What is Quantum Field Theory?

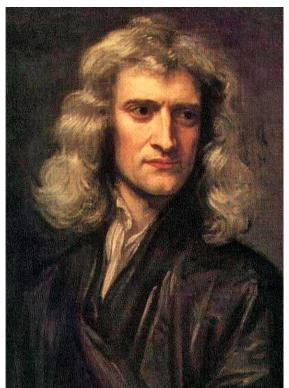
Nathan Seiberg
IAS

Quantum Field Theory

- Quantum field theory is the natural language of physics:
 - Particle physics
 - Condensed matter
 - Cosmology
 - String theory/quantum gravity
- Applications in mathematics especially in geometry and topology
- Quantum field theory is the modern calculus
 - Natural language for describing diverse phenomena
- Enormous progress over the past decades, still continuing
- Indications that it should be reformulated

Calculus vs. Quantum Field Theory

- New mathematics
- Motivated by physics (motion of bodies)
- Many applications in mathematics, physics and other branches of science and engineering
- Sign that this is a deep idea
- Calculus is a mature field.
 Streamlined most books and courses are more or less the same



Calculus vs. Quantum Field Theory

- New mathematics (in fact, not yet rigorous)
- Motivated by physics (particle physics, condensed matter)
- Many applications in mathematics and physics
- Sign that this is a deep idea
- QFT is not yet mature books and courses are very different (different perspective, order of presentation)
- Indications that we are still missing big things perhaps
 QFT should be reformulated

Presentations of quantum field theory

- Traditional. Use a Lagrangian...
- More abstractly, operators and their correlation functions
 - In the traditional Lagrangian approach this is the outcome
- Others?

Abstract presentation of QFT

Use a collection of operators with their correlation functions

- These include point operators (local operators), line operators, surface operators, etc.
 - We do not distinguish between operators, observables and defects (this depends on the spacetime orientation)
 - Their correlation functions should be well defined mutually local
- Place the theory on various manifolds
 - This can lead to more choices (parameters)
 - More consistency conditions
 - Can we recover this information from local measurements?

Lagrangian

- Natural starting point quantize a classical system
 - Functional integral
 - Canonical quantization
 - Others
- Need to regularize (e.g. a lattice) to make it meaningful.
 Then need to prove the existence of
 - the continuum limit
 - the large volume limit

Lagrangian

- Pick "matter fields"
 - Target space of the matter fields
 - Non-derivative couplings (potential, Yukawa, ...)
 - Metric on the target space
 - Wess-Zumino terms
- Pick a gauge group G. It can act on the matter fields.
 - Kinetic term
 - Chern-Simons term
 - Dependence on the global structure of G
 - Theta parameters (including discrete theta parameters)

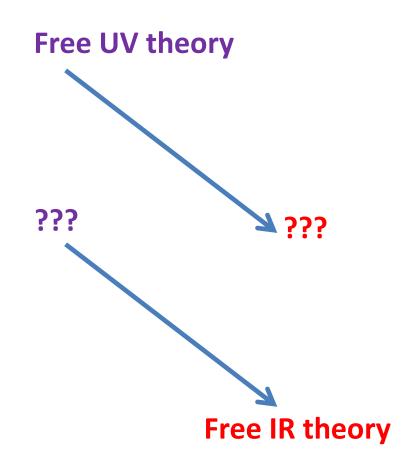
Lagrangian

Questions:

- Do we know all such constructions?
- Do we know all consistency conditions?
- Duality: When do different such constructions lead to the same theory?
- More below

Lagrangians are meaningful and useful when they are weakly coupled

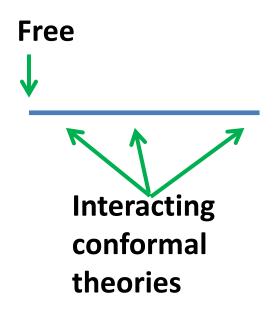
- Free UV theory perturbed by a relevant operator, e.g.
 - Asymptotically free 4d gauge theory (e.g. QCD)
 - . . .
- Free IR theory perturbed by an irrelevant operator, e.g.
 - 4d QED
 - Chiral theory of pions
 - . . .



Lagrangians are meaningful and useful when they are weakly coupled

- Family of conformal theories connected to a free theory, e.g.
 - 4d N=4 super Yang-Milles
 - 3d Chern-Simons theory (large level)
 - 2d sigma model with Calabi-Yau target space

•



Lagrangians are not good enough

- Strong coupling
- Not used in exact solutions
- Duality
- Theories without Lagrangian

Lagrangians are not good enough Strong coupling

Given a weakly coupled theory, described by a Lagrangian, there is no clear recipe to analyze it at strong coupling.

This is one of the main challenges in Quantum Field Theories.

Examples:

- Gapped systems, e.g. with confinement in 4d gauge theory
- Interacting Conformal Field Theories
- Strongly coupled Topological Field Theories like 3d Chern-Simons theory with small k

• . . .

Lagrangians are not good enough Not used in exact solutions

Rely on the more abstract presentation.

Use consistency to constrain the answer.

- Bootstrap methods in Conformal Field Theories use associativity of the operator product expansion...
- Integrable systems are solved using a large symmetry.
- Rational conformal field theories are solved using the combination of a large symmetry and consistency.

• . . .

Lagrangians are not good enough Not used in exact solutions

Rely on the more abstract presentation.

Use consistency to constrain the answer.

- Supersymmetric theories are analyzed using holomorphy/BPS/chiral/topological observables.
- Some TQFT are solved using simple rules (not the Lagrangian).
- Some field theories are analyzed by embedding them in String Theory.
- Amplitudes are analyzed using consistency like unitarity.

Lagrangians are not good enough Duality

Duality is intrinsically quantum mechanical.

It cannot be seen at weak coupling.

- Free field theories, e.g. $R \to \frac{1}{R}$, 3d Maxwell v. compact scalar, 4d Maxwell (small to large \hbar)
- Interacting conformal theories labeled by a dimensionless parameter. Here duality relates weak (described by a Lagrangian) and strong coupling, e.g.
 - 4d N=4 SYM
 - 2d sigma models with mirror Calabi-Yau target spaces

Lagrangians are not good enough Duality

Duality is intrinsically quantum mechanical.

It cannot be seen at weak coupling.

- Two different weakly coupled theories that flow to the same strongly coupled IR fixed point (universality), e.g.
 - 4d N=1 SYM
 - 2d linear sigma models flowing to mirror Calabi-Yau sigma models
- A weakly coupled theory flows at strong coupling to another (dual) weakly coupled theory, e.g. 4d N=1 SYM

Lagrangians are not good enough Theories without Lagrangians

- Theories without (Lorentz invariant) Lagrangians
 - Chiral fermions on the lattice
 - Selfdual bosons (even free) intrinsically quantum mechanical
- Theories that are not in the strong coupling limit of a weakly coupled theory (which can be described by a Lagrangian) – no semi-classical limit
 - Some nontrivial fixed points in 4d
 - Nontrivial fixed points in 5d and 6d
 - As the list of such theories keeps growing and their marvelous properties are being uncovered, it is wrong to dismiss them.

Suggest that QFT should be reformulated

- Lagrangians are not good enough
 - Not useful at strong coupling
 - Not used in exact solutions
 - Duality more than one Lagrangian of the same theory
 - Sometimes no Lagrangian
- Not mathematically rigorous
- Extensions of traditional local QFT
 - Field theory on a non-commutative space
 - Little string theory
 - Others?

Clarifying a historical comment

Landau (1960):

"We are driven to the conclusion that the Hamiltonian method for strong interaction is dead and must be buried, although of course with deserved honor."

- Hamiltonian and not Lagrangian
- He thought that the theory is wrong; not just its formulation

Here:

- The theory and its current formulations are right
- Hamiltonian exists
- We should look for better formulations

How should we think about it?

Of course, I do not know!

- A good place to start is Topological Quantum Field Theory
 - It is simple
 - Enormous progress during the recent decades
- But what about theories with local degrees of freedom?
- Suggest to look at topological observables in a nontopological field theory
- Theories with global symmetries have topological observables.
- Will follow A. Kapustin, NS, arXiv:1401.0740; D. Gaiotto, A. Kapustin, NS, B. Willett, arXiv:1412.5148

Global vs. Local Symmetries

Global

- Intrinsic
- Can be accidental in IR approximate
- Classify operators
- Can be spontaneously broken
- If unbroken can classify states
- Useful in classifying phases
- 't Hooft anomalies
- Not present in a theory of gravity

Local (gauge)

- Ambiguous duality
- Can emerge in IR exact
- All operators are invariant
- Not really a symmetry
- Hence it cannot be broken (Higgs description meaningful only at weak coupling)
- Cannot be anomalous
- Appears essential in formulating the Standard Model and in Gravity

Global Symmetries

- Ordinary global symmetries
 - Act on local operators
 - The charged states are particles
- Generalized global symmetries
 - The charged operators are lines, surfaces, etc.
 - The charged objects are strings, domain walls, etc.
- It is intuitively clear and many people will feel that they have known it. We will make it more precise and more systematic.
- We will repeat all the things that are always done with ordinary symmetries
- The gauged version of these are common in physics and in mathematics

Ordinary global symmetries

 Generated by operators associated with co-dimension one manifolds M

$$U_g(M)$$

 $g \in G$ a group element

- The correlation functions of $U_g(M)$ are topological!
- Group multiplication $U_{g_1}(M)U_{g_2}(M) = U_{g_1g_2}(M)$
- Local operators O(p) are in representations of G

$$U_g(M)O_i(p) = R_i^j(g)O_j(p)$$

where M surrounds p (Ward identity)

If the symmetry is continuous,

$$U_g(M) = e^{i \int j(g)}$$

j(g) is a closed form current (its dual is a conserved current).

• Generated by operators associated with co-dimension q+1 manifolds M (ordinary global symmetry has q=0) $U_g(M)$

 $g \in G$ a group element

- The correlation functions of $U_g(M)$ are topological!
- Group multiplication $U_{g_1}(M)U_{g_2}(M) = U_{g_1g_2}(M)$. Because of the high co-dimension the order does not matter and G is Abelian.
- The charged operators V(L) are on dimension q manifolds L. Representations of G — Ward identity

$$U_g(M)V(L) = R(g)V(L)$$

where M surrounds L and R(g) is a phase.

If the symmetry is continuous,

$$U_g(M) = e^{i \int j(g)}$$

j(g) is a closed form current (its dual is a conserved current).

Compactifying on a circle, a q-form symmetry leads to a q-form symmetry and a q-1-form symmetry in the lower dimensional theory.

 For example, compactifying a one-form symmetry leads to an ordinary symmetry in the lower dimensional theory.

No need for Lagrangian

- Exists abstractly, also in theories without a Lagrangian
- Useful in dualities

As with ordinary symmetries:

- Selection rules on amplitudes
- Couple to a background classical gauge field (twisted boundary conditions)
 - Interpret 't Hooft twisted boundary conditions as an observable in the untwisted theory
- Gauging by summing over twisted sectors (like orbifolds)
 - New parameters in gauge theories discrete θ -parameters (like discrete torsion) [Aharony, NS, Tachikawa]
 - Dual theories often have different gauge symmetries. But the global symmetries must be the same
 - Non-trivial tests of duality including non-BPS operators

q-form global symmetries Characterizing phases

- In a confining phase the electric one-form symmetry is unbroken.
 - The confining strings are charged and are classified by the unbroken symmetry.
 - Area law of Wilson loop order parameter $\langle W \rangle$ vanishes when it is large symmetry unbroken.
 - Ordinary global symmetry after compactification. It is unbroken [Polyakov, Susskind].

q-form global symmetries Characterizing phases

- In a Higgs or Coulomb phase the electric one-form symmetry is broken.
 - Renormalizing the perimeter law to zero, the large size limit of $\langle W \rangle$ is nonzero vev "breaks the symmetry."
 - No strings
 - Ordinary global symmetry after compactification. It is broken [Polyakov, Susskind].

Low energy behavior when broken

- A continuous broken symmetry leads to a massless Nambu-Goldstone boson.
 - Example: a photon in a Coulomb phase (cf. [Rosenstein, Kovner])

$$\langle 0|F_{\mu\nu}|\epsilon,p\rangle = (\epsilon_{\mu}p_{\nu} - \epsilon_{\nu}p_{\mu})e^{i\,px}$$

- A discrete broken symmetry leads to a TQFT.
 - Example: a spontaneously broken $oldsymbol{Z}_n$ one-form symmetry leads to a $oldsymbol{Z}_n$ gauge theory

Higher Form SPT Phases

Consider a system with an unbroken symmetry with anomalies.

- 't Hooft anomaly matching forces excitations (perhaps only topological excitations) in the bulk, or only on the boundary.
- Symmetry Protected Topological Phase
- Domain walls between vacua in different SPT phases must have excitations.
- For examples, N = 1 SUSY SU(N) gauge theory has N vacua in different SPT phases (the relevant symmetry is the oneform \mathbf{Z}_N symmetry) and hence there is $U(k)_N$ on the domain walls between them [Dierigl, Pritzel]. This $U(k)_N$ was originally found by [Acharya, Vafa] using string considerations.

Conclusions

- Higher form global symmetries are ubiquitous.
- They help classify
 - extended objects (strings, domain walls, etc.)
 - extended operators/defects (lines, surfaces, etc.)
- As global symmetries, they must be the same in dual theories.
- They extend Landau's characterization of phases based on order parameters that break global symmetries.
 - Rephrase the Wilson/'t Hooft classification in terms of broken or unbroken one-form global symmetries.
- Anomalies
 - 't Hooft matching conditions
 - Anomaly inflow
 - Degrees of freedom on domain walls

Thank you for your attention