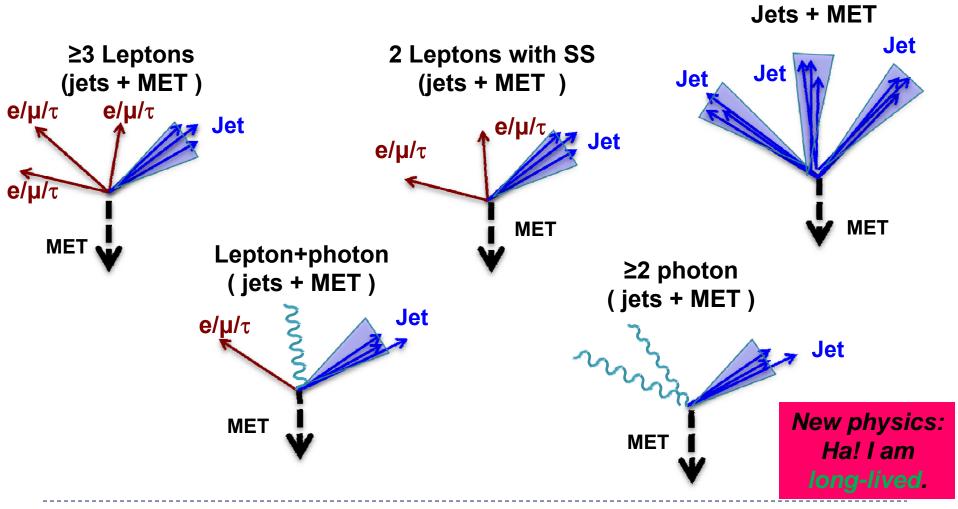
New Physics with Leptons - Experiment

Sunil Somalwar Rutgers University

Prospects in Theoretical Physics IAS, July, 2013

Lecture Plan

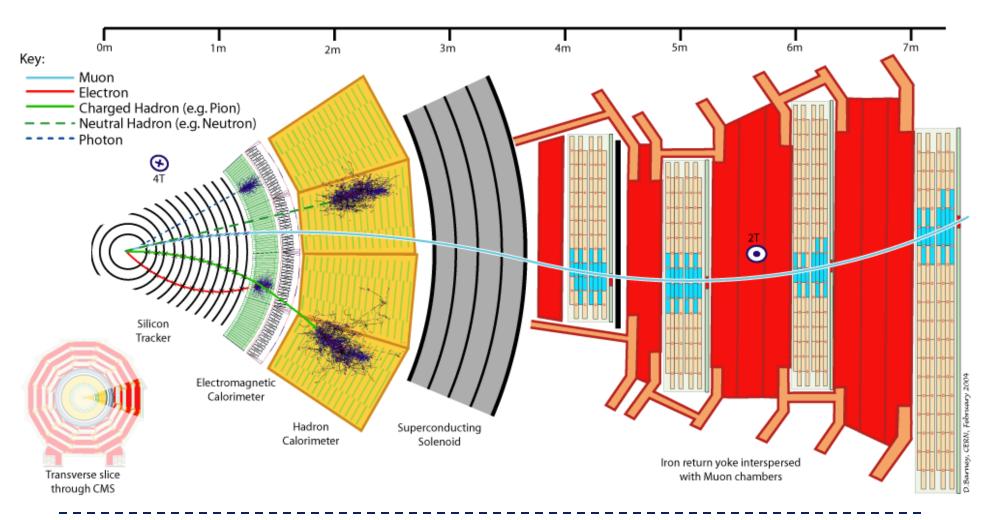

- Search considerations Multilepton example.
- It is all about Standard Model. ("fake" rates)

<><< Gedanken coffee break: dealing with experimentalists.

- Results. (Beyond SM possible only after SM.)
 - No offense to the mono or dilepton folks, but this is going to be a polylepton talk because that is what I do.
 - In collaboration with Scott Thomas.
 - CMS-centric.
 - ATLAS Profs. Lipeles (Wed) Heinemann (Thu/Fri) jet/MET, bkgnds.

Conventional Search Axes

(MET or jets/HT etc not guaranteed!)



The odds are pretty bad: SM cross sections

Process pp → X	σ*B (8 TeV)	Events (20 fb ⁻¹)	"Objects"
W (→ <i>ℓ</i> =e ,μ,τ)	38 nb	750M	one lepton + MET
$Z/\gamma^* (\rightarrow \ell^+\ell^-)$ (m _{$\ell\ell$} >20GeV)	6 nb (~60% pole)	110M	Two leptons
ttbar (\rightarrow bWbW, W $\rightarrow \ell \nu$)	24 pb	500K	Two leptons + MET
$WZ(\rightarrow \ell \nu \ell^+ \ell^-)$	1 pb	20K	Three leptons + MET
New physics	10 fb (say)	200	3 leptons+? (lemonade) or 2 leptons + ?? (Vodka) or 1 lepton + ??? (H ₂ SO ₄)

From CMS results, internal CMS twiki etc

CMS = Compact MUON solenoid

Trilepton Search Tools

- Muons, electrons
- Tau's
- Lepton kinematics (dilepton invariant mass, eg)
- Missing ET
- Jets:
 - Number of jets (about 30 GeV, say)
 OR
 - HT = Sum of Jet Pt's
 - B tagged jets

Trilepton hierarchy (e/mu)

- $\Sigma q=+-3$: $\mu^-\mu^-\mu^-$ then $\mu^+\mu^+\mu^+$ (e.g. 8TeV $\sigma(W^+Z)/\sigma(W^-Z)\sim 1.81+-0.12+-0.03)$ $<math>\mu\mu\mu$, $\mu\mu$ e, μ ee and eee
- $\Sigma q = +-1$:
 - $\mu^+\mu^+e^-$, $e^+e^+\mu^-$ ($\ell^+\ell^+\ell^-$) & c.c. (No OSSF, SSSF, DY0) (Really no Drell Yan in μ^+e^- ?)
 - $\mu^{+}\mu^{-}\mu^{+-}$, $\mu^{+}\mu^{-}e^{+-}$, $e^{+}e^{-}\mu^{+-}$ ($\ell^{+}\ell^{-}\ell^{'}$) (OSSF, DY1) - $m_{\ell^{+}\ell^{-}} > 90$ GeV, $m_{\ell^{+}\ell^{-}} < 75$ GeV, $75 < m_{\ell^{+}\ell^{-}} < 90$ GeV

"Theory" and "experiment" now diverge $\rightarrow \tau$

$$J=\frac{1}{2}$$

PDG

Mass $m=1776.82\pm0.16$ MeV $(m_{\tau^+}-m_{\tau^-})/m_{
m average}<2.8 imes10^{-4}$, CL =90% Mean life $au=(290.6\pm1.0) imes10^{-15}$ s $c au=87.11~\mu{
m m}$

au^- DECAY MODES

Fraction (Γ_i/Γ) Confide

Modes	with	one	charged	particle

```
particle^- \geq 0 neutrals \geq 0 K^0 \nu_{	au} (85.35 \pm 0.07 )%
    ("1-prong")
particle^- \geq 0 neutrals \geq 0 K_I^0 \nu_{	au}
                                                      (84.71 \pm 0.08)\%
                                                  [g] (17.41 \pm 0.04)\%
   \mu^- \overline{\nu}_\mu \nu_\tau
                                                  [e] (3.6 \pm 0.4) \times 10^{-3}
      \mu^- \overline{\nu}_\mu \nu_\tau \gamma
   e^- \overline{\nu}_e \nu_{\tau}
                                                  [g] (17.83 \pm 0.04)\%
      e^- \overline{\nu}_e \nu_\tau \gamma
                                                  [e] (1.75 \pm 0.18)\%
   h^{-} \geq 0 K_{L}^{0} \nu_{\tau}
                                                         (12.06 \pm 0.06)\%
   h^- \nu_{\tau}
                                                         (11.53 \pm 0.06)\%
      \pi^- \nu_{\tau}
                                                  [g] (10.83 \pm 0.06) %
      K^- 
u_{	au}
                                                  [g] (7.00 \pm 0.10) \times 10^{-3}
   h^- \geq 1 neutrals 
u_{	au}
                                                       (37.10 \pm 0.10)\%
   h^{-} \geq 1\pi^{0} \nu_{\tau} (\text{ex.} K^{0})
                                                  (36.58 \pm 0.10)\%
      h^-\pi^0\nu_{\tau}
                                                         (25.95 \pm 0.09)\%
          \pi^-\pi^0
u_{\sigma}
                                                  [g] (25.52 \pm 0.09)%
          \pi^{-}\pi^{0} non-\rho(770)\nu_{\tau}
                                                         (3.0 \pm 3.2) \times 10^{-3}
          K^-\pi^0
u_{	au}
                                                  [g] (4.29 \pm 0.15) \times 10^{-3}
```

Modes with three charged particles

INIOGCS WILLI	mice character particles
$h^- h^- h^+ \geq 0$ neutrals $\geq 0 {\cal K}_L^0 u_ au$	$(15.20 \pm 0.08)\%$
$\mathit{h^-h^-h^+} \geq 0$ neutrals $ u_ au$	(14.57 ± 0.07) %
(ex. $K_S^0 ightarrow \pi^+\pi^-$)	
("3-prong")	
$\mathit{h}^-\mathit{h}^-\mathit{h}^+\nu_ au$	(9.80 ± 0.07) %
$h^- h^- h^+ u_{ au}({ m ex}.{\cal K}^0)$	(9.46 ± 0.06) %
$\mathit{h}^-\mathit{h}^-\mathit{h}^+\nu_{ au}(ex.\mathcal{K}^0,\omega)$	(9.42 ± 0.06) %
$\pi^-\pi^+\pi^- u_ au$	(9.31 ± 0.06) %
$\pi^{-}\pi^{+}\pi^{-}\nu_{ au}({ m ex}.K^{0})$	(9.02 ± 0.06) %
$\pi^{-}\pi^{+}\pi^{-}\nu_{ au}({ m ex}.K^{0}),$	< 2.4 %
non-axial vector	
$\pi^-\pi^+\pi^- u_ au$ (ex. K^0,ω)	[g] (8.99 ± 0.06) %
$\mathit{h^-h^-h^+} \geq 1$ neutrals $ u_ au$	(5.39 ± 0.07) %
$h^- h^- h^+ \geq 1 \pi^0 u_{ au} (ext{ex. } \mathcal{K}^0)$	(5.09 ± 0.06) %
$\mathit{h^-h^-h^+\pi^0} u_{ au}$	(4.76 ± 0.06) %
$h^- h^- h^+ \pi^0 u_{ au} (ext{ex}. K^0)$	$(4.57 \pm 0.06)\%$
$h^- h^- h^+ \pi^0 u_{ au} (ext{ex. } K^0, \omega)$	(2.79 ± 0.08) %
$\pi^-\pi^+\pi^-\pi^0 u_ au$	(4.62 ± 0.06) %
$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{ au}({ m ex}.{\cal K}^{0})$	(4.48 ± 0.06) %
$\pi^-\pi^+\pi^-\pi^0\nu_{\tau}(\text{ex.}K^0,\omega)$	[g] (2.70 ± 0.08) %

τ summary (PDG)

- Leptonic BR($\tau \rightarrow e/mu$) ~1/3
 - Comes automatically
- Hadronic ~2/3
 - ~1/3 "Single prong" Isolated track with or w/o π^0
 - ~1/3 "Three prong" (also) like a pencil jet
- For possible future use:
- $\tau_{\gamma c\tau}$ =1.7mm @35GeV

τ's in CMS

- Hadronic BR($\tau \rightarrow 1+3 \text{ prong}$) ~2/3
- Use "particle flow" reconstruction of jets etc (HPS algorithm) to reconstruct hadronic tau's with ~40% efficiency (pt > 20 GeV)
- But ~1% of jets (which are ubiquitous) still show up as fake tau's. This is a hard business.
- Still useful for tau-dominated new physics.

Trilepton hierarchy (e/mu/τ)

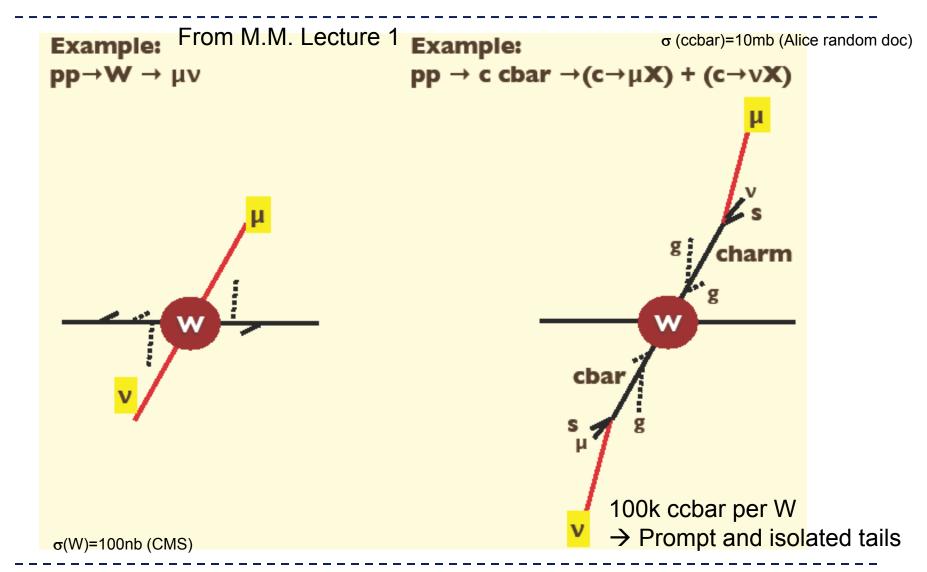
- τ_h is the "experimental" tau. It denotes the reconstructed decay when the parent "theory" tau decays hadronically.
- Leptonic decays of the theory tau show up in the search channels as e/mu's. They generally have much better signal/background than channels with τ_h .
- $\mu^{+}\mu^{+}e^{-}$, $e^{+}e^{+}\mu^{-}$ ($\ell^{+}\ell^{+}\ell^{'}$) & c.c. (No OSSF, DY0)
- $\mu^{+}\mu^{-}\mu^{+-}$, $\mu^{+}\mu^{-}e^{+-}$, $e^{+}e^{-}\mu^{+-}$ ($\ell^{+}\ell^{-}\ell^{'}$) (OSSF,DY1) • $m_{\ell^{+}\ell^{-}} > 90$ GeV, $m_{\ell^{+}\ell^{-}} < 75$ GeV, $75 < m_{\ell^{+}\ell^{-}} < 90$ GeV
- $\ell^+\ell'^+$ τ_h (SSOF + tau)
- $\ell^+\ell^+ \tau_h$ (SSSF + tau)
- $\ell^+\ell^2$ τ_h (OSOF + tau)
- $\ell^+\ell^-\tau_h$ (and mass subdivisions) (OSSF + tau)
- $\ell \tau_h \tau_h$ (needs single lepton trigger, too much background)
- Now make subsamples in bins of MET/HT, b-tags etc etc
- Similarly, 4-lepton categories.

Tau examples

- a) 1000 $\ell^+\ell^-\tau$ (theory) signal events with **normal** pt's, MET etc.
- 330 show up as *lll* (trileptons with e's and mu's)
 - 165 survive detector acceptance (80%³ = 50%) and have ok S/B
- 660 undergo hadronic tau decay
 - 165 $\ell^+\ell^-\tau_h$ survive acceptance (80%^2 * 40% = 25%) but have lousy S/B
- → Marginal increase in acceptance
- b) 1000 $\ell^+\ell^-\tau$ (theory) signal events with **high** pt's, MET etc.
- 165 reconstructed \(\ell\ell\ell\)'s have \(\ell\ell\ell\)'s have
- Equal number of $\ell^+\ell^-\tau_h$ events also have good S/B
- → Acceptance almost doubles
- c) $\tau \tau \tau$ signal \rightarrow Throw everything you got at it and pray that it has good MET etc.

Next - It is all about the Standard Model.

SM Backgrounds: MC vs "Data-Driven"


Why not just Monte Carlo all the backgrounds?

- → Recall 110M Z/g* dileptons vs 2000 signal events
- → Devil is in da tails.
- → Data-driven backgrounds ("fake" rates)
 - → Large data samples available

MC for "irreducible" backgrounds (eg WZ)

- → Smaller cross sections means tails peter out
- → Validate in control regions as much as possible

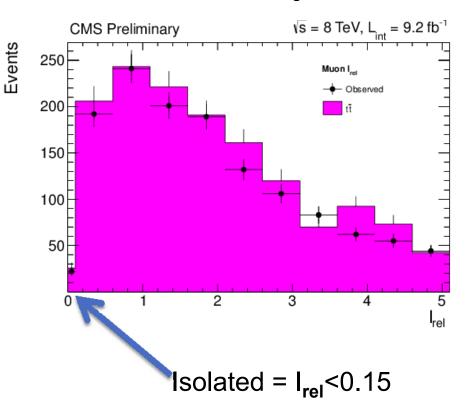
Before Background Issues: Prompt and Isolated

Simulated Background: ttbar

ttbar validation: Single lepton control Region.

$$I_{rel}$$
 = (Σ (Calo Energy+Track pt)/lepton pt (in a 0.3 η-φ cone)

Require an isolated muon Pt>30GeV,3jets,b-jet.


→ Look at other muons (from ttbar jets) that have large impact parameter (>200 microns in xy).

PDG - B
$$^{0}_{c\tau}$$
 = 450microns
 $\rightarrow \gamma c\tau$ for a 50 GeV B 0 = 4500 microns

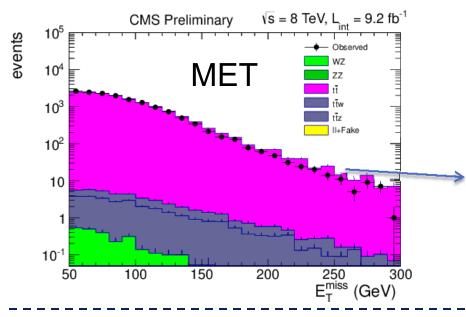
CMS vertex resolution ~ 25 microns

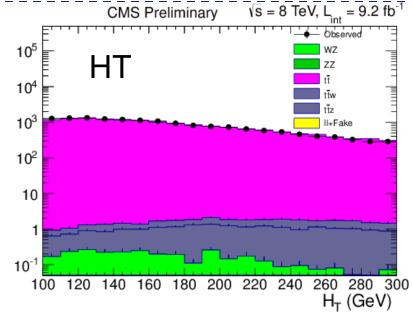
Isolation tail of muons already on the "prompt" tail

NOTE: Tail in this case goes to the left!

Sunil Somalwar, Rutgers, PiTP, IAS, July 2013

Simulated Irreducible Background: ttbar


events

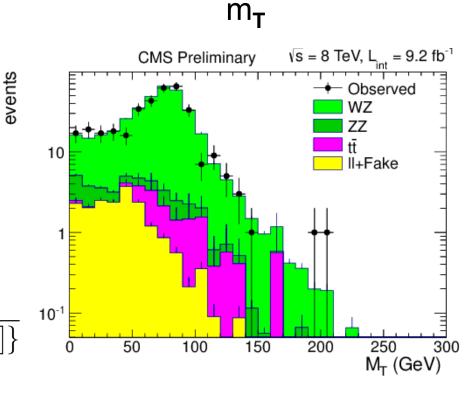

ttbar MC validation: Dilepton control Region.

Opposite sign electron-muon pairs

(different flavor – No Drell Yan)

 $HT = \Sigma$ (jet pt for jets with pt>30 GeV)

NOTE SIGNS OF TROUBLE. More on matching MET later


Simulated Irreducible Background: WZ

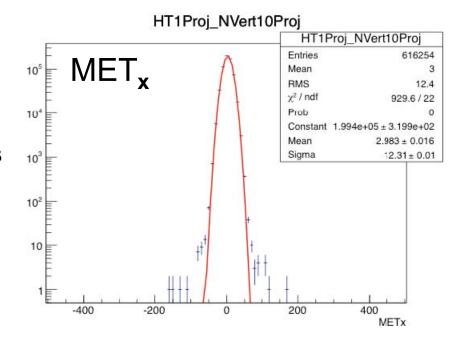
WZ MC validation in a trilepton control region

- OSSF pair in the Z window $75 \text{GeV} < \text{m}_{\ell\ell} < 90 \text{GeV}$
- 50 GeV < MET < 100 GeV
- HT < 200

m_T – Lepton-MET transverse mass

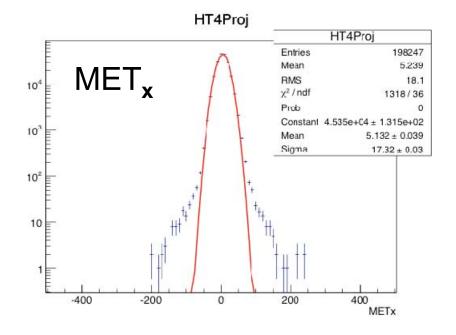
$$m_T = \sqrt{2 p_T(l) p_T(v) \{1 - \cos[\phi(l) - \phi(v)]\}}$$

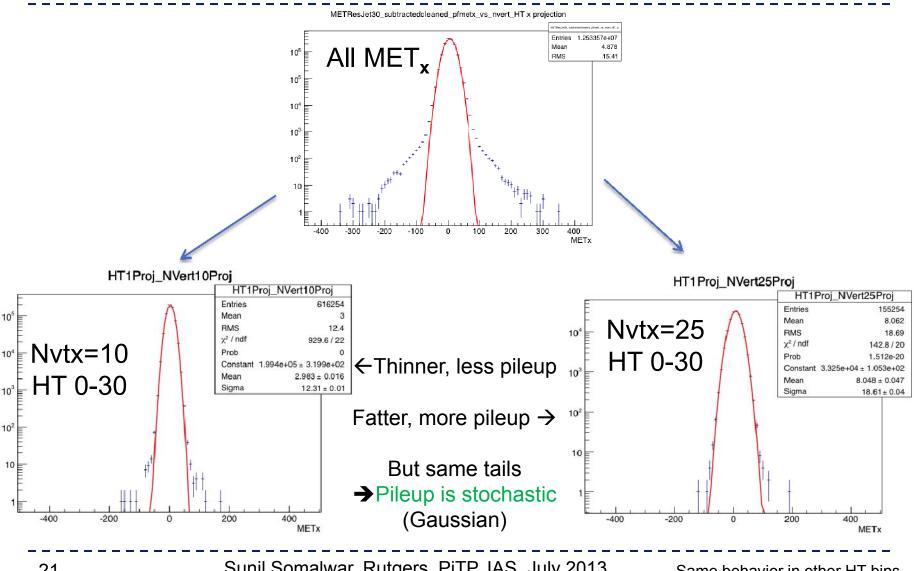
MET (neutrino proxy) and mT are highly correlated

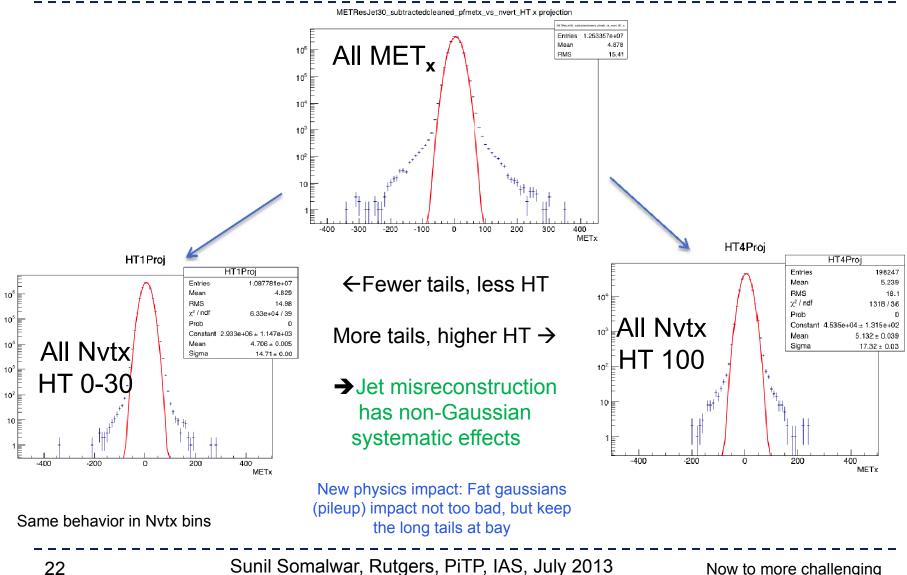

Sunil Somalwar, Rutgers, PiTP, IAS, July 2013

Subtitle:

Boring things that excite experimentalists.


MET is critical in search for new physics


- Must understand/improve its resolution because of possible new physics on the tails
- We match the MET resolutions in simulated SM backgrounds to data.
- & learn interesting things about underlying issues such as pileup and jets.



Sanjay Arora

- Same METx under different conditions >
 - Only two orders of magnitude.
 - RMS also went from 12 to 18 GeV
 - What changed?
- Last plot:
 - Nvertex = 10, i.e. low pileup conditions
 - HT 0-30 GeV, i.e. fewer and low pt jets.
 (jet misreconstruction screws up MET)
- This plot:
 - All nvertex (=average 2012 pileup conditions)
 - HT ~100 GeV
- Let us separate the impact of pileup and jet misreconstruction

Data-driven backgrounds: Z/γ*

- σ(Z/γ*→ ℓ+ℓ⁻) (m_{ℓℓ}>20GeV) = 6nb!
 → High degree of rejection/understanding needed.
- Dileptons from Z + "fake" lepton. The fake is mostly a real lepton from semileptonic decays posing to be prompt and isolated.
- Fake rate methods have to take into account the environment, in particular, the b-quark content in the decay products.
- Also should have good statistical power
- Avoid signal contamination issues etc

Data-driven Z/γ^* : CFO Method (CMS)

• Want: The probability of a third ("fake") isolated and e/mu in the dilepton sample. (tau's later.)

$$B^{+/0}$$
 , $D^{0/+}\mu^+\nu$ $D^{+/0}$ > $\mu^+\nu$ K^+ Heavy flavor content important!

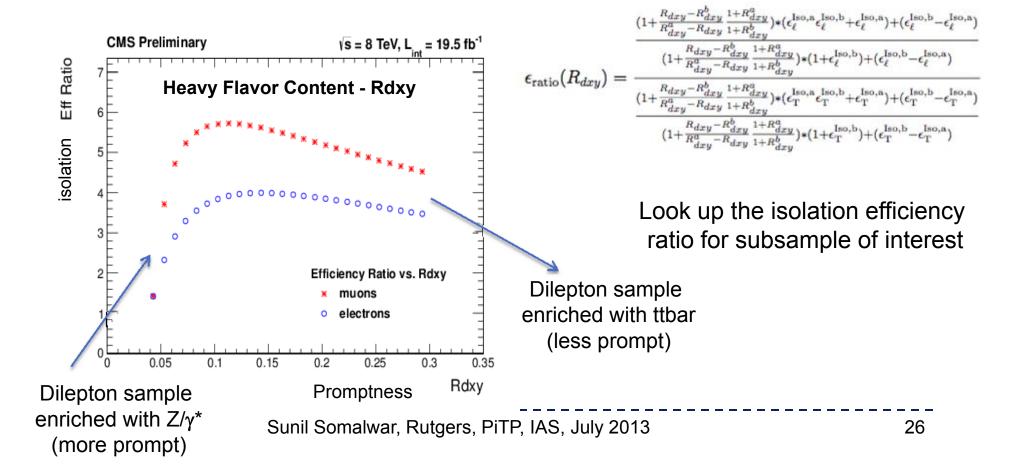
- Not a global rate, but the rate for a subsample of interest that has certain MET, HT, b-tags etc.
- People extrapolate semi-isolated leptons ("tight-loose" method), but the subsamples can be small.
- Combined Fakable Object (CFO)(Richard Gray, CMS) Method use the (non-isolated) tracks and leptons in the subsamples and apply the isolation probability measured separately.
- Count the number of isolated tracks in the sample, multiply by the known ratio f_{μ} of production rate of isolated muons and isolated tracks.
- How to measure the ratio f_{μ} of isolated leptons and isolated tracks? Factorize:

$$f_{\mu} = \frac{N_{\mu}}{N_{T}} \times \frac{\epsilon_{\mu}^{Iso}}{\epsilon_{T}^{Iso}}$$

- •1st factor is easy: production ratio of muons to tracks in the subsample (non-isolated, so plenty).
- •2nd factor (isolation efficiency ratio): Measure in the full sample, but....

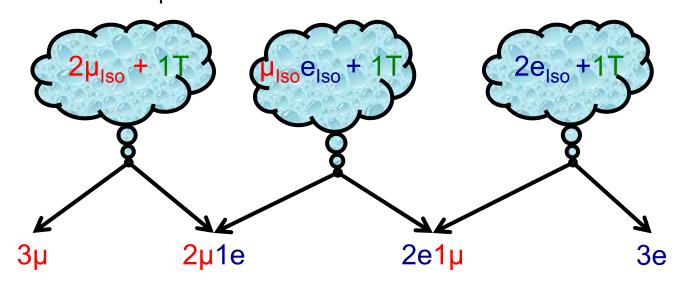
Data-driven Z/γ^* : CFO Method (CMS)

- Rate of a third isolated muon = $f\mu$ * Rate of isolated tracks
- To measure fμ :


$$f_{\mu} = \frac{N_{\mu}}{N_{T}} \times \frac{\epsilon_{\mu}^{Iso}}{\epsilon_{T}^{Iso}}$$

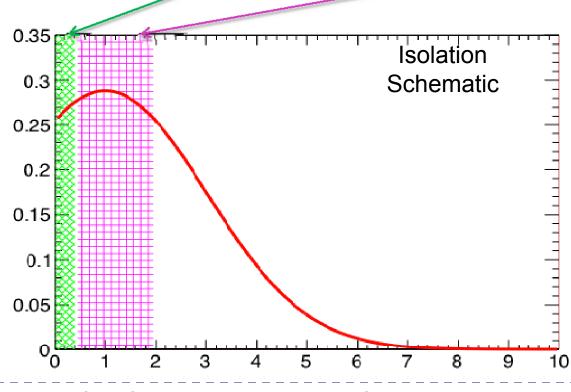
- 1st factor: ratio of non-isolated muons to tracks in the trilepton subsample of given kinematics.
- 2nd factor (isolation efficiency ratio): Measured in the full dilepton set, but as a function of heavy flavor (HF) content (B,D mesons).
- This is because the HF content of the subsample varies with MET/HT etc. This impacts the isolation efficiency.

Quantifying the heavy-flavor content

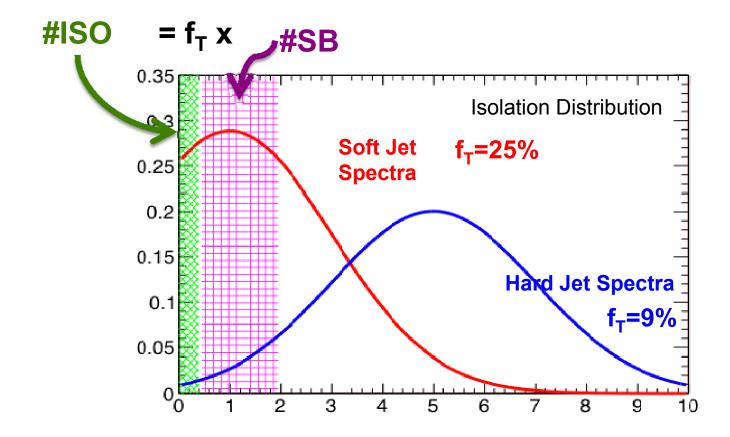

Back to the "prompt" in "prompt and isolated" B's and D's have nonzero lifetimes. π^{+-} 's don't.

Rdxy = (#Tracks w impact parameter >200 microns) ÷ (.... < 200 microns)

Summary: Predicting SM Background due to "Fake" Prompt Lepton

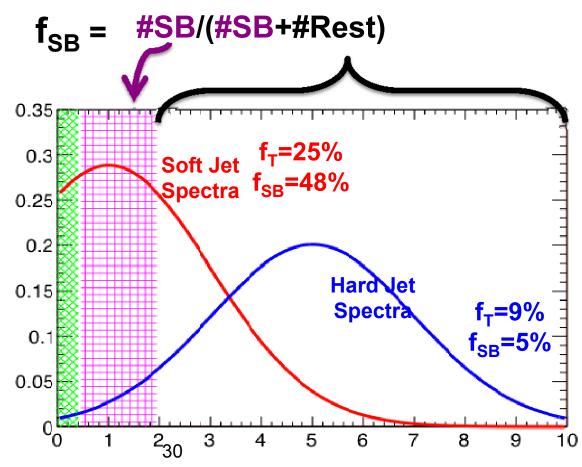

 Multiply the number of isolated tracks in the dilepton subsample by f_u and f_e separately

Done with e/mu's. Tau?


Isolated Tau fake rates

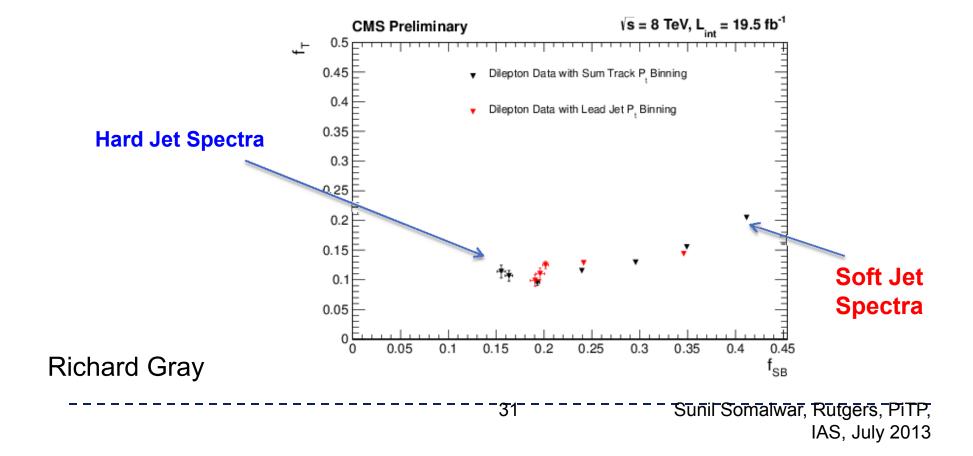
- Unfortunately, plenty of jets fake tau's, so statistics is not a problem.
- Tau's are pencil jets being faked by fatter jets
- Subsample environment still is (in terms of isolation)
- Promptness not an issue culprits are generic jets, tau's are not prompt
- → Extrapolate into isolated signal region from isolation sideband

But tau isolation environment changes!



Sunil Somalwar, Rutgers, PiTP, IAS, July 2013

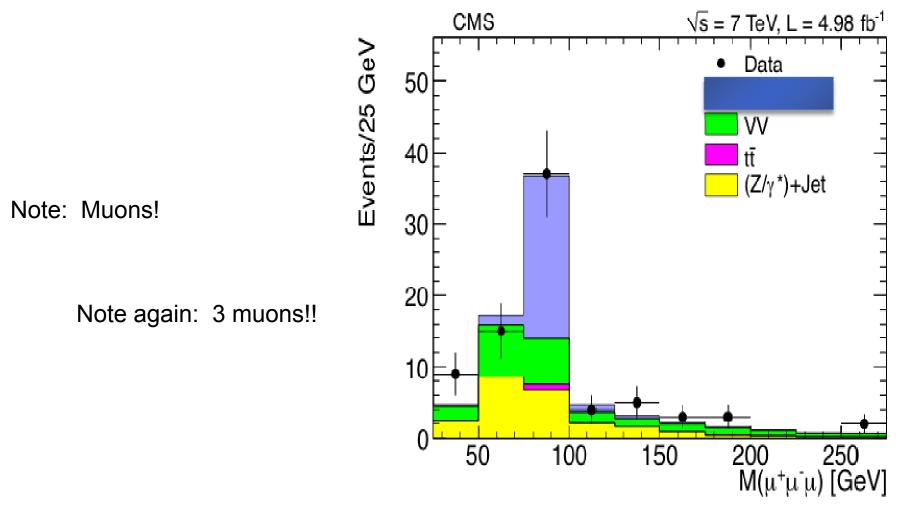
Use the full tau isolation distribution



Sunil Somalwar, Rutgers, PITP, IAS, July 2013

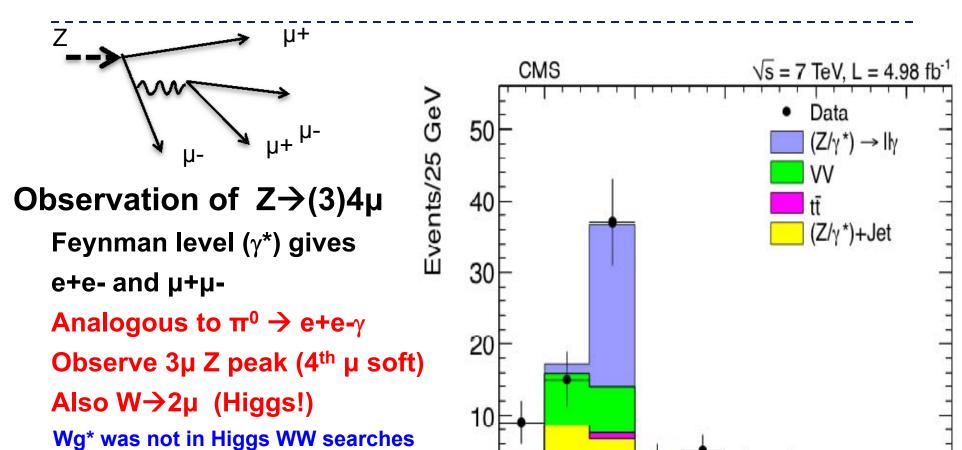
Tau: f_T vs f_{SB} (Data)

- Use low MET control data and plot f_T vs f_{SB}
- In signal region use f_{SB} to predict f_T



Last data-driven background : Asymmetric Photon Conversions

- How many physicists does it take to forget about Dalitz decays in 20 years? Answer: 6000
- "The only surprise from LHC so far"



From 2011 archives....

33

Z→3µ - Asymmetric Internal (Dalitz) Photon Conversions

50

100

150

200

LEP-I did not produce enough Z's for this

arXiv:1110.1368 R. C. Gray et. al.

Important for Higgs ~125 GeV

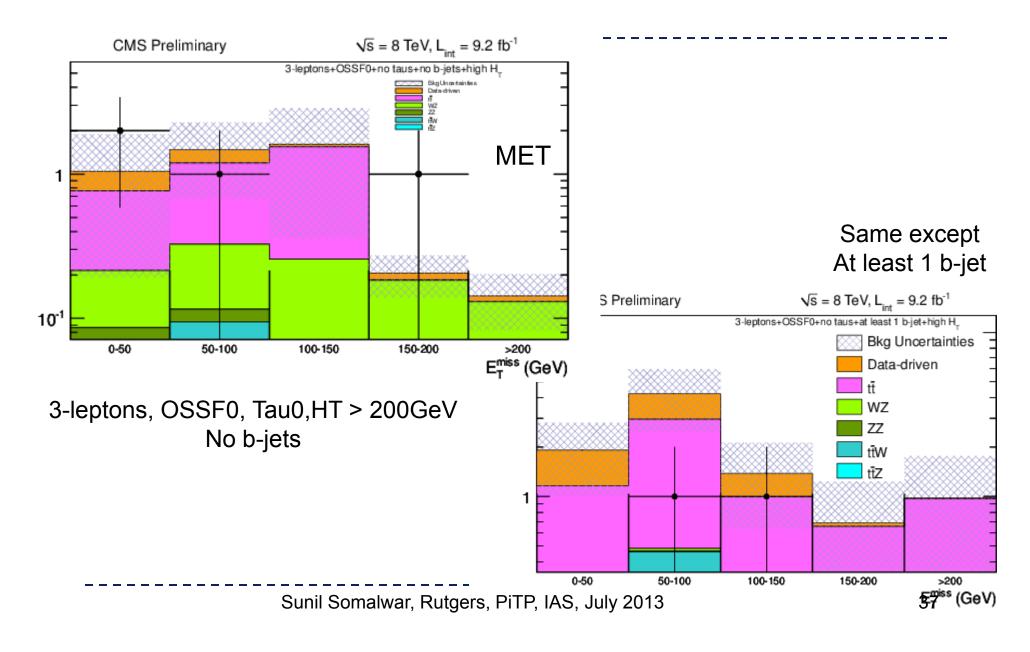
250

Asymmetric Conversion Fake Rate

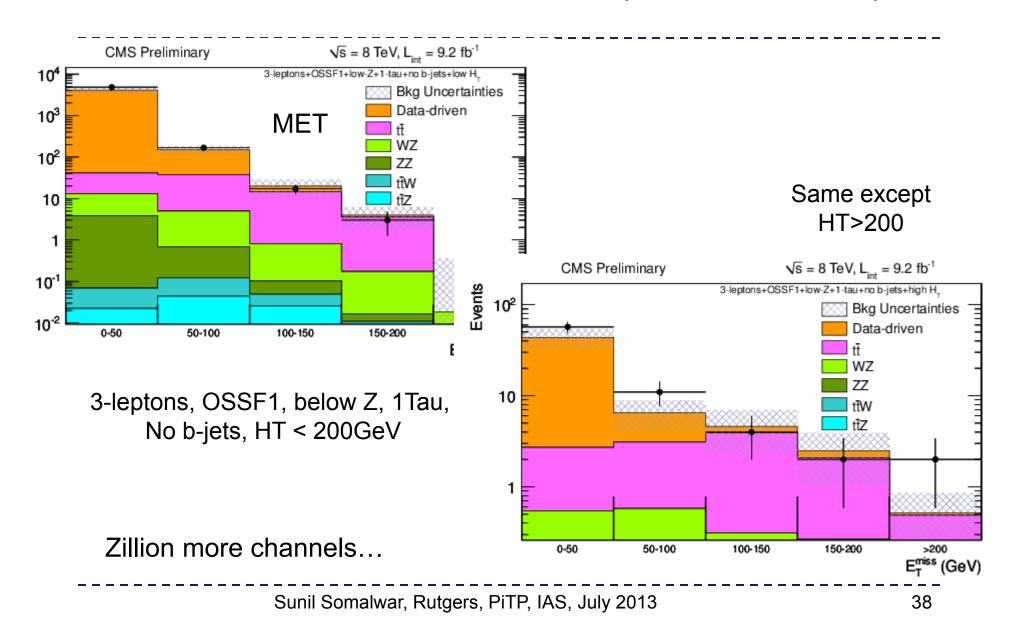
- Go to low MET-HT control region (no new physics)
- Measure the ratio of three-leptons on Z-pole to dileptons+photon in the same mass window.

~ 0.35%

Done with SM backgrounds...



Intermission


- Six S's of LHC experimental particle physicists (S does not stand for Smart in this case)
 - Style
 - Statistics
 - Stage
 - pSeudotheorists
 - Citation
 - Superanalyses (Patrick M knows this one...)

→ Now to results and new physics opened up by your hard slog through the experimental details.....

Sample Multilepton Results

Sample Multilepton Results (tau channels)

Multilepton Result Tables

Selection		MET	$N(\tau)=0$, NbJet=0		$N(\tau)=1$, NbJet=0		$N(\tau)=0, NbJet \ge 1$		$N(\tau)=1, NbJet \geq 1$	
			obs expect		obs	expect	obs	expect	obs	expect
4 Lepton Results $H_T > 200$									•	
OSSF0	NA	$(100, \infty)$	0	0.007 ± 0.01	0	0.001 ± 0.01	0	0 ± 0.01	0	0 ± 0.009
OSSF0	NA	(50, 100)	0	0 ± 0.01	0	0.007 ± 0.01	0	0.01 ± 0.02	0	0.008 ± 0.01
OSSF0	NA	(0, 50)	0	$1e-05 \pm 0.009$	0	0.01 ± 0.01	0	0 ± 0.009	0	0 ± 0.009
OSSF1	off-Z	$(100, \infty)$	0	0.0005 ± 0.009	1	0.09 ± 0.03	0	0.06 ± 0.04	0	0.05 ± 0.03
OSSF1	on-Z	$(100, \infty)$	0	0.03 ± 0.02	0	0.27 ± 0.07	0	0.19 ± 0.11	0	0.17 ± 0.09
OSSF1	off-Z	(50, 100)	0	0.03 ± 0.03	1	0.13 ± 0.07	0	0.02 ± 0.02	0	0.07 ± 0.04
OSSF1	on-Z	(50, 100)	0	0.08 ± 0.04	1	0.29 ± 0.08	0	0.1 ± 0.06	1	0.12 ± 0.08
OSSF1	off-Z	(0, 50)	0	0.007 ± 0.01	0	0.12 ± 0.06	0	0.001 ± 0.01	0	0.04 ± 0.03
OSSF1	on-Z	(0, 50)	0	0.1 ± 0.04	0	0.5 ± 0.12	0	0.02 ± 0.02	0	0.23 ± 0.11
OSSF2	${ m off-Z}$	$(100, \infty)$	0	0.004 ± 0.01	0	0 ± 0	0	0.008 ± 0.01	0	0 ± 0
OSSF2	on-Z	$(100, \infty)$	0	0.05 ± 0.05	0	0 ± 0	0	0.13 ± 0.08	0	0 ± 0
OSSF2	off-Z	(50, 100)	0	0.01 ± 0.01	0	0 ± 0	0	0.01 ± 0.02	0	0 ± 0
OSSF2	on-Z	(50, 100)	0	0.39 ± 0.1	0	0 ± 0	0	0.16 ± 0.07	0	0 ± 0
OSSF2	${ m off-Z}$	(0, 50)	0	0.11 ± 0.03	0	0 ± 0	0	0.05 ± 0.03	0	0 ± 0
OSSF2	on-Z	(0, 50)	2	3.3 ± 0.7	0	0 ± 0	1	0.37 ± 0.09	0	0 ± 0

Table 1: Results for 4 leptons with $H_T > 200$ GeV. * denotes channels used as controls.

Selection	MET		$N(\tau)=0$, NbJet=0		$N(\tau)=1, NbJet=0$		$N(\tau)=0, NbJet \ge 1$		$N(\tau)=1, NbJet \geq 1$	
			obs	$_{ m expect}$	obs	$_{ m expect}$	obs	$_{ m expect}$	obs	expect
3 Lepton Results $H_T > 200$										
OSSF0	NA	$(100, \infty)$	1	1.9 ± 1.2	15	7.7 ± 3.6	1	2.9 ± 1.5	27	21 ± 11
OSSF0	NA	(50, 100)	1	1.4 ± 0.8	13	17 ± 7.4	1	4.2 ± 1.7	41	37 ± 19
OSSF0	NA	(0, 50)	2	1 ± 0.8	13	10 ± 3.4	0	1.9 ± 0.8	32	21 ± 11
OSSF1	${ m above-}{ m Z}$	$(100, \infty)$	2	2.2 ± 0.9	2	4 ± 2.4	3	2.8 ± 1.3	11	6.8 ± 3.7
OSSF1	$\operatorname{below-Z}$	$(100, \infty)$	2	3.5 ± 0.8	8	7.6 ± 3.4	3	3.4 ± 1.6	12	8.3 ± 4.3
OSSF1	on-Z	$(100, \infty)$	17	30 ± 5.3	4	7.9 ± 2.2	5	6.3 ± 1.9	8	5.4 ± 2.8
OSSF1	${ m above-Z}$	(50, 100)	1	1.9 ± 0.49	10	3.7 ± 2.3	4	3.1 ± 1.2	17	12 ± 6.6
OSSF1	below-Z	(50, 100)	4	4.5 ± 0.9	11	6.4 ± 2.4	3	5 ± 2.1	9	9.4 ± 5.3
OSSF1	on-Z	(50, 100)	39	38 ± 6.2	34	26 ± 5.4	10	9.6 ± 2.7	12	9.5 ± 3.9
OSSF1	$\operatorname{above-Z}$	(0, 50)	3	3.2 ± 0.42	19	18 ± 4.5	0	2.7 ± 0.8	6	9.9 ± 4.6
OSSF1	below-Z	(0, 50)	9	11 ± 1.2	57	43 ± 10	2	4.7 ± 1.4	11	13 ± 5.3
OSSF1	on-Z	(0, 50)	58	63 ± 8.7	256	271 ± 66	12	14 ± 2.6	39	34 ± 7.9

Multilepton Physics - I

- A partial and biased list:
 - Open search
 - Detailed observations vs expectations for multilepton final states
 - RPC SUSY
 - GMSB-derived slepton-coNLSP, stau-NLSP
 - Electroweak with Higgs (MET+WZ,ZZ,Wh,Zh,hh final states)
 - natural Higgsino with strong production.
 - RPV SUSY
 - A host of RPV λ couplings
 - With and w/o MET,HT
 - Third generation (stop/tau) enriched
 - Simplified Models
 - T1tttt
 - T2WWWW
- Continued......

Multilepton Physics - II

- A partial and biased list, continued:
 - Higgs Doublet Models (with diphotons)
 - H →hh
 - $-A \rightarrow Zh$
 - t → c+higgs (with diphotons)
 - Fourth Generation (with diphotons)
 - b' →tW,bZ,bh
 - SM: ttW, ttZ
 - Exotic
 - Flavored Dark Matter (tau-heavy)
 - See-Saw (total charge binning)

Supersymmetry: Particle Physics Version of Occam's Razor

We like doubling the particle spectrum.

Single Blade (electron)

Twin Blade (electron & positron)

Multiple Blades (electron, positron, selectron?...

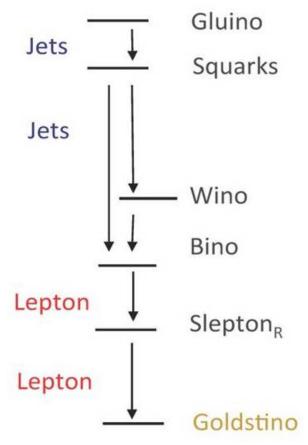
LHC vs SUSY Models



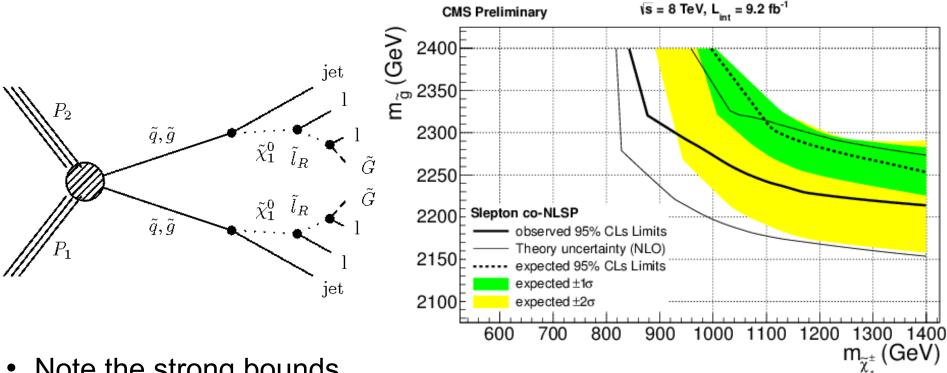
LHC

SUSY with R-Parity: Strong production

 GMSB slepton-CoNLSP, since 2010 (35 ipb) when everybody was feeling the beampipe for hadronic SUSY.



Strong production.


No compressed spectrum, etc

Prompt decay to Goldstino

(Scott Thomas)

Slepton co-NLSP (contd)

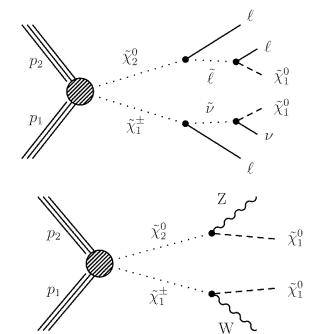
 Note the strong bounds thanks to strong production, plenty of leptons, jets, MET...

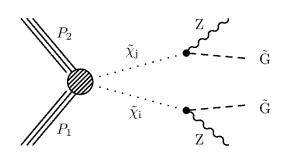
Keep an eye on stau-NLSP to be released at SUSY'13

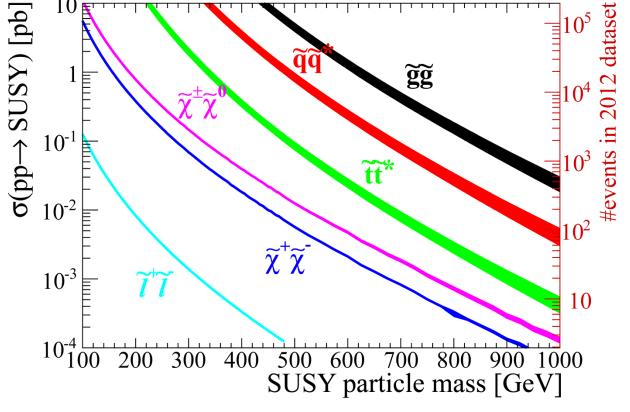
(sleptons →staus...)

Electroweak Production

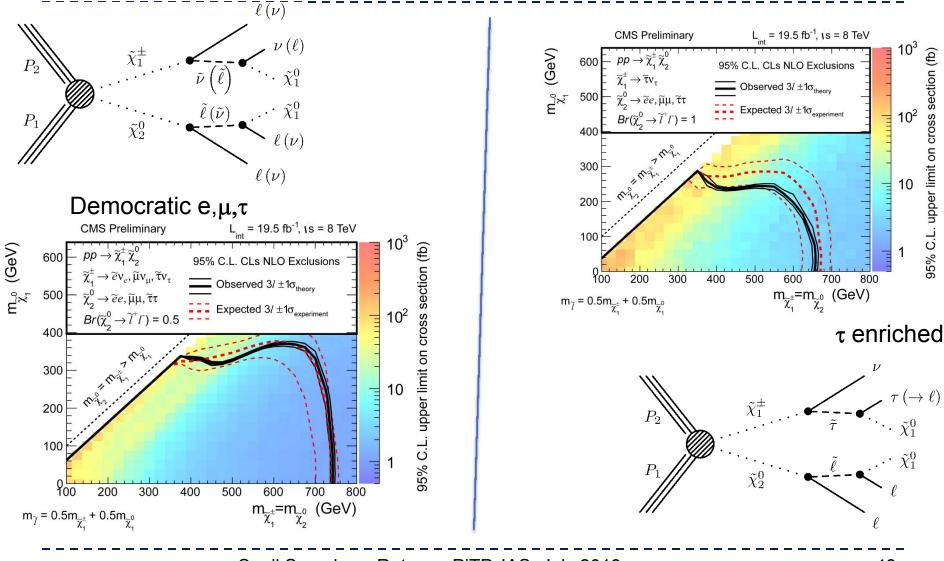
- Squarks and gluinos getting heavier in simple scenarios
- What if weak production beats strong production?
- →Electroweak production to the rescue?
- Less copious, so lesser reach in mass
- Less hadronic activity (a long ways from the LHC beampipe getting hot from SUSY production circa 2010)
- cf: classic trilepton SUSYsignature from Tevatron Run II.

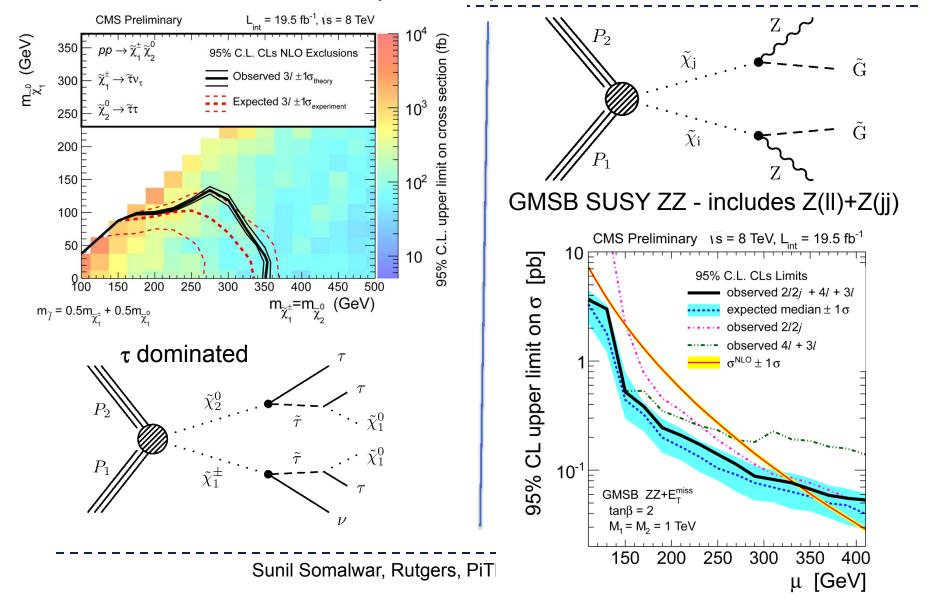

 mSUGRA limits were mostly due to EWK production.

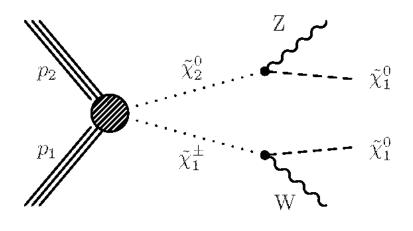

 (CDF:We got grief for cutting on jets → LHC: bin, don't cut.)

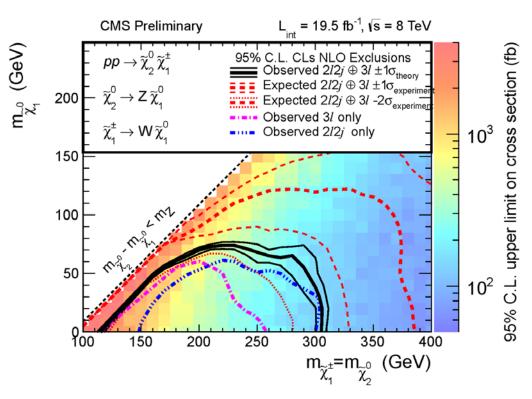

Sunil Somalwar, Rutgers, PiTP, IAS, July 2013

The Leftward March



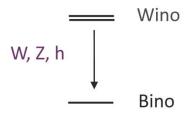



EWKino results (EPS'13)


EWKino results (contd)

EWKino results (contd)

Sleptons heavy/decoupled WZ+ MET signature trileptons on Z & Z(II)+Z(jj)

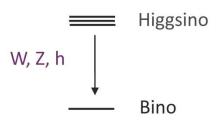


Curil Complying Dutages DITD IAC July 2012

Higgs from ElectroWeak SUSY

Wino-Bino:

(Scott Thomas)


```
Production
Mode
Channel
Chargino-Chargino
Chargino-Neutralino
WZ
Wh

Di-boson
Channel
Dominates if Open
WZ
Wh
```

Neutralino $_{Wino}$ -> Neutralino $_{Bino}$ + h Neutralino $_{Wino}$ -> Neutralino $_{Bino}$ + Z 2nd order in mixing

EWKino with Higgs (contd)

Higgsino-Bino:

"Draining the swamp" (Scott Thomas)

Production Di-boson

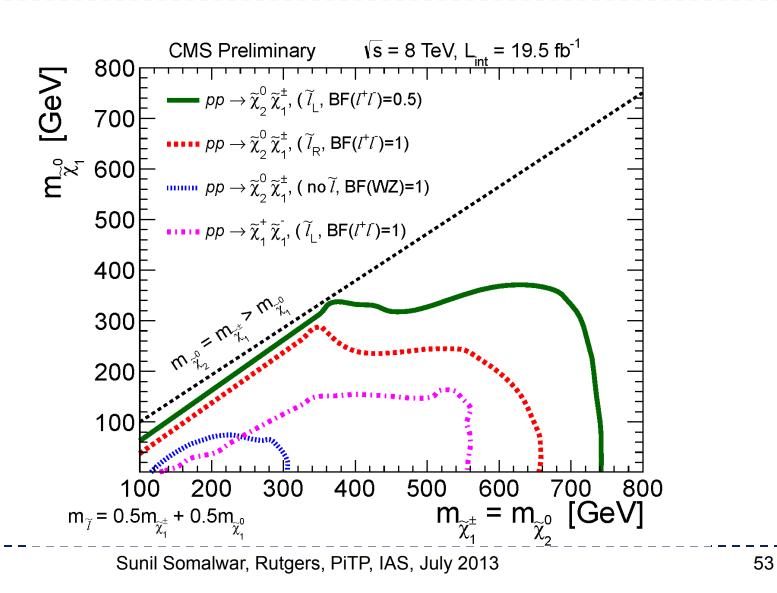
Mode Channel

Chargino-Chargino > WW

Chargino-Neutralino > WZ Wh

Neutralino-Neutralino > ZZ, Zh hh

Higgs – multibinned approach essential !!


Dominates if Open

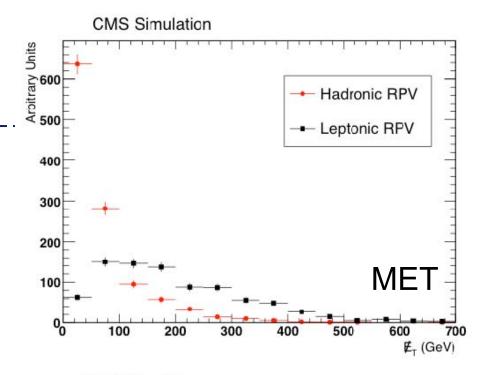
SUSY'13

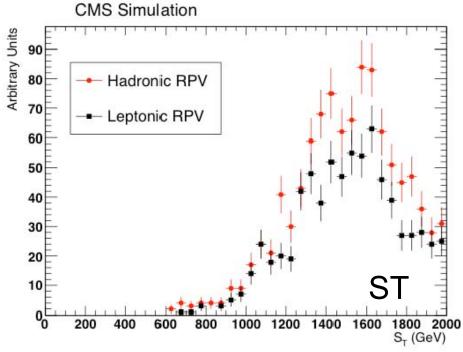
```
Neutralino<sub>Higgsino</sub> -> Neutralino<sub>Bino</sub> + h
Neutralino<sub>Higgsino</sub> -> Neutralino<sub>Bino</sub> + Z
```

Oth order in mixing 1st order in mixing

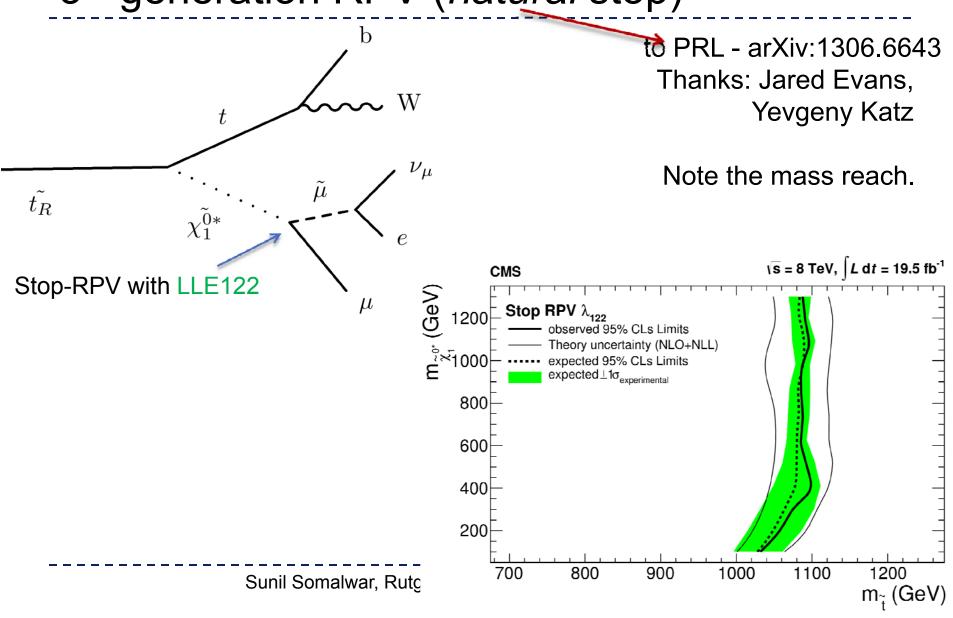
CMS Electroweak Summary Slide (discussed by P.M. earlier today)

An Escape Valve: R-Parity Violation

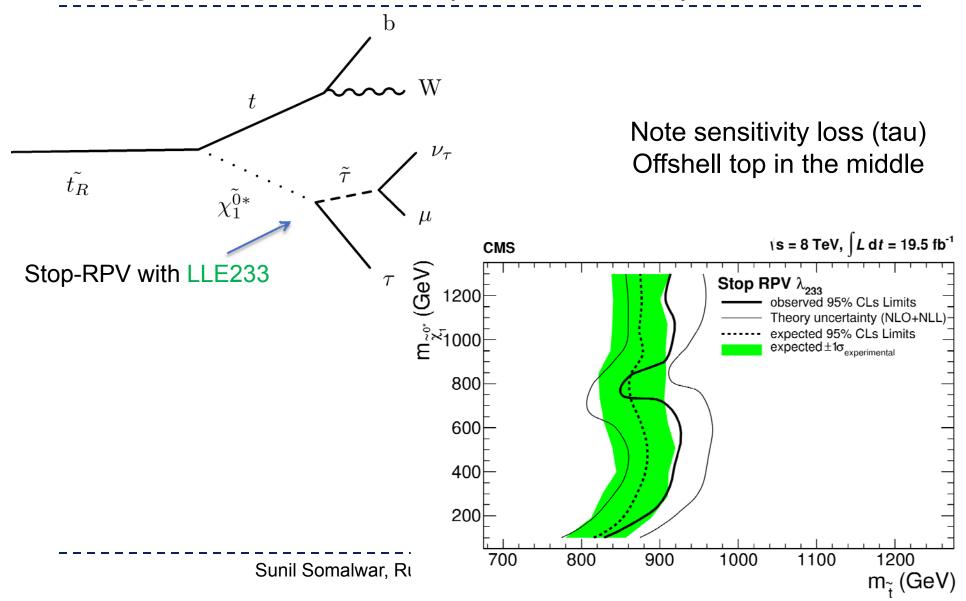

- Squarks and gluinos getting heavier in simple scenarios BUT
- R-Parity Violation can pull the rug from under searches requiring MET because the Lightest Supersymmetric Particle (LSP) decays.


Also, possibly finite lifetimes depending on RPV couplings.

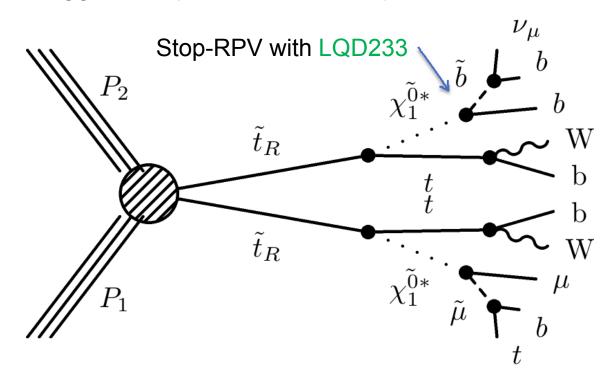
RPV can be tricky

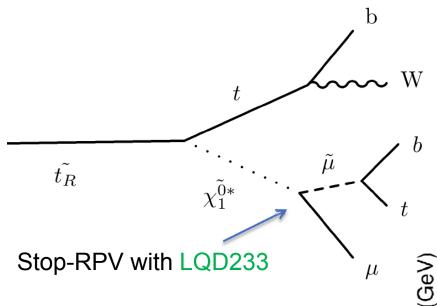

- A CMS multilepton study.
- Two RPV signals: no MET in hadronic RPV
- Examine ST instead
 (ST = sum of jet+lepton
 pt's and MET)
 (Also, "effective mass")
- •ST recovers the low-MET signal

Topologies by Scott Thomas
Sunil Somalwar, Rutgers,

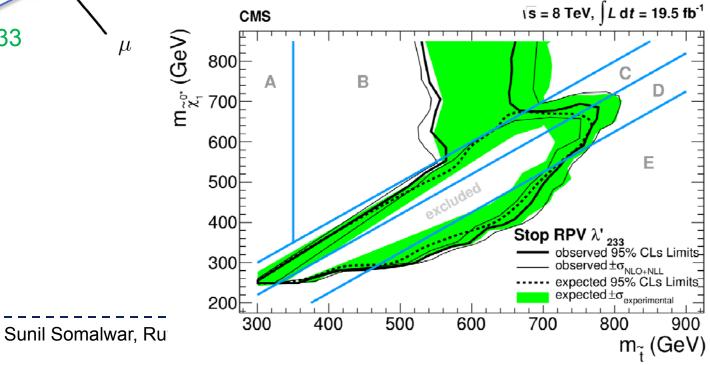


3rd generation RPV (*natural* stop)

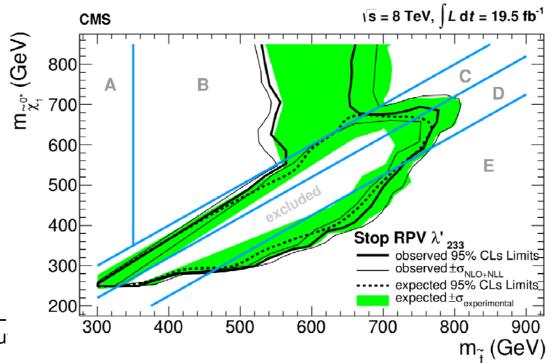

3rd generation RPV (*natural* stop)


Stop RPV (contd)

Pause and ask a very important experimental question: Are the exclusion curves too straightforward to get into PRL? Yes!


→Add wiggles, loops and other complications.

3rd generation RPV (*natural* stop)



Voila! But we overshot. Too complicated for a 90 min lecture. (Read the paper). Note the expected-observed difference due to decoupling.

Stop RPV (contd) LQD233

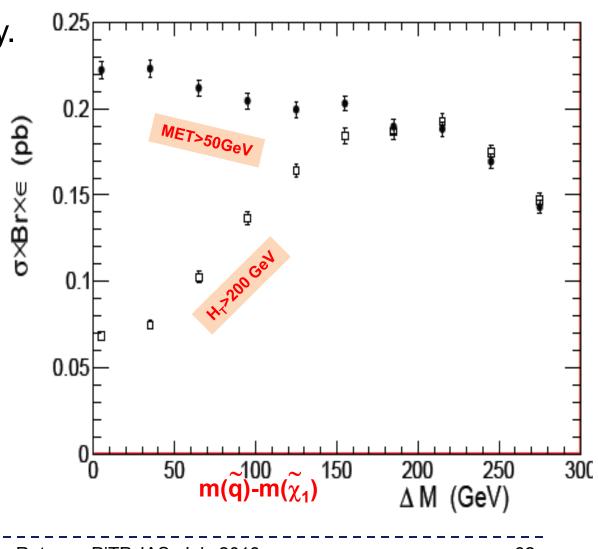
region label	kinematic region	stop decay mode(s)				
A	$m_t < m_{\widetilde{t}} < 2m_t, m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow t u b ar{b}$				
В	$2m_t < m_{\widetilde{t}} < m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow t \mu t ar{b} + t u b ar{b}$				
С	$m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}} < m_W + m_{\widetilde{\chi}_1^0}$	$\left \widetilde{t} ightarrow \ell u b \widetilde{\chi}_1^0 + j j b \widetilde{\chi}_1^0 \right $				
D	$m_W + m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}} < m_t + m_{\widetilde{\chi}_1^0}$	$\widetilde{t} o Wb\widetilde{\chi}_1^0$				
E	$m_t + m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}}$	$\widetilde{t} ightarrow t \widetilde{\chi}_1^0$				

Sunil Somalwar, Ru

LHC vs SUSY Models

LHC

Nontrivial SUSY Scenarios


A CMS multilepton study.

• **Strong** production but minimal jets/HT

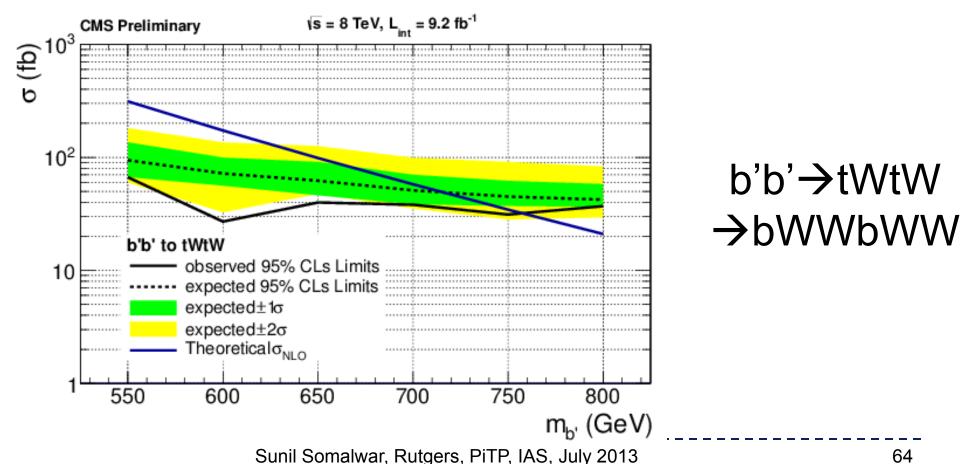
 Strong production captured by Lepton Sector

Slepton co-NLSP GMSB topology by Scott Thomas

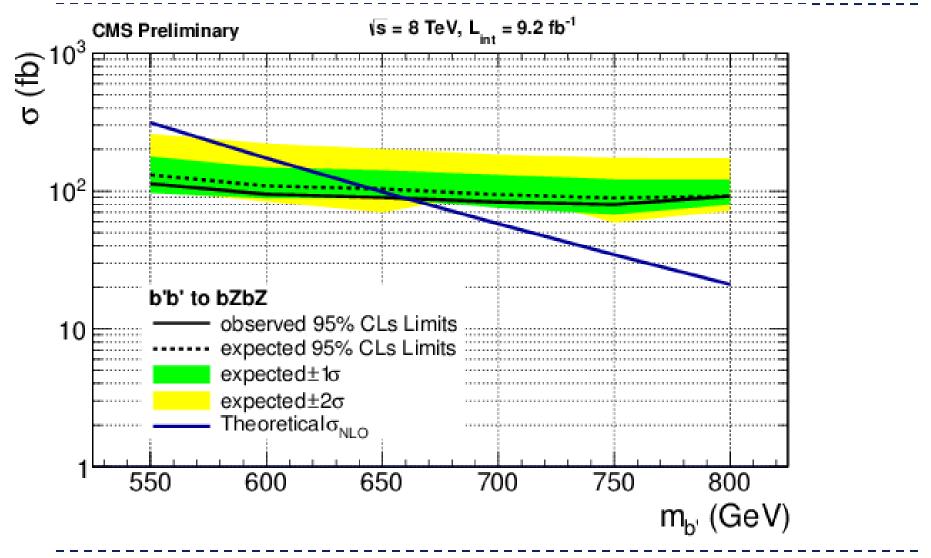
Also, non-zero lifetimes etc....

Sunil Somalwar, Rutgers, PiTP, IAS, July 2013

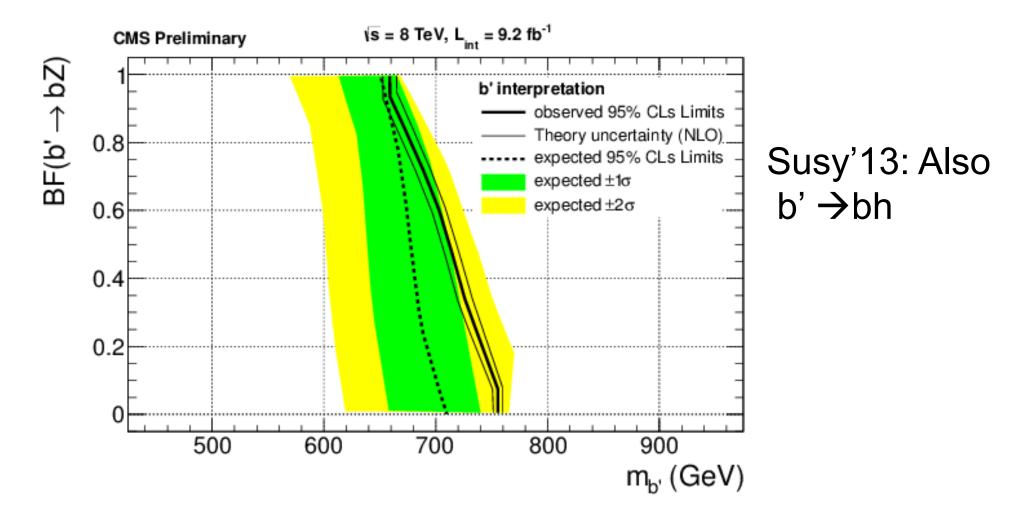
SUSY Possibilities: Ways to go



Nascent SUSY


SUSY is very amorous. There isn't a signature that it does not like....

NOT SUSY – b' (a partner particle)


 Illustrates the versatility of a multibinned approach where "signal" and "control" channels are all treated uniformly. Some signals, e.g. b' → bZ show up in the "control" channels.

b' - contd

b' – tW to bZ transition

Sunil Somalwar, Rutgers, PiTP, IAS, July 2013

CMS Multileptons: Example of a Broad Search

Three or more electrons, muons or taus. Up to two tau's reconstructed.

54-channel ST table and 52 channel MET/HT results on and off Z

Signal (low-bkgnd) and control (high bkgnd) channels treated uniformly.

CMS multileptons:

- a) Strong production GMSB slepton co-NLSP
- b) R-parity Violation
- c) Sensitive to accidents of spectrum (strong production captured by lepton sector)
- d) Missing MET: e.g. RPV (Hadronic): S_T comes handy
- e) Electroweak Production: fitting MET/MT

SURPRISES (detailed background studies)

- CMS pristine di-Z event ~5/pb (2010)
- Very rare four lepton event(s) in 2011, still outstanding.
- Trimuon Z (!!!???) and impact on Higgs

Credits

- PiTP organizers !!
- Richard Gray, Scott Thomas.
- LHC staff.
- CMS collaborators, conveners and management.
- Uncredited photographers and artists who produce images of penguins, foxes, smiley and sweaty emoticons...