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1. Introduction

The purpose of these notes is to describe some conjectures in algebraic ge-
ometry associated with matrix models of two dimensional quantum gravity.
The original conjecture of this type gave a detailed description of inter-
section theory on the moduli space of Riemann surfaces, by relating it to
the most basic matrix model, which was solved nonperturbatively by sev-
eral groups [12,9, 4]. (Many aspects of the solution were later clarified
by Neuberger [18].) This original conjecture was described in [21], along
with an introduction to the matrix models and detailed references. The
original version of the conjecture has since been proved by Kontsevich [14].
(Kontsevich used methods of differential topology—in particular, a certain
triangulation of the moduli space of Riemann surfaces developed in [19, 3].
I also discussed the last step of the proof in [23].)

There are more elaborate matrix models that describe two dimensional
quantum gravity coupled to matter. Topological field theories associated
with these models have been identified by K. Li [17], gr{d their further
study has led [22] to a generalization of the original conjecture, involving
intersection theory not on moduli space of Riemann surfaces but on certain
covers of it that are obtained by extracting n'™ roots of the canonical line
bundle of a surface. Our aim here is to explain this more general conjecture
just as a statement in geometry, referring the reader interested in its field
theoretic origin to [22].

* Research supported in part by NSF Grant 86-20266.
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That field theoretic origin involves twisted N = 2 superconformal field
theories that are close cousins of the models that are studied in the world
of “mirror manifolds” [11]. Their study has yielded a remarkable family of
(conjectural) algebrogeometric formulas, counting the rational curves on
certain threefolds [5]. The formulas presented in the present paper should
also have a mirror version, but this is not yet understood.

Formulas of the type to be presented here actually are expected to have
an A-D-E classification; the case considered here corresponds to the A
series. The more general formulas, which have not been determined in
full detail, will involve the D and E singularities (the function s — s"
implicit in §1.3 corresponds to the A,_; singularity) and the Drinfel’d-
Sokolov generalization of the Gelfand-Dikii equations,

1.1 Roots of the canonical line bundle. ILet ¥ be a smooth Riemann
surface of genus g, with s marked points x;, Xz, ... Xxs. Fix an integer r > 2.
Label each x; by an integer m; with0 < m; <r — 1. (Eventually, the x; will
be labeled by an additional non-negative integer n;.)

For each i, let 6(x;) be the line bundle, of degree 1, whose sections are
functions that may have a simple pole at x;. The canonical line bundle K
of ¥ has degree 2g — 2. The line bundle ¥ = K ®; O(x;)~™ has degree
28 —2 — Ei m;. If this is divisible by r, then ¥ possesses rt roots. Indeed,
there are r? isomorphism classes of line bundle J such that

(1.1.1) gor ~ ¢,

Let Mg,s be the moduli space of complex Riemann surfaces of genus
g with s punctures, and M, its Deligne-Mumford compactification. The
choice of an isomorphism class of J determines a cover M, 5 of Mg s; this
is an unramified cover of degree r?6. (r and m; entered in the definition
of M, ;, but will not be indicated explicitly in the notation.)

A line bundle J endowed with an isomorphism as in equation (1.1.1)
has g, (the r' roots of unity) as an isomorphism group. As a result, a line
bundle J with such an isomorphism may not exist universally over Mg s.
This causes some constructions below to be possible only rationally.

1.2 Behavior near a double point. We now want to explain how we
wish to extend this definition to get a cover (ramified at infinity) of the
compactified moduli space ﬂg_ s-

Restricted to a circle C C X, there are r isomorphism classes of J. The
compactification divisor in M, can be thought of as the locus on which
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some C is collapsed to a point. Corresponding to the r possibilities for J|c,
there are r possibilities for the behavior of J at infinity.
The behavior near a double point can be described by a family of curves X

(1.2.1) Xy =¢€

in the x—y plane, parameterized by a complex variable €. For stable curves,
the marked points, say x;(¢), do not coincide with the double point at
x = y = € = 0, so they can be neglected in describing the local behavior
near the double point. J can therefore be thought of as just an r'" root of
the canonical bundle K.

Algebraically, the r possibilities for J differ by which sections of K have
r™ roots. r — 1 of the possibilities are generalizations of the Neveu-Schwarz
sector of string theory, and the remaining one is a generalization of the usual
Ramond sector. To describe the first r — 1 possibilities, fix an integer m with
0<m=<r—2 Letc = (n+1,r)and r' = r/c. Over the r'fold cover of
the € plane given by & " = ¢, let T, be the sheaf generated by objects u;
and u, with relations

(1.2.2) yup = slntd/ey,  xy, = sor—1-mfc,

Intuitively, u; and u; correspond to

(1.2.3) uy = (dx - x™)/"
and
(1.2.4) uy = (—dy -y )"

Thus, on the complement of the double point, T, is locally free, and we
can define an isomorphism ¥ : & = K with Y®) =dx - x", Yyl =
— dy ] yr—2—m.

For the 7™ possibility, we consider a sheaf J,_; that is freely generated by
a section v that we think of intuitively as

1/r 1/r
(1.2.5) v= (d—x) = (—d—’i) .
x y

Thus, we endow J,_; with an isomorphism ¢ : I, = K such that ¥ (v®") =
dx/x.
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By an r"root T of ¥ = K ®; O(x;)™™i, over the family of curves X,
we mean a coherent sheaf 7 over X such that on the complement of the
double point, J is locally free and has an isomorphism ¢ : 7% = &, and in
a neighborhood of the double point, the pair J, ¥ is isomorphic to one of
the r possibilities just described.

Thus we can characterize the compactification that we want. It is the
moduli space M’g s of pairs ¥, 7, where ¥ is a stable curve with marked
points x; labeled by m;, and J is a coherent sheaf that is an ! root of
¥ = K ® O(x;) ™™ in the sense just indicated.!

More detailed behavior at the double point. For computations in sec-
tion 2, we will need to understand the behavior near the double point
in a little more detail. Let Xy be the singular fiber of the family X and
7: % — Xy its normalization. The inverse image on X of the double point
consists of two points P" and P”. If 7 is isomorphic near the double point
to one of the J,, withm < r — 1, then J = 7,9’ where 3" is a locally free
sheaf on ¥ with a natural isomorphism

(1.2.6) ¥ IO E K ®; 0(x)™™ @ O(P) ™" @ O(P")~¢ =2,

Thus, on the normalization P’ and P” behave like marked points labeled
by integersm and r — 2 — m.

Now consider the remaining case in which J is isomorphic near the
double point to J,_;. Intuitively, J is the sheaf of 1/r differentials on X
which may have poles of order 1/r with equal and opposite residues on the
two branches (the residue being the coefficient of (dx/x)Y/" or (=dy /M.
There is thus a “residue” map J — 0, which extracts the residue, and an
exact sequence

Res
(1.2.7) 09 > —0-0.

g’ is intuitively the sheaf of 1/r differentials on X, with zeroes of order
1 —1/r at the double point. Though 7 is not the direct image of a locally
free sheaf on the normalization ¥, 97 is such a direct image. Indeed,
I’ = 7, T"” where J” is a line bundle on ¥ with a natural isomorphism

(1.2.8) wu: g//@r =K ® @(xi)—mi ® O(P/)—(rwl) ® @(PII)——(r—l).
Thus, in the definition of 97, the inverse images of the double point appear

as new marked points labeled by r — 1.

'When ¢ > 1, as explained by Deligne, some additional structure is present on the special
fibers that is important to avoid unwanted automorphisms. Essentially, near the double point,
g®r’ should be mapped, by gluing special fibers, to a line bundle that is a local ¢ root of K.
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1.3 The top Chern class. For X, J as above, let V' be the vector space
(1.8.1) V' =HY(Z, )

and let V be the dual space, which according to Serre duality is V =
HO(Z, K ® 71 if X is a smooth curve, or H°(Z, Hom(J, K)) in general.
Generically, these are vector spaces of dimension

(1.3.2) D=(g—-1DA-29)+v Y mi,

where y = 1/r. This fails precisely when
(1.3.3) w = H%Z, )

is non-zero.

If W’ vanishes everywhere, then V' and V vary as fibers of D dimensional
vector bundles ¥’ and ¥ over moduli space. (This is actually true in genus
zero, as we will see in section 2.1.) These bundles have Chern classes, and
in particular top Chern classes cp (V') and

(1.3.4) ep ) = (=1)Pep ).

We want to describe a substitute for ¢p (V') when W’ is not identically zero.!
Then we will define cp (V) by (1.3.4). The construction will be analogous
to the definition of the index bundle of a family of Fredholm operators [1].

Let E and F be vector bundles of dimensions T and D+T over a compact
topological space X. Let w: E — X be the projection, i: X — E the zero
section, and w*F the pullback of F to (the total space of) E. We would
like to define cp(F, E) = my(cp+r(m*F)). This is ill-defined since the fibers
of m: E — X are not compact. But suppose we are given a continuous
section w: E — m*F which vanishes only on i(X) C E. As a vector bundle
with a nonvanishing section has zero top Chern class, the choice of such a
section permits us to define a top Chern class of #*F in Hg,,(E); we call
this cp4+1(7r* F; w). Then we can set

(1.3.5) cp(F, E; w) = my(cp+r (T F; w)).

! A definition of cp(V’), but not the one we want, can be given by considering the Chern
classes of the index bundle of the 3 operator (or of the direct image sheaves R (T), with
m: @), o — M ; being the fibering of the universal curve).
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Suppose A and B are two vector bundles over X and €: A — B is an
isomorphism. If 7: A — X is the projection, € determines a sectione¢: A —
7*B which vanishes only on i(X) C A. On each fiber of #: A — X, the
zero of € is a simple zero, of winding number 1. Hence

(1.3.6) co(A, B;e) = 1.

If in an obvious way we think of w @ € as a section of the pullback of F & B
over £ @ A, then

(1.3.7) cp(FOAEDB,wde)=cp(F,E;w)

essentially by the multiplicativity of Chern classes in direct sums.
Returning to our problem, pick a metric on the universal curve (6

.M’ ¢» S0 that it can be regarded as a family of Riemannian manifolds (w1th
some singularities at infinity). In particular, the relative canonical bundle K
(whose sections are (1, 0) forms along the fibers) gets a metric. Regarding
the marked points x;, i = 1...s, as divisors on ‘E’g’s, pick a metric on
each O(x;). These metrics determine a metric on the line bundle § which
has a defining isomorphism %" = K ®; O(x;) ™.

At least over the open moduli space M; ,, one has bundles of Hilbert
spaces ¢ = Q%%(J) and F = Q%Y(F) (consisting respectively of T-valued
(0, 0) and (0, 1) forms along the fibers of the universal curve), with a family
of § operators 3: ¢ — %, and their adjoints 9: F — €. Seeley and Singer
have extended these definitions [20] to get continuous families of Hilbert
spaces €, % and Fredholm operators 3, 3 over the compactified moduli spaces
.M’ 1 Letm: % — ﬂ’ be the projection. We wish, as in the discussion
above to define a top Chern class” cp (%, €; w), with an appropriate sec-
tion w. First we will construct w, and then we will deal with the fact that %
and % are infinite dimensional.

For & a line bundle, let £ be the complex conjugate line bundle. (& has
transition functions that are the complex conjugates of those of £; more
intrinsically a section of £ is an anti-linear map £~! — 0.) A metricon &£
determines an invertible element of £ ® £. Using the metric on J and the
defining isomorphism of J, we get

(1.3.8) TN 2T QT XK RT @ 00) o0 .

! They considered the case r = 2 which apparently contains the essential features.
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. =_~-1. . .
Asection f of O(x;) isacomplex valued function f which near x = x; can
be written in the form f = ug, where u is an antiholomorphic function that
vanishes at x = x; and g is a complex valued smooth function. In particular,

such an f is a smooth function. Thus a section of K®9JQ®,; 0(x ,)®( )
is a section of K ® J that happens to have certain zeroes. Hence for
s € ¢ = I'(9), we can interpret slasavectorin ¥ =K ® 7).

This enables us to define w: € — 7*% by

(1.3.9) w(s) =ds + 5!

To put this in the general framework discussed earlier, we must show that
w(s) = 0 only if s = 0. Indeed we have

(1.3.10) (@s,5 1) = f 95 -5 1= ! f AE)=0
p rJjx

SO

(1.8.11) (w, w) = @s, ds) + "L, 57h).

Hence w =0 onlyif 0 = ds =5 ! and so onlyifs = 0.

Now, it is possible to find a finite dimensional subbundle F of ¥ which
maps surjectively to coker(3) = %/3(%). This is essentially a step in defining
the index bundle of the § operator [1].! Define a finite dimensional sub-
bundle E of € by E = d~1(F). Let E* be the orthocomplement of E, and
FL=3(EL). Replacing F by the orthocomplement of F 1, which still maps
surjectively to coker(d) (and redefining E to preserve E = 8 1(F)), one can
assume that F contains ker(9).

For such a pair (E, F), let pr be the orthogonal projection & — F, let
n: E— J_l/l_;,s be the projection, and define w € I'(E, n*F) by

(1.8.12) w(s) = ds + pr 1)

! Over a compact manifold X of real dimension 2d, there is no obstruction to finding an
everywhere non-zero section s of a complex vector bundle & of rank > 4. Hence for # a
Hilbert space bundle, one can find a sequence of everywhere orthonormal sections 51, 52, . ..
To do this, let F, be the (trivial) subbundle generated by sy, ... ss, and at each stage let sp4;
be an everywhere nonzero section of Fj-. If 3: ¢ - % is a continuous family of operators,
parameterized by X, of finite dimensional kernel and cokernel, then for each x € X, there
is n such that F, » — coker 3, is surjective. As this surjectivity is an open condition and X is
compact, there is some # that works for all x € X.
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As pr is self-adjoint and pFds = ds, we have
(1..13) @s, pr5 ™ = (35,5 H =0
as before. Hence

(1.3.14) (w, w) = (3s, 8s) + (oF5" ™, pri™Y),

so w(s) vanishes only if 8s = ppi! = 0. However, if 8s = 0, then
(3" 1) = 0, so ¥~ ! € F (which contains ker(d) by construction) and
pr3 1 = §1. Soin fact w(s) = 0 only if s = 0. Thus we can define

(1.3.15) cp(F, E; w) = my(cpyr (™ F; w))

where T = dim F. Henceforth we frequently abbreviate cp(F, E; w) as
cp(F), it being understood that E = 3~!(F) and that w is defined as in
equation (1.3.9).

It remains to show that cp(F") = cp(F) if F' is any other finite dimen-
sional subbundle of F containing ker(3). It suffices to consider the case that
F C F'since up to homotopy any F and F’ chosen as above are subbundles
of some F” .

For F C Fl,wesetFF =F @ F with J F the orthocomplement of F in F’,
Let E' = 3~'(F'). Then E' = Eo E (a direct sum decomposmon not
necessarily orthogonal) where E = 3 1(F) nker(3)t. So 3(E) = F and
3:E > Fisan isomorphism.

Letn': F/ — J'llt—’g'_, be the projection. We want to compare two natural
elements w’', w” of I'(E’, n’*(F")). The first is

(1.8.16) w'(s) = 35 + pp5 !

with pp the orthogonal projection onto F’. This is our “standard” choice,
so cp(F') = cp(F', E"; w'). Butwith F' = F@ F, E' = E ® E, we can also
take the direct sum of the “standard” map w: E > F_(given by w(s) =
ds + prs™1, as above) and the 3 isomorphism 8: E - F. Thisis thus

(1.3.17) w’(e @ &) = wle) @ dé.

! The argument is similar to the one in the last footnote. One can construct an ascending
family of subbundles F € Fy C F> C --- C ¥ by picking at each stage a non-zero section of
F; L. Let 8, be the orthogonal prOJecnon on F,. Forx € .Mg s» On: Fi — Fp ; is injective for
large enough #; as this injectivity is an open condition and M’ is compact, there is some n
such that@,: F/ —» F, is an embedding. For0 <t < 1, let Fl = (1 ~— 1+ t6,)F'. By continuity
cp(F}) is independent of 1. F and F| are both subbundles of F,.
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Asd: E - Fisan isomorphism, we can use equation (1.3.7) to get
(1.8.18) cp(F',E'; w") =cp(F, E; w).

Thus we will get the desired result cp(F, E; w) = cp(F/, E'; w') if we can
show cp(F', E'; w") = cp(F’, E’; w"). To this aim, it is enough to find a
homotopy from w’ to w”, that is a continuous family of sections w;, 0 <
t < 1,with w; = w’, wg = w”, and with the w; all “injective” (w;(s) = 0 only
if s =0).

This can be done as follows. Define a;: E/ — E'bya;(e ®e) = e @ te,
and b;: F/ — F'byb,(f ® f) = f ®tf. Then set

(1.8.19) w;(s) = 8s + bypr(a@s) 1.

It is clear that w; = w’ and wy = w”. To show injectivity, it is enough to
show that

(1.820) )P = B + [pror @[

For in that case, w,(s) = 0O implies ds = 0, whence s € E, so a;s = s,

51 € F, and bjpr(a@;5)""! = 57!, which vanishes only if s = 0. To
establish equation (1.3.20), we need vanishing of the cross terms

(1.3.21) 0 = (3s, brpr @s) ).

The adjoint of b;pf is b;pp. Also pF:E_)s = 3s, b,ds = 0a;s, so the right hand
side of equation (1.3.21) is

(1.3.22) f 0@ - @Y~ = - f 8 (@) =0,
z by
as desired.

Finally to indicate very briefly the quantum field theoretic origin of this
definition, let me note that the twisted superconformal field theories which
as originally advocated by K. Li [17] are relevant to this problem have
various realizations. Apart from the realization by gauged WZW models
used in [22], they can be realized as twisted Landau—Ginzburg models. In
a version considered by K. Ito [13], the bosonic field can be interpreted
as a section of J, say s, and the bosonic part of the Lagrangian is lw(s)]?
with w as defined above. In this version, one can see—for instance, by
adapting arguments given by Atiyah and Jeffrey in [2]—that the Feynman
path integral is a device for computing what we have called cp (%, é; w).

A purely algebraic version of the above definition of cp(¥’) has been
described recently by Faltings.
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1.4 The Mumford-Morita-Miller classes. The other ingredients that we
need to formulate the main conjecture can be defined more immediately.
Each of the s marked points x; of X has a cotangent space T*X|,,, which, as
Y varies in ﬂfg, s» varies as the fiber of a complex line bundle ¥;. Henceforth,
we associate with each marked point x; a non-negative integer n; (in addition
to the m;, 0 < m; < r — 1 introduced earlier). The objects of principal
interest in this paper will be the intersection numbers

1 (£ —
(14.1) -’}(l—l Cl(g,')ni . CD(OV),M;J).

i=1

These numbers vanish, of course, unless a certain dimensional condition is
obeyed, namely

(1.4.2) > mi+D=3g-3+s.
i

We will present a precise conjectural formula for these numbers in the next
subsection. As we will see, this formula reduces for r = 2 to a formula for
the quantities

(1.4.3) (H 1 (L™, Eg,s)
i=1

that was described in reference [21] and proved by Kontsevich in refer-
ence [14]. As was explained in {21], the numbers (1.4.3) contain the same
information as the intersection numbers of the Mumford-Morita-Miller sta-
ble cohomology classes on My, ;. :

In an appropriate quantum field theory, described in [22], the intersec-
tion numbers just introduced appear as the expectation values of certain
“operators” 1, ,, with respect to a suitable Feynman path integral measure.

In this context it is natural to denote the intersection numbers of equa-
tion (1.4.3) as

(1.4.4) (Tnymy Tngymy -+ - Tngum,)-

One often denotes 7, as 7,(Ux), the n™ “gravitational descendant” of a
“primary field” U,,,.
The intersection numbers of interest are then naturally denoted

(1.4.5) ( r,:’,",-,:')
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where the d, » are non-negative integers, almost all zero, and (1.4.5) is to
be understood as follows. Given a set of dy »'s, set

(1.4.6) s=) dym
n.m

Consider Riemann surfaces of genus g with s marked points, labeled as
follows: for each (n, m), precisely d, ,, of the points are labeled by (n;, m;) =
(n, m). Determine g and D to obey equations (1.4.2) and (1.3.2). If the g so
determined is not a non-negative integer, set (1.4.5) to zero; otherwise set

1 by
(1.4.7) (H r,i{",;.") = r—g(Hq(Sff)”‘ -cp(V), J‘@,s)-
n,m i=1

(This expression is considered to vanish for g =0, s <2andg=1, s =0
where the moduli space of stable curves is empty.)

The intersection numbers that we have introduced are conveniently ar-
ranged in a generating functional. Introduce variables hme €N, 0 <
m <r—1. Set

dnm

dnm r ’;n
(1.4.8) F(o0.t01,...) = Z( 'c,,_;,,) it
dym .M n,m B

F is known as the free energy.

If one restricts the sum in equation (1.4.8) to d, »,’s such that the genus
(determined as above) has a given value g, one gets what we will call the
genus g contribution F; to the free energy. Thus, F = Y, Fp. We will
compute Fp in section 3.

If one considers £, ,, to be of degree 1 —n — ym, then it follows from
(1.4.2) and (1.3.2) that F, is homogeneous of degree (1 — g)(2+2¢). In
particular, Fp is the piece of highest degree, and in the context of the
Gelfand-Dikii equations, which we will introduce presently, Fy can be com-
puted by systematically keeping only the highest degree terms. This can
be done by replacing the commutators of differential operators in those
equations by the Poisson brackets of corresponding symbols. This will be
useful in section 3.3.

1.5 The Gelfand-Dikii equations. The generalized KdV hierarchies of
Gelfand and Dikii [10] are conveniently described in terms of formal
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pseudo-differential operators in one dimension. We consider an operator
defined by a series

n
(1.5.1) K=Y kD',
[=—00

where the coefficients are functions k; (x) of a variable x, and

i 9
5. D=——.
(1.5.2) VT

One makes the decomposition
(1.5.3) K=Ky+K., Ki=)Y kD'
i=0
One defines the residue of K as the function multiplying D1

(1.5.4) resK =k_;.

Now consider differential operators of the form

r—2
(1.5.5) Q=D" =) u(x)D'.
=0

As a pseudodifferential operator, Q has a unique r'™ root given by a series

of the form Q" = D+ ¥,  w; D~ with the w; being differential polyno-
mials in the ;. The expression Q"tm/T will denote the pseudodifferential
operator (Q'/7)"*™_ As Q commutes with its own power Q**™/7 we have

(1.5.6) ("™, 01 = —[@"*™/", Q1.

'This commutator is a differential operator (obvious on the left hand side)
of order at most r — 2 (obvious on the right hand side). The coefficients of
this differential operator are differential polynomials in the u;. Hence one
can introduce the Gelfand-Dikii equations

. 9Q __ rntHm1)/r Cn,m
(157) latn,m = [Q+ ’ Q] \/?_' ’
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where ¢, n are the constants
(_l)nrn+1
T m+De+m+D.(r+m+ 1)’

introduced for convenience. Concretely, the equations (1.5.7) are differen-
tial equations for the coefficients u; of Q. These equations take the general
form

(1.5.8) Cam

au,-
atn,m

(1.5.9) = Rinm(uj, dxtix, 32uy, ...),

where the Rj.,» are polynomials in the u; and their x derivatives. The
equation for n = m = 0 is just du;/dt,0 = du;/dx, so it is natural to
identify f99 and x. It is possible to prove that the Gelfand-Dikii equations
are compatible in the sense that the flows corresponding to 3/3,,, and
8/0ty m commute. Notice that

0
(1.5.10) € _o n=012...
atn,rwl
since form =r — 1, Q'_’,_+(m+1)/ " = 0" commutes with Q.

Instead of regarding the Gelfand-Dikii equations as equations for the u;,
they can equally well be regarded as equations for the objects

r
i+1
Indeed, the v; are differential polynomials in u;, and the expressions for

the v; in terms of the u;, being “triangular,” can be inverted to express the
J g 8 P
u; as differential polynomials in the v;.

(1.6.11) v = — res(QUHV/T), 0<i<r-2.

1.6 The conjecture. We can finally formulate the conjectured connec-
tion of intersection theory on M, ; with the generalized KdV hierarchies.
Identify 15,0 with x, and set

3*F )
= v;, forO0<i<r-—2.

1.6.1 —_ =
( ) 0%,001%0,;

(The v; were defined in equation (1.5.11).) The main conjecture is then
that the differential operator Q constructed with these v; obeys the Gelfand-
Dikii equations (1.5.7) which we repeat:

. 0Q atmiD)/r pq Cnm
(1.6.2) i =10 01
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In addition, one can prove (as we will see in section 2) that F obeys the
“string equation”™

0 r—2
- == ij
(1-6-3) = Z n tOlto_] + Z—: Ztn+1 matn N
I_]-0 n=1m=0

Here n'/ = 64 jrr—2- These equations uniquely determine F, except for a
possible additive constant,! essentially since equation (1.6.2) determines the
dependence of F on all the ¢, ,, except # o, and equation (1.6.3) gives the
“initial conditions” that determine the dependenceonfyy. (The elementary
argument that the Gelfand-Dikii and string equations together uniquely
determine F is written out in detail—for r = 2, but the general case is no
different—in section (2a) of [21].)
In view of equation (1.5.10), a special case of the conjecture is that

aF

1.64 =0, n=>0.
( ) atn,r—-]

Using the string equation, the Gelfand-Dikii equations can be integrated
once to give

N 82F {m+1)
1-6.5 ————— T — n+ r .
( ) 370000 Cn,m TeS(Q )

For n = 0 this reduces to the equation (1.6.1) that defines the relation
between F and Q. It is often convenient to take (1.6.3) and (1.6.5) as the
basic equations.

1.7 Relation to the original conjecture; illustration of the definitions.
Now, let us explain how the present conjecture is related to the earlier one
discussed in [21, 14]. The present conjecture reduces for r = 2 to the
older one if equation (1.6.4) is valid (which we expect in general but will
later prove only in genus zero). In this case, the only nonzero correlation
functions are those of the 7, 9. With r = 2 and all m; = 0, J reduces to
a square root of X, .AI"N reduces to the 2%¢ fold cover of Mg given by a
choice of such square root, and D = 0. We have to interpret the factor of
co(V) that appears in the definition (1.4.7) of the correlation functions.

! One can consider this undetermined additive constant to correspond to the contribution of
the degenerate moduli space of genus one with zero marked points. It was discussed from that
standpoint in [21]. For our purposes one can just set F(0,0,...) =0.
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co(V) = co(%F, %; w) can be computed by restricting to a generic point
X € ﬂ’g, - In the case of an even spin structure, H%(T) and HY(J) vanish
at generic x; we can take the finite dimensional subbundles of ¥ and ¢ in
the definition of ¢o(%F, €; w) tobe E = F = 0. Hence co(¥,%; w) = 1. In
the case of an odd spin structure, H°(@) and H'(J) are generically one
dimensional. Over a generic point x in moduli space, one can take F and E
to be one dimensional spaces of harmonic forms. The map w: E — n*F is
then s — 5. This map is of degree —1, so co(%F, €; w) = —1.

The other classes in (1.4.7) are pullbacks from Mgs. The even spin
structures give a cover of Mg ; of degree (226+28)/2. The odd spin structures
give a cover of degree (228 — 28)/2. In view of the evaluation of cg(V), the
sum over spin structures gives the difference of these numbers or 2%; this
factor cancels the explicit denominator in (1.4.7), which thus reduces to

(1.7.1) <1—1 T,?:"(')(’) = (l—[ c1 (&)™, Eg,s)-
i=1

n

This is precisely the definition of the correlation functions given in [21].
That the conjectured formula for these correlation functions given here
reduces to the formula proposed in [21] is more obvious, since the Gelfand-
Dikii hierarchy reduces at r = 2 to the KdV hierarchy.

For a similar but perhaps more striking illustration of the definition of
cp(V), let us compute for arbitrary r the object {(t1,0). On dimensional
grounds this receives a contribution only from genus one, so D =0 and

1 —
(1.7.2) (r1.0) = = (e1(2) - co (), M)

As explained in [21], £ when regarded as a line bundle over EM has
degree 1/24; its first Chern class is Poincaré dual to [x]/24, where x is a
generic point in M;,1. (We must recall that moduli space is an orbifold, not
a manifold; Chern classes need not be integral.) We must take account of
the cover of degree r? corresponding to the choice of an r'" root J of the
(trivial) canonical bundle K. For r? — 1 of the possible choices, J is a non-
trivial line bundle, and H%(9) = H!(T) = 0. In the definition of co(%F, €; w),
we can take F = E = 0, so cg(F, é; w) = 1. For the other choice, J is trivial,
and H%(J) and H1(J) are each one dimensional. Taking F and E to be
the one dimensional spaces of harmonic forms, the map w: E — #*F is
s — 571, which is of degree —(r — 1). The sum over the choices of 7 thus
gives a factor (2 —1)-1—1-(r —1) = r(r — 1). Using this in (1.7.2), we get
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(t1,0) = (r — 1)/24, which can be shown to agree with the prediction from
the Gelfand-Dikii equations.

The remainder of this paper is devoted to explaining what is known about
the conjecture for r > 2. In section 2, we discuss some general issues, and
in section 3, we verify that the conjecture is valid in genus zero.

2. Some further properties

2.1 Decoupling of the Ramond sector. Our first goal is to verify that
(1.6.4) holds in genus zero. It appears that deeper arguments would be
needed to prove this property for arbitrary genus.

It will be helpful to know that ¥ is always a D diménsional vector bundle
in genus zero. Indeed, ¥ is a vector bundle of this dimension provided
H(Z, J) = 0, which will be so if the degree of J is negative. The degree
of J is actually

(2.1.1) Y- (Zg—Z—Zm,-).

This is indeed always negative for g = 0. (It does not matter if X degener-
ates, since if so each component has genus zero, and the above argument
can be applied to each component separately.)

Consider a Riemann surface ¥ of genus g with s marked points xq, ..., x;
labeled by (r;, m;). Equation (1.6.4) is the assertion that the intersection
numbers (1.4.1) vanishif m; = r—1 for some i. Thiswill be true if cp (V) = 0
atleast rationally. Given that " is a vector bundle of dimension D, it suffices
to find a surjective map ¥ — 6. Undetermined r' roots of unity in the
following discussion mean that our conclusions will be valid only rationally.

By Serre duality, ¥ is the vector bundle whose fiber is H*(Z, K @ 77!) for
% a smooth curve (and H°(Z, Hom(J, K)) in general; this refinement will
not affect the argument since the x; never coincide with the double points).
Asectionof KQ®9I 1 is, intuitively, a (1 — y)-differential with a possible pole
of order m; /r at each x;. In particular, at x; the possible order of the pole
is 1 — y, and by extracting the residue, that is the coefficient of

I—y
(2.1.2) ( dx ) ,
X — X

one gets a linear map H°(Z, K ® 9~!) — C. As the pair (, J) varies in
moduli space, this residue map varies as a morphism V' — €. It suffices to
prove that this is surjective in genus zero.
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This is an exercise from the Riemann-Roch theorem. One has the exact
sequence of sheaves on Z

(2.1.3) 0> K®I'Q0x) ' > KT ! > (K®T Y, — 0.

Note thatform; =r —1, (K@ I )| x; has a canonical identification with C,
this being the residue map. The exact sequence in cohomology is

Res,,

(2.14) ---HY(Z,K®TH —HC—> HI(Z,K@T '®@0(x)™) — ---

The residue map is therefore surjective if

(2.1.5) HY(C, KT 10 =0.

That will be so if the degree of K ® T1®0(x;) !is>2g — 1. That degree
is actually

(2.1.6) D=Qg-A-y)+y) mi—L
j

Bearing in mind that D’ must be an integer, this formula implies that if
m; =r — 1, then D’ > —1 for g = 0, completing the proof that cp(V) =0
(rationally) in that case.

2.2 Recursion relations of topological gravity. We will now show that
the correlation functions of (1.4.1) obey the general genus zero recursion
relations of topological gravity, described in [21]. As explained there, these
are the closest analogs of the Gelfand-Dikii equations that seem easy to
understand algebrogeometrically. Most of the discussion is in parallel with
that of [21], but there are a couple of special points. The relations we will
obtain are known [7] to agree with the Gelfand-Dikii equations.

Consider a genus zero curve ¥ with s marked points x, ..., X;, labeled
by (n;, m;). We wish to compute

(2.2.1) (Taymy - - Tngum,) = (]_[ c1 (&) - ep(V), JW«'),S)-
i=1

Actually, in genus zero, the r root of a line bundle is unique if it exists, so
the cover of moduli space that we have introduced is trivial and Mg ; = Mo,s.
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Figure 1.

(2.2.1) can be simplified inductively by picking suitable sections of the line
bundles &;. For instance, suppose X is a smooth genus zero curve, which
can be identified with the Riemann sphere, and consider the differential
form on X

dx dx
(2.2.2) W= -

X —Xe—| X —Xs5

It can be described invariantly as the unique differential form on ¥ whose
only singularities are simple poles at x;—; and x;, with residues 1 and —1.
If ¥ is a smooth curve, @ has no zeroes. For a genus zero stable curve
with several components (see Figure 1), there is still a unique @ whose only
singularities' are the simple poles at x;—; and x; of prescribed residues.
However,  may have zeroes—in fact it will vanish identically on certain
components. In complex codimension one, which is the important case
in the present discussion, ¥ can degenerate at most to a curve with two
components, ¥; and X, sharing a double point P (as in the Figure). A
differential form on such a X is permitted to have a simple pole at P, with
equal and opposite residues on the two branches. If x;_; and x; are on
the same component, say X, then w vanishes identically on 2; (otherwise
it would be a differential on X; with at most a single pole at P, which
is impossible). If x;—; and x; are on opposite branches, say £; and Z,,
respectively, then @ has no zeroes. (On X it has poles at x,; and P, and
on % it has poles at x; and P.)
A section of ¥, can be obtained by evaluating w at x;:.
(2.2.3) s=—dn__ dn

X] — Xg—1 Xs—1 — Xg

I Apart from simple poles at the double points, with equal and opposite residues at the two
branches; these are permitted in the definition of the canonical bundle of a curve with double
points.
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From what has been said, it is easy to determine the divisor of s. s has no
poles (since x; never coincides with the only possible poles at x;—; and x;).
s vanishes precisely when ¥ degenerates to two branches with x; on one
branch, say X, and x;_; and x; on the other branch. So let § be the finite
set {2,3,...,5 —2}. For any decomposition of § as a union of disjoint
subsets X and Y, let Dy y be the divisor in .A_A-o s parameterizing curves that
degenerate to two components, one containing x; and xj, j € X, and the
other containing xs;—1, X5, and x;, j € Y. The divisor of s is the sum of
the Dx y. Replacing ¢1(&£1)" by c1(£1)" 1 times the divisor of s, we can
rewrite (2.2.1) as follows:

(2.2.4) (Tm,ml e Tn:.ms) = Z (I_I C1 (;*:gi)n"'_&i'1 -cp(V), DX,Y)-

S=XUY Ni=1

To proceed further, we need to understand the restriction of ¥ to Dy y.
Let ¥ be the normalization of X, which is the disjoint union of X; and %,.
Let P’ and P” be the inverse images of P on X; and ;. As we have seen in
equations (1.2.6) and (1.2.8), the P’ and P” behave rather like “ordinary”
marked points labeled with integers m’ and m” in the usual range, with
eitherm’ <r—2andm”" =r—2—m',orm' =m” =r —1. m' is determined
by considering the degeneration of the sheaf J; indeed

(2.2.5) —2—my — ij —m’
jeX
must be divisible by r. Similarly, m” is such that
(2.2.6) -2 — ij —mg_1 —mg —m”
Jjey

is divisible by r.

As discussed in connection with equation (1.2.6), if m',m" < r — 2,
then T is the direct image of a locally free sheaf I’ on T. In this case,
¥ = HYZ, K ® I7!) has a direct sum decomposition

(2.2.7) V=V®V,,
where
(2.2.8) ¥, = HOZi, K@ 9™, i=1,2.
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Hence

(2.2.9) cp(V) =cp, (V1) - cp,(V2),

with D; = dim(V;). Moreover, as Dy y = JTO,2+nx X M_o|3+,,y (nx and ny are
the cardinalities of X and Y), we get

(2.2.10) (H (L)% ep(V), DX,Y)
i=1

= (c; (g)m! n c1(£,)% - cp,(Vy), J'To.2+nx)

JjeX

‘ (I_[ ci (EEJ)"; * Q1 (EBS—l)n’—l 1 (SES)HECDQ (°V2)a %,34-")/) .

jeY

(This vanishes if X is empty since My 2 is empty.)

In view of equation (1.2.7), the situation is differentif m’' =m"” =r — 1.
In this case, it is the subsheaf J’. of J that is the direct image of a locally
free sheaf J” on the normalization. Setting ¥; = HY(Z;, I"), i = 1,2, we
get from (1.2.7) and (1.2.8) an exact sequence

R
(2.2.11) 0>V @Yy — ¥ — 60— 0,

instead of (2.2.7). Here Res is the map that extracts the residue at the double
point. Consequently, cp (V) = 0 if the residue map is always surjective. This
can be proved just as we proved a similar statement in establishing the
decoupling of the Ramond sector. This vanishing of ¢p (V) means that the
contributions to (2.2.4) with m’ = m"” = r — 1 can be dropped. (Physicists
describe what we have just proved by saying that at least in genus zero, the
decoupling of the Ramond sector is compatible with factorization.)

By using (2.2.10) to evaluate the terms with m’, m” < r —2, and dropping
the terms with m’ = m" = r — 1, (2.2.4) can be rewritten

5 r—2
(2.2.12) (I—[ Tn,-,m,) = Z Z (tm-—l,ml I_I Tnj,mjfo,m’)
i=1

§=XUY m'.m"=0 jeX
mlm"
7 . (TO,m” H Tnyum; * Tn;_:.ms—xfn,.m;)-
jey
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Obviously, by repeated use of this formula one can express all genus zero
correlation functions in terms of the correlation functions

(2.2.13) (0., T0,mg - - - Tomy) = (€D V), Mo,s) -

of “primary fields.” (2.2.13) vanishes on dimensional grounds unless

(2.2.14) s—3=D=—1+42y+y ) mi.
i

From this it follows that (2.2.18) vanishes if s > r + 1, so for each r there
are only finitely many correlation functions of primaries to be determined.
They will be evaluated in section 3.

If we set s = 4, and shift n; — n; + 1, (2.2.12) implies

(2.2.15)  {Tu,-+1,m, Tng,ma Tny,ms Trama)

. m’m”
= 2 (Tnl,mlfnz,mgro,m’) N : (TO,m”Tng,m37n4,m4)-
mf’m”

As the left hand side is invariant under permutations of 2,3,4, we get
m.f "
(2.2.16) (tnl,mlfng,mgto,m’)n m (TO,m”Tng,mgtn4,m4)
mlm”
= (Tnl.mltns.marO,m’)n (TO,M"rnz.szm.m::)

As explained in [21], these formulas have the following interpretation.
First of all, let

d

tnym,  Oln,m,

(2.2.17) (Tapm - Tnyme) F(too,--.).

Thus, the left hand side of (2.2.17) is a function of the tpm which, at
ta,m = 0, reduces to {Tn,,m, - - - Tn;,m, ). IN deriving (2.2.16), we have sets = 4
in (2.2.12), but as is explained in [21] (see the derivation of equations
(2.72) and (3.28) of that paper), by considering the equations (2.2.12) for
arbitrary s, one learns that the {( }) objects obey the analog of (2.2.16):

(2.2.18) «tnl ,m; Tny,ms TO,m'» n'",'"” {70,m” Tng,ms Tna,ma »

F
= ((Tnl,mlfng,mgto,m’»nm " ((TO,m”tnz,mzfn4,m4))-
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The special case of this equation with all n; = 0 can be interpreted as
follows. Set#; = #g;, and let

P*F

2.19 Pk =
(2.2.19) Cijk ot; 0t; 0ty

and ¢;;* = cijs n**. Consider an algebra generated by objects ¢; with multi-
plication law

(2.2.20) i = Zcijk¢k-
3

Then (2.2.18) says that this is a commutative, associative algebra for every
value of the ¢, ,,, which moreover is compatible with the metric n (in the
sense thatn(ab, c) = n(b, ac)) since the c;j; are completely symmetric. Thus,
the function F has the property that its third derivatives at any point provide
the structure constants of a commutative, associative algebra, compatible
with the metric ds? = n'/dt;d.

It may sound well-nigh impossible for 2 non-cubic function to have this
property, so here are a few examples. If ¢, ,, = 0 for n > 0, then F reduces
to a polynomial of degree r + 1 in the t,, = fos, 0 < m < r — 2. These
polynomials will be determined in section 3. Here are the first few. For
r=2,

t
(2.2.21) F=2.
6
Forr =3,
t02t1 t14
2, F=—4 —.
(2.2.22) 2 +72
And for r =4,
ity + tot2 422 1
(2.2.23) F=oz+01 +12+ 2

2 16 8.-5!

2.3 The string equation. Now, asin [6, 21], we will explain the basis for
the string equation, which we recall:

aF 1 r=2 oo r-—
(2.3.1) = nfro,ro, +> an-m m

3t0 0 2 i,J n=1 m=0 at" m
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To justify it, let = be a curve of genus g with s +1 marked points xo, . . . , Xs,
with xg labeled by (0, 0) and the other x;, i > 0 labeled by (n;, m;). The
corresponding correlation function is

s 1 3 .
(2.3.2) (To,o : 1_[ tn,-,mi) =3 (1—[ ci{&E)™" - ep(V), M,g,s-}-l)'
i=1

i=1

Now (except for a few low values of g and s) there is a map 7: J!I’g,s 1=
E’g' . that corresponds to forgetting about xo.! (At the level of the curves

parameterized by the M’s, this operation is more subtle, as we will recall
momentarily.) If it were the case that £; and V" were pullbacks of similar
objects on J(Ifg' ;» then (2.3.2) would vanish trivially, on dimensional grounds.
In that case, one would get not the string equation (2.3.1), but the simpler
formula

oF
3.3 — =0
(2.3.3) B0

Actually, the &; are not pullbacks of the analogous objects on My - This
depends on the following. Let @8, 541 be the universal curve parameterized
by E’g's 4+1- The map mw: @g,s+1 — @g,s that induces the forgetful map of

the M"’s does not consist just of forgetting xo; it also contracts to a point any
genus zero component that is left with only two marked points (or double
points) if xp is forgotten. Because of the latter step, the &; are not pullbacks
of the analogous objects on M g,s- Rather, there is a computable correction,
explained in references [6, 21], which leads to the term Zn‘ m In+1,mOF [0ty m
on the right hand side of the string equation.

Also, for g =0, s =2and g = 1, s =0, the forgetful map ./1“11_,;),'5-H — ﬂfg's
does not exist. The former case leads to the nij to,ito,j /2 term in the string
equation, as explained in [21], and the latter does not contribute since
for g = 1,5 = 0, the correlation function of equation (2.3.2) vanishes on
dimensional grounds.

These considerations suffice to prove the string equation if the ¢p (V)
factor is deleted in (2.3.1) (which was the case considered in [21]). To

1 This depends on the fact that mg = 0, so that if T isirreducible, an rf root I of K O(x;)™™i
can be chosen independent of xo. If T is reducible, and a genus zero component of X is
contracted upon forgetting about xo, the possible choices of J on X are still in natural 1-1
correspondence with their direct images g on the contracted curve o.
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N

Figure 2.

Jjustify the string equation with that factor present, we must also show that
the sheaves ¥’ and ¥ on .AI;, s+1 are pullbacks of the corresponding objects
on ﬁ;,s. To see this, the main point is that if (as in Figure 2) 3 is a
genus zero component of ¥ which contains xp and will be contracted if xg
is forgotten, then H!(Z, 7) has no elements supported on Xy. (This is an
easy consequence of the fact that such a ¥y has only three marked or double
points, one of which, xg, is labeled by m = 0.) Hence if E, T is the result of
contracting Zo, then H(Z, J) = Hl(f, g).

3. Analysis in genus zero

3.1 The first cases. In section 2.2, we obtained a recursion relation
which determines all correlation functions (t,, m, ... Ty, m,) in genus zero in
terms of the correlation functions of the primary fields 7p,, = 7. In this
section, we will complete the description in genus zero by determining the
quantities

(3.1.1) (Tmy - - Tm,) = (cD V), Mo,s) -
Here
(3.1.2) D=—-1+2y+y ) m=s5-3.

The correlation function of equation (3.1.1) vanishes for s < 3, since JE) s
is empty. For s = 3, the moduli space of stable curves consists of a single
point. The dimensional condition (3.1.2) requires m; +m, + m3 = r — 2.
In that case, ¥ is zero dimensional, and cp (V) = 1, so we get

(313) (Tm‘tmth:s) = 5m1+m2+m3,’”—2'
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N

Figure 3.

Now we move on to s = 4. The moduli space is one dimensional, so the
dimensional condition is ZLI m; = 2r—2,and ¥ is a line bundle. A smooth
curve ¥ of genus zero with four marked points can be identified as the
complex plane (plus infinity) with four distinct marked points xj, ..., Xs.
This identification is unique up to an SL(2,C) transformation of the x;.
Configurations of four distinct points, up to SI(2, C), give the open moduli
space Mo 4. Compactification is achieved by adding three points at infinity
where ¥ degenerates (as in Figure 3) to two components Z; and X, sharing
a double point and each containing precisely two of the m;.

We recall that away from infinity, V" = H WZ, K @ 91, where T is a line
bundle with an isomorphism ¢ : & = K ®}_, 0(x;)~™. Such a J is unique
up to isomorphism (and the isomorphism is unique up to multiplication
by an r® root of unity). In general, V' = H 0(Z, Hom(T, K)), where the
" behavior of 7 at infinity was explained in section 1.2. The first Chern class
¢1 (V") can be measured by computing the divisor of a section. To this aim,
we first pick a section s that trivializes ¥ over the finite part of moduli space,
and then we determine the behavior at infinity.

A trivialization of V" over the finite part of moduli space is given by the
section

’ Xm: Y11 —
yi-v [T;<j(xi = xj) 7™ =500

3.14 s = (dx
( ) ni=1 X — Xxg)¥m

(The meaning of such a formula is of course that under ¥': (K® 7 —HY®r ~
K®r—D @ €(x;)®™, s® is mapped to the r® power of the right hand side.)
This expression is SI(2, C) invariant, and so descends from the configu-
rations of four points on the Riemann sphere to the moduli space Mo,4.
s obviously has no zeroes or poles on My 4, where the x; are distinct. We
now must consider the behavior under degeneration.

As we have proved in section 2.1, ¥ is always a vector bundle in genus
zero. In particular in the presentsituation, V = H 0(%, Hom(T, K)) is always
one dimensional, even if ¥ is a degenerate curve with two components

259



EDWARD WITTEN

X;, i = 1,2. However, in that case, depending on the values of the m;, a
generator v of V may vanish on one of the %;. Indeed, each component
of ¥ contains precisely two of the x;. Suppose that as in the figure x; and x,
are on ¥; and x3 and x4 are on ,. If m; +m3 = m3+my4, then we are dealing
with a “Ramond” degeneration in the language of section 1.2. J is locally
free over the degenerate curve, and v does not vanish on either component.
Otherwise, say m; +mz < r — 2, m3 + my4 = r. This is a “Neveu-Schwarz”
degeneration. 7 is not locally free, but is the direct image of a locally
free sheaf on the normalization; this sheaf has degree —1 on X; and —2
on ;. Hom(J, K) is likewise the direct image of a locally free sheaf on
the normalization, which has degree —1 on £; and 0 on X;. Consequently,
H°(Z, Hom(7, K)) is one dimensional, as expected, and a generator v has
its support on X,.

Now, let us determine the behavior of the section s of equation (3.1.4)
near a degeneration with xj,x; on X; and x3,x4 on X;. On X, the de-
generation is x3 — x4, with x1, x5 fixed. In this process, s behaves as
(x3 — x4)Y Matma)2-(1=7)/3 56 the order of zero (or minus the order of pole)
is y(m3 +m4)/2 — (1 — y)/3. Similarly, on X, the degeneration is x; — xz,
with x3, x4 fixed, and the order of zero is y(m; + m3)/2 — (1 — y)/3. The
order of the zero of s is the smaller of these two numbers. (The order
of the zero is necessarily larger on a component on which the generating
section v of the last paragraph vanishes.) Adding similar contributions from
the other points at infinity, the total degree of the divisor of s is

(3.1.5) [s] =

(SR I

(min(my + my, m3 + mg) + min(m; + ms, my + my)

+ min(my + mq, ma +m3)) — (1 - y).

It is elementary (but not very obvious) that this formula is equivalent to

[s] =y min(my,...,m4,r — 1 —my,...,r — 1 —my). This gives the final
result,
(3.1.6) (Tmy - - Tmy) = ¥ -min(m;, r — 1 — my).

3.2 Uniqueness. Direct computation of the correlation functions for
§ = 5 appears to be considerably more difficult. Luckily, we can proceed
by using the associativity formula of section 2.2. Let F(ty, ..., —2) be the
generating function of the genus zero correlation functions of primaries; it
is the same as the generating function (1.4.8) with g, = tp, tnm =0, n > 0.
(We can drop fr..1 since we have established the decoupling of the Ramond
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sector in genus zero.) We know that F(fo, ..., #-2) isa polynomial of degree
at most 7 + 1, and we have determined above the terms of degree < 4.
As in section 2.2 let

0°F
(3:2.1) R TRUOE T

Then we obtained a formula

(3.2.2)  (Tun, Ty T D™ ™ (T Ty Tna) = Tty Ty T W™ ™ T Tny Ty )

(which is an “associativity” formula in a sense explained in section 2.2). I'will
now show that there is at most one solution F of this equation that agrees
with the known terms of degree < 4.

Suppose that F and F + G are two such solutions. In particular, then, the
lowest order terms in G are at least quintic. If inductively it is known that
the lowest terms in G are of order p, we will prove that in fact the p™ order
terms vanish. (The argument will only work for p > 5.) This will suffice to
prove G = 0.

Let G’ be the p® order part of G, and for s < p, let

G’

3.2.3 = ——
(3.2.3) {tm, - Tm,} By, . .. Ot

Subtracting equation (3.2.2) for F from the same equation for F + G, the
lowest order term (which is of order p — 3) is

(3'2'4) {Tml Tm, TM3+IH4} + {rml-i—mztmg tm4} = {Tml Tms TM2+M4} + [Tmﬁ-mg Tm, tm4}

where one is to set T, = 0 if m > r — 2. In arriving at this formula, we have

oM

used 7™ = Sy r—2 AN (T, Ty Tmy) = 8y +mytmy,r—2-

Consider an arbitrary p™ derivative of G/, say {4, ... rap]. letz>y>x
be the three largest of the a;, and let b; be the others. Setm; = x+z—(r— 1),
my=r—1—2z,m3=y,and my = z. All these m; obey0 <m; <r —2,but
ms + m4 and my + mg are > r — 2, so if one inserts these values of the m’s in
equation (3.2.4), at least two of the terms drop out. If x +y+2z > 2r — 2,
then three terms drop out of (3.2.4), which gives just {zy7y7;} = 0, and
hence {tg, ...7q,} (which is a derivative of this) is also zero. In general,
(3.2.4) gives

(325) {Txtyrz} = {tx+y+z—(r—1)tr—l—zrz}
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and hence upon differentiation
(3.2.6) {ta, - Ta,} = {ra; ra;}

where thea;, arex+y+z—(@—1),r—1—zz and the b;. Letz' > y' > x’
be the three largest a’’s. For p > 5, it follows from the dimensional formula
(3.1.2) thatr—1—zisnotone of x, y’, 2/, and hence thatx’+y'+2’ > x+y+z.
Consequently, after repeating this process finitely many times, we learn that
{ta, ... 7a,} = 0, as desired.

This shows that genus zero correlation functions of the 1o, are uniquely
determined by the associativity equation and the terms of order < 4. If in
addition one has the recursion relation of equation (2.2.12), then genus
zero correlation functions of arbitrary z, ,’s are uniquely determined.

3.3 Construction of F. We will now construct an F with the desired
properties by analyzing the Gelfand-Dikii and string equations in genus
zero. The F that those equations determine is known [7] to obey the
algebrogeometric recursion relation of equation (2.2.12), which determines
all genus zero correlation functions in terms of those of 7, . We will show
that in addition this F obeys the associativity equation and agrees with
the algebraic geometry as regards the terms of order < 4. In view of the
uniqueness that we have just seen, these facts suffice to verify the main
conjectures of section 1.6 in genus zero.

Background to what follows can be found in [8, 16]; the latter paper
contains an elegant analysis, not limited to the small phase space, of the
genus zero equations.

First of all, for reasons explained at the end of section 1.4, the genus zero
approximation to the Gelfand-Dikii equations is obtained just by replacing
commutators by Poisson brackets. Thus, writing p = D, we replace the
differential operator Q of section 1.5 by a function

r—2
(3.3.1) W(p,x)=p" =) ui@)p'.
i=0

The Poisson bracket of two functions A and B is

dA3B 0JAOJB
3.3. A B)= —— — ——.,
(3.3.2) {4, B) dp 9x 0x op

The fractional power W”/7, for integral n, will now denote the unique n/r
power of W that is holomorphic for large |p| and behaves for p — c0 as
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W ~ p". A function holomorphic and power behaved for large |p| has a
Laurent expansion at infinity, A(p) = > j__, Anp";wewrite A=A +A_,

with Ay = ) ;_o Anp". For any function A(p) (holomorphic for large | rD,
the residue operation is simply

(3.3.3) res(A) = f %A(p)

with the integral over a large circle at infinity. A useful fact is res(AB4) =
res(A_B), since res(A+B;) =res(A_B_) = 0.
In genus zero, the Gelfand-Dikii equations reduce to

oW
(3.3.4) - _ Cn’:m . {W_r*t_+(m+1)/r, w1,
n,m
with
(3.3.5) c Sl
bl n.m

T mEDrAm+ ... (ar+m+1)

W is determined in terms of the free energy F—which is the object we really
want—by

(3.3.6) _OF = (WD 0<m<r—2
e 3!0,031‘0,"; m+1 ’ -7 )

This uniquely determines the coefficients of W as polynomials in the
3°F/ 819,08%0,m- With W so determined, and with x identified with fy 9, the
Gelfand-Dikii equations (3.3.4) are equations for F. F is uniquely deter-
mined by those equations (or the once integrated version (1.6.5)) together
with the string equation:

oF 1 , 00 oF
3.3.7 — = =" to mlo.m' t )
( ) 300 51 tomlom + nz=02m: n+1,m T

On the small phase space, that is if ¢, » = 0, n > 0, the string equation
implies that

9’F
3.3.8 —_— =l
( ) at0,0atO,m Q,r—-2—m
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So comparing with (3.3.6), if all ,, ,, = 0, then res(W™+D/"y — 0, 0 < m <
r —2, and hence W = p” at that point. Also, differentiating (3.3.6) with
respect to x = fg,0, on the small phase space

d _8_ res(W("’+1)/’)

3.3.9 =
( 3) 8m.r2 m+19x

dW/dx is a polynomial in p (of order < r — 2); if this polynomial is of
order k, then the right hand side of (3.3.9) is non-zero form =r — k — 2.
Hence k£ = 0 and

(3.3.10) — =—1.
From this it follows thatfor0 <m < r — 2,

0 o (m+1)/r
3.3.11 —W = 0.
( ) ax
Hence, after explicitly evaluating the Poisson brackets, the first few Gelfand-
Dikii equations reduce to

oW 1 3 +yr
3.3.12 = —w, )
( ) Bto,j j +1dp

A special case of the basic equation (1.6.5) is

(3.3.13) PF__ r* res(W1HU+0/ry.
at(),oatl,j G+Dr+j+1D

The string equation implies that on the small phase space (t,., =0, n > 0)

0%F oF
(3.3.14) = ,
31‘0'03.&,]' 3to,_,'
so in fact
aF 2 .
(3.3.15) = ! res(Wi+U+D/ry,

o (G+Dr+j+1

Differentiating with respect to #,, and using (3.3.12), we get

aF r 0
3.5.16 W(m+1)/r W(]'H)/"} .
( ) 3to,j310,m (J+1D(@m+ 1) {
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Henceforth we work entirely on the small phase space, t, » =0, n > 0, and
we set b, = ty.m and T, = To,m.
ForO<m<r—2,1let

1 3 oW
3.3.17 = wmb/r "7
( ) Om milop+ o

Thus ¢,, = p™+lower order terms. In fact, the ¢,, are the monic orthogonal
polynomials for the “measure”

A
(3.3.18) (A) =r -rtes {w] ,

in the sense that

(3.3.19) (@i Pm) = Njm-

Indeed in evaluating

(3.3.20)

r " 3pW_$_j+l)/r3pW_f_m+l)/r
(j+Dm+1D o, W '

we can replace W_E_mH) r by W+D/7 without affecting the residue, and then
we have 3, Wm+D/r = 5w . wmHD/r=1. G 4 1)/r. So (3.3.20) reduces to

(3.3.21) res {W(m+1)/r-1 3, ng/r} .

j+1
This can be evaluated just from the leading behavior W = p" + .- -, to give
the claimed result.

Now we can describe a natural family of commutative, associative algebras,
compatible with the metric n, parameterized by the t,,. Indeed, consider the
algebra s{ = C[p]/d, W. A basis for this commutative, associative algebra as
a complex vector space is given by the monic orthogonal polynomials ¢,.
If we write explicitly

(3.3.22) Djbm = ijt¢t mod 3, W,
then Cjms = Cjm' Mes is

(3.3.23) Cims = I T€S [m} .

9, W

265



EDWARD WITTEN

In particular, ¢jms is completely symmetric, showing that o is compatible
with the metric n. We will show that
3F
3.3.24 ——— = Cjms-
( ) o1, dr, | ™
In particular, this implies that F obeys the associativity equation (3.2.2),
which as we have seen almost uniquely determines it.
(3.3.24) can be verified by a straightforward but not particularly trans-
parent calculation. By differentiating (3.3.16),

PF

r r
3.95 - _ .3.W(t+1)/r)_ iy - WOHDITY
(3325) Grouon 1+1res(¢' J z+1res(1¢" )
Also
1 ,
== — 9, +1)/r
(3.3.26) Y1 = 9% (w )+
1 ,
= =g, (WerD/riy, W)+
1 o
— _;ap (W(1+1)/r 1¢j)+ )
On the other hand,
(3.8.27) rres (%? d )
J+1)/r
_ r Pipjd, W_
= res (¢i¢jW“+l)/’ 1) — e ( e ng ) :

(3.3.27) can be related to (8.3.25) using (3.3.26) along with

[+1 _
(3.3.28) res (¢,-a,-w<’+1>/f) = ——res (¢,-W(’+1>/’ o)

1
_ I+ res (¢i¢j W(I+l)/r-1)
r
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The verification of (3.3.24) is completed by assembling these formulas.

To complete the demonstration that the function F determined by the
Gelfand-Dikii and string equations agrees in genus zero with the algebroge-
ometric calculation, we must check the terms of order < 4 in an expansion
in powers of the t,,. To begin with, the terms of order < 2 should vanish
(since Mo s is empty for s < 2). (3.3.16) implies that when all f,,,, = 0 (so
that W = p")

P*F

3.3.30 =0
( ) 0t; 0ty

so the quadratic terms vanish. The linear terms similarly vanish because
of (3.3.15). As noted in the introduction, the Gelfand-Dikii and string
equations do not determine an additive constant in F, and one can just set
the zeroth order term F (0,0, ...) to zero.

There remain the cubic and quartic terms in F. The cubic terms can be
read off from equations (3.3.23) and (3.3.24). Setting #,, =0, 3, W = rp™ 71,
¢m = p™, we get

’F

3.3.31 ; o
( ) (Tij'Cs) 3tj3tmats

= 5j+m+s,r-—2,
tn,m=0

in agreement with the intersection theory. The quartic terms can be com-
puted the same way, but we need the first order corrections to W, which can
be determined from (3.3.12). One finds

-2
(3.3.32) W=p - 5p.
=0
Hence
1 r—2 .
(3.3.33) Wim-i—l)/r _ p"’“ _m+ Z g; pmIHT 0@?)
r i=r—-(m-+1)
and so

1 (m+1)
(3.334) ¢ = ——0,W." Ir
= p" — 2 ) Lp™ T 4 0.

i=r—(m+1) r
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Let 8(x) be the function that is 1 for x > 0 and 0 for x < 0; and denote
the contribution to B3F/3tj8tm3ts that is linear in the #’s as (tj 7, %), Itis
straightforward to evaluate the term in (3.3.23) linear in the #’s, with the
result

r—2
1
(8.3.35) (Tjtmts) = Z ;—t,,(u —(mY+u—-r—-—D8m4+u—r—1
u=0

—(Jtu—r—-0D0G+u—-r—-1)
—(s+u-—r—-1)9(s+u—r—l)).

(The “4” term comes from the correction to W, and the terms proportional
to 6(...) come from the corrections to the ¢’s.) Differentiating this with
respect to f,, we get

(3.3.36) (tjtmtTstu) =;(u—(m+u—r-— Dem+u—r—1)
—(Jt+u—r—-0D0G+u—~-r-1)
—(s+u—r—-l)9(s+u—r—l)).

It is elementary-—though not very obvious—that this is equivalent to

1
(3.8.87) (- Ty} =~ minGmi, 7 = 1 —my),

in agreement with the formula (3.1.6) that we obtained from the algebro-
geometric definition.

I am grateful to P. Deligne for much advice in the course of this work. I
also wish to thank R. Dijkgraaf for explanations of the formulas of [8] and
related matters.
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