see that all Fourier coef-
ficients of HO ik vanish, so HO k. 0 for k # 0. The same type of reasoning,
applied to HY'0, shows that HY’%(8) is independent of 8, and equal to the
number of zeros of V at which all Aia are positive.

Hm'k for non-zero m and k can. be studied analogously. Let " be the
bundle of differential forms of type (m,0). HVF is the k™ 3 cohomology
group with coefficients in @". Studying inequalities (5) and (7) with E =

m

7, one finds that for any power of t except t", the left-hand side of (5)

has only strictly positive powers of el® while the left-hand side of (7) has

ie

only strictly negative powers of e~ . Hence Hm’k =0 for k #m. For k =m,

we learn, instead, that Hm'm(ﬁ) is independent of 8 and equal to the number
of zeros of V at which precisely m of the Aia are negative. -

Finally, let us discuss to what extent the assurptions made in this
paper can be relaxed.

It is not clear whether inequalities analogous to (5) and (7) hold for
holomorphic vector fields that do not generate isometries of any Kahler
metric. If they do hold, the methods of this paper do ndt appear to be,
suitable’ for proving them.

If one does assume that V generates an isometry, our further require-
ment that V should generate a U(1) action is clearly not essential. If it

were removed, the above discussion would change only in that we would not

have a simple expansion in integral powers of eie. In any case, little is
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lost by requiring V to be a U{1) generator, since anir generator of an
isometry is a linear combination of U(1) generators.
Finally, we should discuss one important assumption made in the above

discussion which can be eliminated. This is the assumption that V has only

isolated zeros. It plays a simplifying role analogous to the role of the
assumption in ordinary Morse theory that a function has only simple zeros,
but it is not essential.

Suppose that the zeros of V are a complex manifold N, with connected
components N,. For large s, the low-lying eigenfunctions of As are oconcen—
’trated near the N;. The large s behavior of the spectrum of AS can be
determined by means of the Born-Cppenheimer approximation,® analogously to
the treatment of degenerate Morse theory in reference (2). We will discuss
this matter only briefly.

Let us focus on the contribution to the generalization of eguation (5)
of one component Na of the space of zeros of V. Near Na' in the directions

orthogonal to Na' V behaves as l; z Li' with certain integers A; that are
3z
constant on N,. Let n, be the number of negative k;. We may think of n, as
the index of N_. Then, by study of the large s limit of Ay s it may be shown
* that the’ left-hand side of (5) must be replaced by

) (36)

n
a k k
gt Et H® (87 N_; E,

th

Here o (N.; E,) is the X 3 cohomology group of N, with coefficients in a

bundle E that must now be described.
In a small neighborhood of Na' As can be written approximately (the

approximation is good enough for large s) as
T
A, = e.Na + 4 (37)

Here A, is the usual Laplacian 33* + 3*3 of N, and Ag acts in the

Ya

directions orthogonal to Na.

Choosing a tubular neighborhood M(Na) of N A and projecting each point
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to the point in Na to which it is nearest, M(Na) has the structure of a
fiber bundle ovér Na‘ Given a point x in Na' one may restrict Ag to an
operator A: acting on the fiber over x in M(Na).

Let Vx be the vector space consisting of all eigenfunctions of A: for
which the eigenvalue vanishes in the leading large s approximation. Then V,,c
varies holomorphically with x, giving a holomorphic bundle Q, over N_.
(Actually V. and Q are infinite dimensional. The discussion can be made,
finite dimensional by fixing a representation of the circle group generated-
v Q inherits from M a holamorphic action of V.

Then E, = EQ® Q, is the bundle that appears in (36). Bquation (36)
follows by remarks analogous to those that entered the discussion of degernr

erate Morge theory in reference (2).

I would like to thank R. Bott for introducing me to Morse theory and

for many helpful discussions of the subject.
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