Reading between the lines of four-dimensional gauge theories

Ofer Aharony, NS, Yuji Tachikawa, arXiv:1305.0318

Characterizing a quantum field theory

Abstractly:

- Use a collection of local operators with their correlation functions
 - They have to be mutually local
- Place the theory on various manifolds
 - This can leads to more choices (parameters)
 - More consistency conditions
 - Usually ignored
 - Can we recover this information from local measurements?

Characterizing a quantum field theory

Alternatively, use a Lagrangian

- Identify the gauge algebra
- Identify the gauge group G (different choices)
- Introduce matter fields in representations of G
- Identify all possible coupling constants

Questions:

- Do we know all such constructions?
- Duality: When do different such constructions lead to the same theory?

Main point

- The local operators and their correlation functions do not uniquely specify a quantum field theory (not original).
- We need additional information:
 - line, surface (and even higher dimension) operators
 - behavior on non-trivial topology (the lines, surfaces, etc. create topology)

 Studying these line operators leads to new insights about the dynamics (phases) and electric/magnetic duality.

More concretely

- First choice: the gauge group, e.g. SU(N), or $SU(N)/\mathbf{Z}_N$.

 This determines
 - the allowed Wilson lines massive probe particles in representations of the gauge group
 - the allowed representations of matter fields
- Second choice: the 't Hooft lines (restricted by mutual locality – Dirac quantization)
 - They represent massive probe magnetic (or dyonic) particles.
 - Several different choices are possible.
- Additional freedom with surfaces, 3-dim. observables, ...

A simple special case su(2)

- Gauge group is SU(2)
 - Basic Wilson line W in fundamental of SU(2)
 - 't Hooft lines have integer magnetic charge H^2 , ...
 - H is nonlocal it needs a surface attached to it ...
- Gauge group is SO(3)
 - No Wilson line in fundamental only W^2 , ...
 - Basic 't Hooft line has half integer magnetic charge,
 but there are two choices [Gaiotto, Moore, Neitzke]:
 - SO(3) the basic 't Hooft line H is electrically neutral
 - SO(3) _ the basic 't Hooft line HW has half unit of electric charge

A simple special case su(2)

- SU(2): $W, H^2, ...$
- $SO(3)_{+}: W^2, H, ...$
- SO(3) _: W², HW, ...

Witten effect: magnetic particles acquire electric charges under shift of Θ [Gaiotto, Moore, Neitzke]

$$SU(2)^{\theta} = SU(2)^{\theta + 2\pi}$$

$$SO(3)_{+}^{\theta} = SO(3)_{-}^{\theta+2\pi}$$

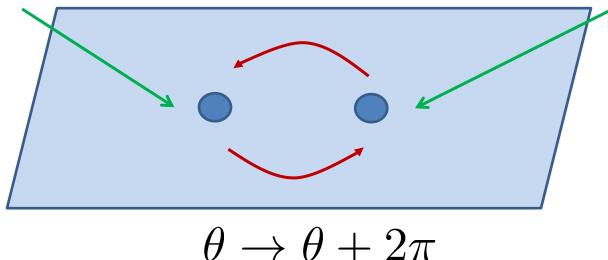
This is not typical.

SU(2) with N=2 SUSY [NS, Witten]

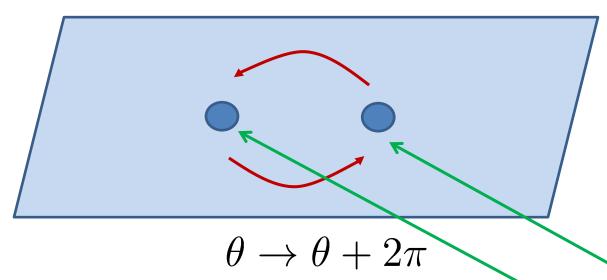
The theory has a continuous space of vacua with two singular points with additional massless particles...

Dyon with magnetic charge one and electric charge one

Monopole with magnetic charge one and no electric charge



SO(3) with N=2 SUSY



- SO(3): the basic line H has half the charges of this monopole
- SO(3): the basic line HW has half the charges of this dyon

No global symmetry relating the vacua. The theory with Θ is the same as with $\Theta + 4 \pi$ (not $\Theta + 2 \pi$).

SU(2) with N=1 SUSY [NS, Witten]

- Upon breaking supersymmetry to N=1, most of the vacua disappear and we are left with two vacua associated with the condensation of these monopoles.
- The theory confines.
 - The Wilson loop W has an area law.
 - The 't Hooft line H^2 has a perimeter law.

SO(3) with **N**=1 SUSY

- Upon breaking supersymmetry to N=1, most of the vacua disappear and we are left with two vacua associated with the condensation of these monopoles.
- $SO(3)_+$: the basic line H has a perimeter law in one vacuum and an area law in the other.
- SO(3) _: the basic line HW has an area law in one vacuum and a perimeter law in the other.
- There is an unbroken Z_2 gauge symmetry in the vacuum with a perimeter law.
- Despite the mass gap, this Z_2 gauge symmetry can be detected as long range (topological) order!

su(2) gauge theories without SUSY

Conjectures:

- For every gauge group there is a single vacuum with a mass gap (a Clay problem).
- SU(2): W exhibits confinement for every Θ (periodicity 2π , level crossing at $|\Theta| = \pi$).
- $SO(3)_{+}$: Θ periodicity is 4π , phase transition at $|\Theta| = \pi$
 - $|\Theta| \leq \pi$: H has a perimeter law, unbroken \mathbf{Z}_2 gauge symmetry
 - The particle spectrum is gapped, but there is long range topological order!
 - $\pi \leq |\Theta| \leq 2\pi$: *H* has an area law.
- SO(3) : same as SO(3), but the phases are exchanged.

su(2) with N=4 SUSY [Vafa, Witten]

S-Duality:

$$SU(2) \longleftrightarrow SO(3)_{+} \longleftrightarrow SO(3)_{-}$$

$$T \qquad SO(3)_{+} \longleftrightarrow SO(3)_{-}$$

As we said above, this is not typical.
Usually the orbits are more complicated...

Another example: su(4) with N=4

New theory – not only extending the range of Θ New weak coupling limit (or a new theory in a known weak coupling limit)

Fun with so(N)

The so(N) gauge algebra can lead to different theories (for even N and when there are no dynamical vectors there are additional possibilities):

- Spin(N)
- SO(N) + SO(N)

For
$$N > 4$$
 $SO(N)_{\pm}^{\theta} = SO(N)_{+}^{\theta+2\pi}$

N=1 duality in so(N) with matter

- This theory with N_f vector chiral superfields is dual to $so(N_f-N+4)$ (with additional particles) [NS; Intriligator, NS].
- In special cases it was known that this duality exchanges electricity and magnetism.
- Strassler argued that this duality exchanges Spin(N) with $SO(N_f-N+4)$.
- The more precise statement

$$Spin(N) \longleftrightarrow SO(N_f - N + 4)_-$$

$$SO(N)_+ \longleftrightarrow SO(N_f - N + 4)_+$$

N=4 S-duality with so(N)

Rich spectrum of theories with new patterns of S-duality transformations. For example, for so(N) with odd N

$$Sp(n) \longleftrightarrow SO(2n+1) + \\
T \qquad T$$

$$Spin(4n+1) \longleftrightarrow \left(\frac{Sp(2n)}{\mathbb{Z}_{2}}\right) + \left(\frac{Sp(2n)}{\mathbb{Z}_{2}}\right) - \longleftrightarrow SO(4n+1)_{-} \\
T \qquad T \qquad T$$

$$Spin(4n+3) \longleftrightarrow \left(\frac{Sp(2n+1)}{\mathbb{Z}_{2}}\right) \leftrightarrow \left(\frac{Sp(2n+1)}{\mathbb{Z}_{2}}\right) \leftrightarrow SO(4n+3)_{-} \\
T \qquad T \qquad T$$

N=4 S-duality

This example is typical

- New theories not only extending the range of Θ
- New weak coupling limits (or new theories in known weak coupling limits)
- New orbits of the modular group

Analogy with 2d orbifolds

2d orbifolds

- Keep only invariant operators
- Add twisted sector. operators – restricted by mutual locality
- Demand completeness modular invariance
- operators discrete torsion

4d gauge theories

- Keep only Wilson lines of representations of the group
- Add 't Hooft lines restricted by mutual locality (Dirac quantization)
- Demand completeness modular invariance
- Different choices of twisted
 Different choices of 't Hooft lines – new theories

Both are associated with a discrete gauge symmetry.

A Euclidean path integral description

- The configuration space of gauge theories splits to different topological sectors (different bundles).
- The choice of gauge group determines the allowed bundles.
- We need a rule how to sum over them.
- The standard Θ-angle is related to the instanton number.
- The choice of lines depends on w_2^2 of the gauge bundle (more precisely, need Pontryagin square). It is a new discrete Θ -like parameter.

Restricting the range of Θ [NS 2010]

• Similarly, we can restrict the range of Θ by coupling a standard gauge theory to a \mathbf{Z}_p gauge theory of forms (associated with 3-dimensional observables)

$$\frac{p}{2\pi}\Phi F^{(4)} \quad \text{with} \quad \Phi \sim \Phi + 2\pi \quad ; \quad \int F^{(4)} \in 2\pi \mathbf{Z}$$

$$\cdots + \frac{\theta}{16\pi^2} \text{Tr} F \tilde{F} + \frac{p}{2\pi} \Phi F^{(4)} + \frac{\Phi}{16\pi^2} \text{Tr} F \tilde{F}$$

- The integral over Φ forces the topological charge to be a multiple of p. Hence, $\theta \sim \theta + 2\pi/p$.
- Φ is a "discrete axion."
- Note, this is consistent with locality and clustering!

Conclusions

- The global part of the gauge group is essential in defining the theory.
- In addition, there are different choices of line operators.
- Using these operators as order parameters, we find new information about the phase diagram.
- New results about duality in theories with various amounts of supersymmetry.

Conclusions

- The choice of lines is related to a new discrete Θ-like parameter.
- Coupling to other topological theories, we can even change the rules about the standard Θ-angle.
- More generally, new nontrivial phenomena by coupling a gauge theory to a topological field theory.