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As an attempt to reconcile quantum mechanics with gravity, superstrings are
not‘ a new idea, but real phenomenology of superstrings became possible only
upon the discovery of a generalized mechanism for cancellation of anomalies".
The discovery of a superstring theory with Eg X Fg gauge group ® has made the
subject even more exciting, and by now there has been much exploration of the
issues that are involved in attempting to make contact between superstrings and
four dimensional physics 1*=2% I attempting here a brief review of these matters, I
will concentrate on a single theme. The theme will be to describe the similarities
and differences between grand unification in four dimensions and unification in
a higher dimensional Kaluza-Klein or superstring context. I will contrast four
dimensional unification with higher dimensional unification in the following four
areas: (i) the origin of flavor; (ii) the fine tuning problem and the nature of Higgs
bosons; (iii) properties of the-Yukawa couplings; (iv) magnetic monopoles and

electric charges.

First we discuss the flavor problem, which is the modern version of Rabi’s
classic question ‘Who ordered the muon?’ The question is why observed fermions
seem to fit into (at least) three generations which are identical as regards gauge

quantum numbers. Why did nature choose to duplicate structure in this way?

To have any hope of understanding why there are three generations, we must

first discuss what the really fundamental feature is of the generation structure
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that nature has chosen to duplicate. The most fundamental feature — unknown,
of course, when Rabi originally posed the question — is that the quarks and
leptons that make up a fermion generation transform in a so-called complex:
representation of the SU(3) x SU(2) x U(1) gauge group. This means that
the left-handed massless fermions transform in a representation V7, of the gauge
group which is not equivalent to the representation Vg in which the right-handed
fermions transform. While Vg and V are inequivalent, they are (by the CPT
theorem) complex conjugates of each other, so the statement that VL is not
equivalent to Vg amounts to saying that V, is not equivalent to its own complex
conjugate or in other words that Vi is a complex representation of SU(3) x
SU(2) x U(1).

The fact that the fermion representation is complex means that the gauge
interactions violate parity. It is often described by saying that there is a chiral
asymmetry or a left-right asymmetry in the fermion quantum numbers. This
left-right asymmetry is important not only because parity violation is interesting
and important but also because the left-right asymmetry is the foundation of
our understanding of why fermions that are light enough to be experimentally

observeable exist at all.

As long as gauge symmetries are conserved, a left handed fermion can gain a
mass only by pairing up with a right handed fermion of the same gauge quantum
numbers (since a massive spin one half particle has two helicity states, which
must have the same gauge charges). The fact that the left- and right-handed
fermions transform differently under the gauge group means that-they. must re-
main massless as long as the gauge group is unbroken. What seems to happen
in nature is that the observed quarks and leptons remain masssless down to a
mass scale of a few hundred Gev at which the electroweak gaige group is broken
down to a subgroup — electromagnetism. At that point, the fermions are in a
real representation of the remaining gauge symmetries,and they can and do get
masses, except possibly for the neutrinos. We'do:not understand why the scale

of weak interaction symmetry breaking is so tiny compared to the Planck mass;
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this is the gauge hierarchy problem. But we do at least understand the lightness
of the quarks and leptons in terms of the lightness of the W and Z; it follows
from the chiral asymmetry between left and right handed fermions.

Could it be that the left-right ‘asymmetry in fermion quantum numbers is
just an illusion? Perhaps there are mirror fermions at a Tev energy scaie with
V + A couplings to the usual W bosons. (The mirror fermions could not be much
heavier than a Tev, since their masses would violate SU(3) x SU(2) x U(1),
given that this is so for the usual fermions.) I think that the existence of mirror
fermions is extremely unlikely. If they were discovered, we would lose our suc-
cessful explanation of why the usual fermions are so light compared to the mass
scale of grand unification or gravity; we would be faced with an embarrassing
puzzle of why the usualfermions are significantly lighter than their mirror coun-
terparts (much lighter; in the case of the first generation). Also, if mirrors exist,
the intricate cancellation of SU(3) x SU(2) x U(1) gauge anomalies among the
fermions of a sirigle generation is just an accident, since the mirrors would have

canceled the anomalies anyway.

. By continuously changing the parameters of a theory with unbroken gauge
group SU(3) x SU(2) x U(1), there is no way to disturb the left-right asymme-
try in the quantum numbers of the massless fermions. It does not matter here
whether the parameters that are being continuously varied are, say, unknown
coupling constants in the underlying equations or artificial parameters that la-
bel theoretical assumptions. Because the left-right asymmetry only depends on
qualitative facts about a theory, not on the details of how it is presumed to
behave, it has been over the years a fruitful matter to think about in trying
to understand grand unification both in four dimensions and in the context of

higher dimensional theories. It is very likely that we will be able to predict the

.

\
since the left-right asymmetry depends only on the universality class of a theory

with SU(3) x SU(2) x U(1) gauge interactions, it will probably be determined

universality class’ of the low energy world long before we can predict the details;

on theoretical grounds long before we understand the Cabibbo angle or the mass
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of the electron.

There is another reason that the chiral asymmetry is important. Chiral
asymmetry seems to be a delicate thing which is easily lost and less easily gained.
Passing from a theory at one energy scale A with left-right asymmetry to an
effective theory at a lower energy scale A’, there are many ways that the chiral
asymmetry of the original theory can be lost in going down to lower energies.
For instance, chiral asymmetry is actually lost in nature in electroweak symmetry
breaking at an energy of order one hundred Gev; it could easily have been lost
in compactification from ten to four dimensions, if a certain slightly intricate
chain of steps that I will mention later were not followed. While we know many
ways to 165e chiral asymmetry, we know of no ways to gain it in going from one
energy scale to a lower one. To gain chiral asymmetry by a dynamical process
starting with a non-chiral theory would require a mechanism for the binding of
charged massless fermions, and I personally would consider such a mechanism
strongly counter-intuitive. In fact, there are theorems which tend to show that
spontaneous generation of chirality does not occur in the dynamics of non-chiral
(vector-like) gauge theories!"™ 1If it is true that chiral asymmetry is easily lost
but difficult or impossible to gain, then the chiral asymmetry that we observe in
nature must be a trace of the most fundamental physical laws, whatever: those
may be. Indeed, along with general covariance and Yang-Mills gauge invariance,
left-right asymmetry of fermion quantum numbers would appear to be dne of the

few really fundamental observations about nature. ¥

Let us now survey some approaches to the problem of family ;eplfcatidﬁ, bear-
ing in mind that the chiral asymmetry of the fermion families is 6né of the basic
observations. Most work on the family problem in tixe context’of conventional
grand unification has been based on the idea that the unified gauge group G is
larger than a minimal SU(5),0(10), or Eg unified grofip, large ‘enough so that
several generations of quarks and leptons fit into a single generation of G. The
attempt to carry out this idea with G being a large SU(N) group is a fascinating

idea that runs into innumerable difficulties. An attempt which comes much closer
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to working is the idea"™ of taking G to be a large orthogonal group O(4k + 2)
with fermions in the spinor representation of G. This idea of ‘orthogonal family
unification’ beautifully fits several generations of fermions into an irreducible rep-
resentation of G. The only thing which is really wrong with it is that it predicts
at the same time an equal number of opposite chirality mirror generations, which
cannot be superheavy since (given that the conventional fermions are light) their
masses violate the gauge symmetries of the electroweak theory. Recently there
have been heroic attempts to make a viable model in which the mirror fermions
will be placed at the Tev mass region 1 While it may turn out that that is how
nature works, I consider it unlikely for reasons that I have already indicated. It
is on the other hand a very striking fact that orthogonal family unification works

just right in Kaluza-Klein theory without producing the mirror generations.

The basic idea behind this is the following. The Dirac equation in ten di-
mensions is D¥ = 0, where D is the ten dimensional Dirac operator D =
S ic1..10T?D;, the T%i = 1..10 being the ten dimensional gamma matrices.
Now, in fact, D = D; + Dk, where Dy = 3 ;. TD; is the four dimensional
Dirac operator and D = ¥ ;_s._10I"D;i is the Dirac operator of the compact
Kaluza-Klein space. This means that the internal Dirac operator Dy is the ‘mass’
operator of the effective four dilensional theory. In fact, if Dx¥ = A¥, then the
ten dimensional equation DW = 0 reduces in four dimensions to D;¥ + A¥ =0,
so that ¥ will be observed in four*dimensions as a fermion of mass A. Now, the
internal Dirac operator Dk acting on the compact space K will have a discrete
spectrum, and the eigenvalues which-are not zero will be of order 1/R, R being
the radius of K. Eigenvalues of order 1/R correspond to fermions of Planckian
masses, which certainly would not have been observed to date. The observed
quarks and leptons have masses that are essentially zero in Planck units, and

they must correspond to zero eigenvalues of the internal Dirac operator.

Now, why would a Dirac operator have zero eigenvalues? Some of the basic
facts about this question are known to physicists from instanton days. A Dirac

operator can have zero eigenvalues for topological reasons, the number of zero
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eigenvalues being determined by the values of suitable topological invariants.
Now, in the case at hand there is a separate Dirac equation for each.choice of
SU(3) x SU(2) x U(1) quantum numbers, and the number of massless multiplets,
in a given SU(3) x SU(2) x U(1) multiplet is simply the number of fermion
gero modes for the corresponding Dirac operator on K. The family problem
~ the question of why there are several massless multiplets of given SU(3) x
SU(2) x U(1) quantum numbers even though the microscopic theory began with
a single irreducible multiplet - is in this context simply the question of why a
suitable Dirac operator has not one but several zero eigenvalues. But this is not
an unusual behavior for Dirac operators; to cite a relatively familiar example,
a color SU(3) instanton acting on a single multiplet of fermions in the adjoint
representation of SU(3) would have six zero eigenvalues. We are thus led to the

program 223 of relating the number of generations to topological invariants of

K.

If we do manage to find several fermion generations, corresponding to several
zero modes of the internal Dirac operator, what chirality will these have? To
answer this, note that four ;ﬁmensiona.l chirality is measured by the product
I'(4) = PIT'2.. ' of the usual four gamma matrices. On the other hand, chirality
in the sense of the Dirac equation on K is measured by the internal chirality
operator I'(X) = I'ST'6,_T'!0, And chirality in the ten dimensional sense,(before
compactification, so to speak) is measured by the product I'(20) = T'IT2...T'° of all
ten gamma matrices. Now, it is just a fact of life of ten dimensional supergravity
that in supergravity theories that have elementary gauge fields (otherwise, it is
impossible to get chiral fermions [26]), the ten dimepsional fermions have definite
chirality, say I''® = +1. Since I'(10) = I'4) . P (¥), the fact that T'(*?) = 1 means
that T} = I'X), This wonderful equation says that chirality as measured by
four dimensional experimentalists (who, in effect, measure I‘(4)) coincides with
chirality as understood by observers on K studying the internal Dirac operator
Dg. A zero mode of Dg of I'¥) = +1 will give rise to a massless fermion in

four dimensions of I'4) = +1; a zero mode of ') = —1 will give rise to a
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massless fermion of I'(#) = —1. To obtain left-right asymmetry in the effective
four dimensional world requires that the Dirac operator on K has (for given
SU(3)x SU(2) xU(1) quantum numbers) rhore zero modes with one eigenvalue of
I'(X) than with the opposite eigenvalue. This is not an unlikely behavior at all; it
amounts to saying that the Dirac operator on K has a non-zero character- valued

index. These ideas in the Kaluza-Klein context were developed in [22,24,26].

There are many ways to implement these ideas. One approach which was
originally proposed in an ad hoc way in [26] but recently proved [5] to be very
natural and attractive in the context of Eg X Eg superstrings is the following.
Consider an SO(16) gauge group in ten dimensions with fermions in the positive
chirality spinor (or 128) of SO(16). After compactifying to four dimensions, we
have on the compact six manifold K a spin connection which is a connection
on the tangent bundle of K and so is a gauge field of SO(6) (or perhaps a sub-
group thereof). If we ‘embed the spin connection in the gauge group’ by setting
the gauge fields of an SO(6) subgroup of SO(16) equal to the spin connection,
then SO(16) is broken down to a subgroup — which generically is S 0(10). Now,
S0O(10) is essentially the only orthogonal group which is suitable for four dimen-
sional grand unification because it has a complex representation, the 16, which
is just right for accomodating a standard generation. With other orthogonal
groups one runs into the chirality problem I mentioned above, though one might
try to deal with this problem along the lines of [21]. It was for this reason that in
[26] an SO(16) gauge group rather than some other orthogonal group was taken
as the starting point. After breaking.SO(16) to SO(10) by ‘embedding the spin
connection in the gauge group,’ study of the Dirac equation shows that we indeed
get chiral fermions in the 16 of SO(10), the number of generations Ngen being
related to one of the most basic topological invariants of K, namely its Euler
characteristic. (In the superstring context, the precise relation turns out to be

"[5] Ngen = (1/2) - x(K), where x(K) is the Euler characteristic of K, which in
six dimensions can be any even number. In the model of [26] the number of gen-

erations was twice as large.) Choosing K to have a suitable Euler characteristic,
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one can well obtain several generations in this way, so that the flavor question
per se, the question of how to get a multiplicity of generations starting with a
unified underlying framework, is no mystery. What is unsatisfying is that several
aspects of the construction are rather artificial. The gauge group and fermion
representation that we started with and the choice of embedding the spin conec-
tion in the gauge group were all simply chosen to get the standard model in four
dimensions after compactification. It is therefore very satisfying that [5] recent
developments in superstring theory give a natural justification for these seem-
ingly arbitrary choices. The group Eg has a maximal SO(16) subgroup, and the
adjoint representation of g contains a 128 of SO(16), so these ingredients have
been practically forced on us by recent developments about anomaly cancella-
tion. Also, embedding the spin connection in the gauge group turns out in the
superstring context to cancel various anomalies and to give (if K obeys certain
conditions stated shortly) a solution of the equations of motion of the theory,
without generating a cosmological constant in four dimensions. This is in fact
the only presently known way to obtain compactified solutions of the superstring
equations, and it is one of the few examples in any Kaluza-Klein theory of any
sort in which a realistic candidate vacuum state does indeed obey the hoped-for
equations. Actually, the metrics which seem to give solutions of the equations of
the theory are Ricci flat Kahler metrics which are the so called metrits of SU(3)
holonomy. Their existence was conjectured by Calabi 1 and proved by*Yau B
The choice of such a metric leads first of all to unbroken N =1 supersymmetry
in four dimensions, a property which may well be desireable, ahd' setond to a
four dimensional gauge group which is Eg rather than SO(10). Just as SO(10)
is the one orthogonal group which is suitable for unificatiéa in four dimensions,
E; is the one suitable exceptional group 1 Compactification from ten to four
dimensions on manifolds of SU(3) holonomy turns out to lead in four dimensions
to a theory wi.th chiral fermions in the 27 of Eg (which is, of ¢tourse, the right
representation [35]), the number of generations still being half the Euler charac-

teristic. Actually, the logic I have followed here in sketching these matters was
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the reverse of that in [5]; there unbroken N = 1 supersymmetry was taken as the
initial requirement, and the other features were deduced as consequences. Yet
another possible line of development, sketched in the last section of [5] and pur-
sued further in {36] begins with the requirement of a conformally invariant two
dimensional sigma model as the starting point and deduces the other properties
from this. It is very satisfying that similar conclusions can be reached from so

many different starting points!*".

This completes what I will say about the family problem. Now we turn to
the question of Higgs bosons. If K is not simply connected there is a simple
mechanism for grand unified symmetry breaking which involves no ingredients
that aren’t present anyway. (Some of the relevant issues were first considered in
[38], the main difference being that when the fundamental group of K is finite,
as in many cases of interest, one is led to topological questions, such as those
sketched below, rather than to the dynamical issues considered in that paper.)
Let v be a non-contractible loop in K, beginning and ending at a point z. Let
U(z) = Pezp f'v A-dz, A being the Eg or O(10) gauge field that is still unbroken
after embedding the spin connection in the gauge group. For various.reasons,
such as a wish to keep unbroken N = 1 supersymmetry or a simple wish to obey
the equations of motion, it is desireable for A to be a pure gauge locally, with zero
field strength. If v is non-contractible, this does not require U = 1. If U # 1, then
in many ways U(z) is a field like any, other. In particular, if U # 1, then O(10) (or
Eg) is broken to the subgroup, that commutes with U. It is possible in this way
to get various more or less realistic gauge groups of rank five or rank six, such as
SU(3) x SU(2) x U(1) x U(1) or SUY3) x SU(2) x U(1) x U(1) x U(1) [7,12,13].
A rank four group cannot be obtained in this way, so there is a prediction of
at least one new gauge interaction beyond the standard model. If K has SU(3)
holonomy, a rank five group can emerge (7] if and only if the fundamental group

‘of K is non-abelian; otherwise there must be two new gauge interactions.

In many ways, U is similar to a Higgs boson ¢ in the adjoint representation of

the gauge group, U ~ ezpi¢. But there are essential differences. One difference
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arises if 7;(K) is finite, which is so for many choices of K of current interest (for
instance, it is true for all manifolds of SU(3) holonomy). For instance, suppose
m1(K) = Zy. Then n circuits of the curve y considered before make a contractible
loop, so it is necessarily so that U™ = 1. This means that the eigenvalues of U

t

are quantized; they are n** roots of unity.

To understand why this might be desireable, recall that one of the key mys-
teries in grand unified theories is the so-called fine tuning problem. This is the
question of why the energy scale of weak interaction symmetry breaking is,so
much smaller than that of unification. The problem arises because eigenvalues
of Higgs boson fields are continuously variable parameters, which depend contin-
uously on the values of unknown coupling constants. A massless weak doublet
can arise only if Higgs eigenvalues have special values, and conventionally this is
artificial. But, as I have just explained, in the context under discussion here the
relevant eigenvalues are naturally quantized and can take only discrete values.
On this grounds alone it is not too surprising that one finds that there are possi-
bilities for solving the fine tuning problem.[7,12,13], though I will not review the
details of this here.

Other special features of grand unified symmetry breaking by Wilson' lines
deserve mention. This procedure does not disturb the classical field’ equations,
assuming that these were obeyed at U = 1, and does not induce a cosmological
constant (at least not in the classical approximation) or break supersymmetry
(if this is otherwise unbroken). There is no need to postulate Higgs bosons or a
Higgs potential or any other ingredient that is not present automatically. Also,
symmetry breaking by Wilson lines is more or less topological in nature (for in-
stance, it involves discrete choices if the fundamental group of K is finite) so there
is a chance that it can eventually be understood and predicted by general, qual-
itative arguments — which, when available, are almost always more convincing
and satisfying than dynamical arguments. Many.other topological approaches
to grand unified symmetry breaking could be considered,.but generally speaking

the others would disturb the successful predictions concerning quark and lepton
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quantum numbers. (We have seen that unlike the situation in conventional grand
unified theories, the choice of vacuum configuration in a higher dimensional the-
ory determines the fermion quantum numbers; this was the key to getting the
right chiral structure in the first place.) Symmetry breaking by Wilson lines is
unusual as a topological approach to grand unified symmetry breaking that does

not have harmful implications for the fermion quantum numbers.

Now we turn to a discussion of gauge and Yukawa couplings. Again we begin
with some mathematical preliminaries. If 71(K) # 0, then K has a ‘covering
space’ Ko with 73(Ko) = 0. If the theory is formulated on K the number of
generations is No = (1/2) - [x(Ko)|. On K the number of generations is smaller,
being in fact N = (1/2) - |[x(K)|. In passing from K, to K many or most of the
quark and lepton states are ‘lost.” To quantify the effect of this, let me describe
symmetry breaking by Wilson lines in another way. On K we have a discrete
symmetry group G that acts freely; K is the quotient Ko/G. This means that
for any z € Ko and g € G, z and gz are considered equivalent as points in K.
An ordinary scalar field ¥ on K is the same thing as a field #(z) on Ky that
obeys ¥(gz) = ¥(z). This condition means that 1 ‘lives’ on K, not K,. When we
introduce symmetry breaking by Wilson lines, we must make a slight modification
in this requirement. If U is the Wilson line corresponding to g (taken in whatever
representation of the gauge group  is in) then the appropriate requirement is
¥(9z) = Uy(z). States that exist on Ko but do not obey the condition just

stated do not ‘survive’ when the theory is formulated on K rather than Ko.

The important point here is that, in general, the surviving states are not
states that on Ko were the O(10) or Eg partners of one another. If a given
quark obeys ¥(g9z) = Ut(z), its lepton partner will (typically) have different
U and so will not obey this condition. This has the following consequence. In
this theory as far as counting states is concerned the particles appear to form
répresentations of a grand unified group. There are as many u quarks as d quarks
or neutrinos or charged leptons. But they are not states that on Ky were O(10)

or E¢ partners. This has an immediate beneficial consequence. Since the physical
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fermions are not O(10) or Eg partners of one another; there are no simple group
theory relations among Yukawa couplings. This is a desireable state of affairs,
since such relations (such as my = m,, and its generalizations) are generally not
in agreement with experiment. On the other hand, the observed gauge bosons
of the four dimensional world all began as elements of a single O(10) or Eg
representation (the adjoint representation) so their couplings are related to one
another by the usual group theoretical formulas. As a consequence, the ‘Georgi-
Quinn-Weinberg relations among the gauge couplings will hold; these relations, of
course, are quite successful. It should definitely be counted as a success of higher
dimensional theories that — in this way — the group theory relations among gauge
couplings are preserved but the (superficially analogous) group theory relations

among Yukawa couplings are violated.

Another interesting point is the following. The usual X and Y bosons of
grand unification — the SU(5) partners of the photon — have U # 1 and do not
exist. Of course, particles with the same quantum numbers and the same order
of magnitude of mass and coupling of the X and Y bosons will exist and will
mediate proton decay, but since the proton lifetime scales like the fourth power
of the mass and the minus two power of the coupling of the heavy bosons, the
relation between unification scale and proton lifetime might differ by a couple of
orders of magnitude from what is conventionally calculated. One might almost

say that minimal SU(5) could be alive and well in ten dimensions!

I might also note that in discussions of proton decay, an important question
is to determine the branching ratios. In particular, when the proton decays, is
it more likely to emit an electron or a muon? This question is conventionally a
question about X and Y boson couplings which in turn (since those are gauge
bosons) amounts to the question ‘which charged lepton is the O(10) or Eg partner
of the d quark?’ In higher dimensional unification, the latter question has no
answer, as I have just explained, and the X and Y bosons do not exist. The
question about branching ratios in proton decay is still meaningful, of course,

but the ingredients in answering it will be somewhat different.
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Turning now to our third topic, if Yukawa couplings do not obey simple rela-
tions of a group theoretical origin, what relations will they obey? Before stating
the answer, I would like to note that it should come as no surprise that one has,
potentially, a great deal of predictive power for the Yukawa couplings. In fact,
the light fermions and Higgs bosons are all zero modes of suitable wave operators
on the compact Kaluza-Klein space K. The Yukawa couplings are certain cubic
terms that arise in expanding the exact ten dimensional theory in powers of the
light fields, and they can be computed by taking a suitable product of wave func-
tions and integrating it over K. Thus, if one knew everything about K (including
its metric) one would simply determine the zero mode wave functions by solving
the relevant wave equations on K (numerically, if need be) and then one could
determine all the Yukawa couplings by evaluating a certain integral (which arises
in expanding the ten dimensional action in powers of the light fields). While the
procedure just stated is perfectly sound in principle, it presupposes an amount of
information about K that will probably not be available at least for a very long
time. The question really should be ‘what simple relations among Yukawa cou-
plings are there that can be deduced in a general way?’ analogous to group theory
relations in standard grand unification. The answer to this is that the Yukawa
couplings obey relations of a topological origin. A preliminary discussion of this
was made in [39] and stronger results were recently obtained in [40}. Topological
relations emerge because the particular integrals that arise in evaluating Yukawa
couplings have a topological interpretation, in terms of the so-called cohomology
ring of K. While that description holds in limiting low energy field theory, it
can be shown [37] that at least the original relations derived in [39] also hold in

string theory, at least to all finite orders in sigma model perturbation theory.

What I find promising about this is the following. In the quark and lept.on
mass matrices, certain elements seem to be zero or very small. For instance,
ct;,rtain of the fermions are extremely light, and in the the Fritzsch form of the
mass matrix, certain matrix elements are taken to be zero. The most straight-

forward approach to trying to get someé matrix elements to vanish is to assume
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suitable global symmetries. However, attempts to explain the observed form of
the fermion mass matrices via global symmetries have always led to.difficulties.
At least in simple approaches, symmetries that forbid unwanted elements of the
mass matrices seem to also forbid elements of the mass matrices that are not
zero or small in nature. Higher dimensional unification may ultimately shed a
completely new light on this problem since the unwanted elements of the mass
matrix could well vanish for topological reasons without unwanted consequences
for other matrix elements. Although models with realistic mass matrices are
probably still far way, it is already possible to say something about Yukawa
couplings in toy models. For instance, in [7] it was determined which Yukawa
couplings were zero in the four generation model introduced in [5]. (It was not
necessary to use the full force of topological reasoning since a relatively simple
tool which might be referred to as ‘pseudosymmetries’ sufficed in that case.) The
result was that of the four generations, two obtained tree level masses and two
were massless at tree level. Various Yukawa couplings vanished at tree level, and
interestingly the vanishing Yukawa couplings were such that (like the Yukawa
couplings in the real world) the pattern would be difficult to explain via global
symmetries. Yukawa couplings in another toy model were recently studied in
(10].

The last topic I wish to discuss concerns the allowed values of electric and
magnetic charge in theories that are unified only in some higher.dimension [41].
In any theory that includes electromagnetism, one can defin®e at spatial infinity
the U(1) Dirac monopole gauge field. Monopoles exist if this can be extended
throughout all space without encountering a singularity. This is impossible if the
gauge group is U(1) or more generally if it is any group such as SU(3) x SU(2) x
U(1) which has a U(1) factor. However, many years ago ’tHooft and Polyakov
showed that in four dimensional unified theories one can always ‘unwrap’ the
monopole, obtaining in conventional grand unified theories states whose magnetic
charge equals the Dirac quantum. But what if unification in SU(5) or O(10) or Eg

occurs not in four dimensions but only in ten dimensions? In this case we cannot
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unwrap the monopole in the four dimensional unified gauge group, because there
is none. We must try to unwrap it in the ten dimensional gauge group. The
topological problem is completely different, and there is no reason to expect the
answer to be the same. To be precise, what must be done to determine whether
the monopole exists is the following. We begin with the Dirac monopole gauge
field not on S% but on S% x K (here S? is the ‘sphere at infinity’ and K is the
Kaluza-Klein space) and we try to extend it over R® x K (R? being physical
three space) without singularity. Can this be done? It turns out [41] that there
is a non-trivial obstruction. When the dust settles, the picture that emerges is
the following. Magnetic monopoles always exist, but the minimum allowed value
of magnetic charge is typically larger than it would be in conventional grand
unified theories. Generically, if for instance #1(K) = Z,, the minimum possible

magnetic charge is not the Dirac quantum (27 /e) but is rather n times larger.

This is purely a field theoretic result, which emerges upon solving the topo-
logical problem I just described. However, the result that the minimum allowed
value of magnetic charge is not (2r/e) but n - (27 /e) is surprising at first sight,
and one may ask what is the ‘physical’ reason for this result. It has no simple
‘physical’ explanation in field theory, as far as I know, but upon coupling to string
theory a simple ‘physical’ explanation emerges in a dramatic way. I have been
tacitly assuming that grand unified symmetry breaking was carried out by Wil-
son lines (otherwise, in fact, the whole topological problem must be reexamined),
so implicit in the whole discussion is the fact that the fundamental group of K is
non-trivial; in fact, we took it to be Z,. This being so, in a theory that only has
closed strings, there are stable, superheavy states in which a closed string wraps
around a non-contractible loop in K. If we are incredibly lucky, we might one
day observe such particles in cosmic rays; but that is another story. In any case,

; guantization of string theory in the ‘winding’ sectors shows that these modes
have electric charge e/n precisely when the minimum allowed value of magnetic
charge is n - (27 /e). I should stress, perhaps, that the winding states of electric

charge ¢/n are color singlet, unconfined states. Their existence ‘explains’ why the
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minimum magnetic charge would be n times larger than the Dirac quantum. The
remarkable thing about these results is that the magnetic charge is determined
by geometric-topological methods which seem to have nothing to do with string
theory, but which somehow ‘know’ that one day this problem will be coupled to

the theory of closed strings.

In summary, unification in higher dimensions preserves the standard successes
of four dimensional unification. The light fermions fit in representations of O(10)
or Eg, and the Georgi-Quinn-Weinberg relations are valid. On the other hand,
there are a few interesting differences from the standard framework. The Yukawa
couplings do not obey O(10) or Es relations but obey instead other relations of
topological origin. The Higgs expectation values are quantized, giving perhaps
the possibility of an insight into the hierarchy problem. There are particles
(albeit superheavy) whose electric charges could not arise in any representation
of the grand unified group; and conjugate to this some of the usual magnetic
monopoles are missing. There is evéry reason to think that higher dimensional
theories, and especially superstring theory, will give us the opportunity in coming
years to rethink some of the issues which have been left open by the successes

of conventional grand unification and which have fascinated and puzzled us so
much.
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