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Abstract. To a good first approximation the Galaxy is stationary and axisymmetric. How-
ever, many disk galaxies exhibit prominent large-scale deviations from axisymmetry, such as
bars, warps, “grand design” spiral structure, elliptical distortions of the bulge and disk, and
lopsided HI distributions. In addition, models of galaxy formation strongly suggest that the
dark matter halos of galaxies are likely to be triaxial, and the potential from these components
will inevitably distort the disk. Thus it is natural to look for evidence of large-scale oscillations
(.. non-axisymmetric distortions or axisymmetric time-dependent distortions) of the Galac-
tic disk. Because of our location within the Galaxy, the large-scale kinematic models that we
deduce for the Galaxy depend strongly on our interpretation of the small-scale kinematics of
the solar neighbourhood. For example, asymmetry of the northern and southern HI distribu-
tions in velocity-longitude space could be caused by either a distortion of the outer Galaxy or
radial motion of the Local Standard of Rest. We shall review the evidence for oscillations of
the Galactic disk, with particular emphasis on the interplay between these oscillations and the
kinematics of the solar neighbourhood.

1. Introduction

Ever since Kapteyn made the first serious attempt to construct an accurate model of the
Galaxy, most investigations have started by assuming that the large-scale distribution
of stars in the Galaxy is axisymmetric and stationary.

In this paper we discuss the validity of this simple assumption, i.e. whether there are
non-axisymmetric or non-stationary distortions with characteristic scale comparable to
the size of the Galactic disk. Thus we exclude small-scale irregularities due, for exam-
ple, to inhomogeneous star formation, gravitational wakes induced by giant molecular
clouds, tightly wrapped spiral arms, etc. We also restrict ourselves to planar distortions;
in particular, we shall not discuss the warps that are known to exist in our own and
other galaxies.

An arbitrary perturbation to an axisymmetric disk can be expanded in a series of
terms of the form Re{f(R, z) exp[i(m¢ — wt)]}, where (R, ¢, z) is the usual cylindrical
coordinate system and the properties of the unperturbed disk are independent of ¢ (to
ensure that the angular speed of the Galaxy is positive, €, must point towards' the

! The reader is warned that other authors use different conventions to deal with this unpleasant sign
problem, including negative angular speed for the Galaxy and radial coordinates that increase towards
the Galactic centre. The most satisfactory long-term solution would be to switch the north and south
Galactic poles!

B. Sundelius (ed.) Dynamics of Disc Galazies (1991) Géteborg, Sweden, pp. 71-104.



72 KUIJKEN AND TREMAINE

South Galactic Pole). We shall call these perturbations “oscillations”. An oscillation
with m = 0, w # 0 is axisymmetric but non-stationary. For m # 0 we may define
the pattern speed (), = w/m; to an observer in the frame rotating with the pattern
speed the oscillation appears stationary. Large-scale oscillations require small azimuthal
wavenumbers m. We may assume m > 0 without loss of generality.

As a preliminary exercise, consider a model of the Galaxy in which the stars and gas
travel on similar elliptical streamlines with axis ratio ¢ < 1,

o +y?/g* = N, (1)
with velocity vy ' 00
U = Ty Vy =¢ "'")"""a (2)

which yields a constant velocity along any radial direction. (This is a kinematic model
only—the velocity field does not necessarily arise from any plausible dynamical model.)
Suppose that the Sun lies on the major or minor axis. How can we determine the axis
ratio ¢ from observations?

The main point of this exercise is that determining g is remarkably difficult. The
local velocity field and the tangent-point velocities are indistinguishable from those in
axisymmetric disks. The best approach is to compare the distance distribution of a
tracer population along various lines of sight, but to do this we need a good standard
candle that is visible at large distances, such as Cepheids, OB stars, or carbon stars.

As an illustration of the available constraints, we consider a recent measurement of
the distance d to the H,O masers in W49(N). The source lies at longitude £ = 43° and its
line-of-sight velocity is near zero with respect to the Local Standard of Rest. Hence in an
axisymmetric, stationary, differentially rotating Galaxy it must lie at the same distance
from the Galactic centre as the Sun. Gwinn et al. 1989 used this result to estimate the
distance to the Galactic centre, Rg = 3d/ cos¢, and found a value 1.0 & 0.2 times the
best estimate for R from more direct methods (Reid 1989). If instead the velocity field
is non-axisymmetric (eq. 2), we expect this ratio to be [1 + cos? £(1 — ¢*2)]7?, where
the upper (lower) sign applies if the Sun lies on the minor (major) axis. Therefore the
corresponding limit on the axis ratio is ¢ > 0.73 (0.87) (by definition ¢ < 1).

The reader is encouraged to seek a better limit from other tracers, but probably
elliptical disk models with an axis ratio as low as g ~ 0.8 are compatible with all the
data, so long as the Sun lies on the major or minor axis.

Models in which the Sun lies exactly on a symmetry axis are somewhat artificial. For
a more typical position of the Sun, disk oscillations are easier to detect. There are at
least three types of evidence:

(i) The average velocity of the Sun and its neighbours (the velocity of the Local Standard
of Rest or LSR) may contain a component towards or away from the Galactic céntre,
and this motion may be detectable relative to gas and stars near the Galactic centre.

(i) The kinematics of nearby objects relative to the LSR (as described by the veloc-
ity ellipsoid and Oort constants) may differ from the kinematics predicted for an
axisymmetric, stationary disk.
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(iii) The kinematics of distant objects may exhibit features not expected in an axisym-
metric, stationary disk. In partigular the velocity distribution relative to the LSR at
longitude £ may not be the mirror image of the velocity distribution at 360" — £. The
interpretation of the data is complicated, however, because all velocities are measured
relative to the LSR: thus asymmetries in the velocities of distant objects can:arise
either from oscillations in'the distant disk or from oscillations in the local disk that
affect the velocity of the LSR.

The most thoughtful and comprehensive search for oscillations in the Galaxy has been
carried out by Blitz and Spergel (1991a, hereafter B&S). They propose that the Galaxy
is nearly axisymmetric at distances well beyond the solar radius, but that the inner
Galaxy (R < 1.5Rg) participates in a large-scale m = 2 oscillation with pattern speed
2, = 5.5kms~ ' kpc™!, caused by a rotating triaxial bulge. Because of this oscillation
the LSR moves outward at 14kms™? relative to the Galactic centre.

At this point we introduce some notation. The number of stars in the phase-space
volume element dxdv is f(x,v)dxdv where f is the distribution function (abbreviated
DF). We write the average of a.quantity X over velocity at a given position as X =
[ f(x,v)Xdv/ [ f(x,v)dv. The velocity-dispersion tensor is oi; = (vi — 7)(vj — ;).
The velocity ellipsoid is the three-dimensional surface on which the quadratic z;0;; z;
is unity; the orientation and shape of the velocity ellipsoid provide a measure of the
residual velocity distribution.

2. The stationary axisymmetric disk

We begin with a review of the local kinematics of a stationary, axisymmetric galaxy, in
which both the potential (R, z) and the DF are assumed to be independent of azimuth
and time. By Jeans’ theorem the DF depends only on the isolating integrals of motion.
Any DF that depends only on the two analytic integrals E = (v} + v} + v2) + (R, 2)
and L; = Ruvy is symmetric in vg and in v, at a given spatial location, in other words the
three axes of the velocity ellipsoid are aligned with the (R, ¢, z) coordinate axes (opg =
OR: = 0g; = 0). Moreover T = T; = 0. However, most orbits in most axisymmetric
galaxy-like systems have a third integral I so in general the DF is a function of E, L,
and I. Usually the integral I is invariant under the change (vg,v;) — (—vg, —v,;)—even
though an explicit expression for I is not usually available, an orbit with given integrals
E, L., I spends an equal fraction of its time in the neighbourhoods of the phase-space
points (R, 4, z,vr,vg,v.) and (R, ¢,2, —vR,v4, ~v;). This symmetry implies that the
velocity ellipsoid is aligned with the rotation direction (0gg = 64, = 0) and the mean
velocity is in the azimuthal direction (vg = ¥; = 0). The argument is not rigorous
because integrals I can exist that do not have this symmetry, if resonances are present.

Thus if both the potential and the DF are stationary and axisymmetric, it is rea-
sonable to expect that org = 04, = 0. Then two of the principal axes of the velocity
ellipsoid lie in the (R, z) plane and the third lies in the direction of rotation.

If the DF is symmetric about the plane z = 0, then there are symmetries in this
plane whatever the nature of the third integral may be: (i) 4. = og; = 0; (ii) the DF
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is symmetric in v,. If I is invariant under (vg,v:) — (—vgr,~v.) then the DF is also
symmetric in vg.

In contrast, the distribution in vy — Tg is not required to be symmetric. Generally,
the stars with vg < T3 come from inside the solar circle, where the density and velocity
dispersion are greater than outside. The density and dispersion gradients produce an
asymmetry of the vg-distribution about its mean, as well as the classical asymmetric
drift (i.e. T3 — v & o rr Where v(R) is the circular speed at radius R).

The distribution in vy — T3 becomes simpler in the limit 03y < vZ. In this case

the distribution is approximately symmetric and moreover (e.g. Binney and Tremaine
1987)

s ____ B __ 3
ORR (A-BYy @

where
A=}(ve/R—dve/dR)ry, B =—}(ve/R+dve/dR)r,, )

are the usual Oort constants. For a flat rotation curve (v.(R) independent of R), which
is an accurate representaton of the rotation curve of the Galaxy in the region of interest
(e.g. Fich and Tremaine 1991), this relation implies 044/0rr = 1. Since deviations from
the relation (3) might provide evidence of oscillations, it is important to understand
how accurately it is expected to be satisfied in the solar neighbourhood.

To provide a simple example, we average over z and v, and so consider a DF f(E,, L;)
where B, = v} + v} + ®(R) is the energy in motion parallel to the disk plane. A
sufficiently general form for the DF is

f(Ei, L;) = g(L:) exp{—B(L:)[Et — Ec(L:))}, (8)

where E, is the energy of a circular orbit of angular momentum L. “Typical” galaxy
disks have a surface brightness profile u « exp(—R/h) where h is the scale length
(Freeman 1970), a circular speed independent of radius, and a radial velocity dispersion
orgr o« p (if the mass-to-light ratio and z-averaged ogr/0 .. are independent of radius;
this proportionality implies that the thickness of the disk is independent of radius,
consistent with observations of van der Kruit and Searle 1982). To get a constant circular
speed we take ®(R) = vZIn R. We also take g(L,) =constant and B(L.) x exp[L;/(hv.)]
(these choices ensure that y o< ogpr o exp(—R/h) when the velocity dispersion is small).
A very similar DF is described by Newton (1986) and Binney (1987). We may now
evaluate the velocity moments of f at radius R in powers of b = [v23(Rv.)]™ '

= =14 53— )+ B(—RE + B + 416+ )+ O(), -
Ve 4 8 16 48 32
O
=i RRE - 3~ 1)+ 00), (6)
ORR
- =b+ (3¢ - 30 + O(¥),

c

T8 b3 - £- 1)+ 0, -

ORR
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where £ = R/h.

We recover the usual formula (3) for the axis ratio of the dispersion tensor to leading
order in b, but the next-order term has a la.r e coefficient. Thus, taking conservative
values § = 2, b = 0.03 {corresponding to O'RR = 41kms™! for v, = 220kms™?), we
have o44/0rR = 0.59, which differs by 17% from the classical value §. Increasing £ or b
rapidly increases this discrepancy; for example, £ = 2.5 implies 044 /a rr = 0.66. Note
that the axis ratio is always increased by the O(bd) correction term (so long as £ > 0.91,
which is certainly true in the solar neighbourhood).

Since the rotation curve of the Galaxy is nearly flat in the solar neighbourhood, these
results imply that the axis ratio is likely to exceed 1. However, observations suggest
that the axis ratio is less than 1, although the evidence is not clear-cut. The sources
quoted by Kerr and Lynden-Bell {(1986) give values for o44/0rR ranging from 0.36 to
0.50 with a mean of 0.42. A recent investigation by Ratnatunga and Upgren (1991)
of the Vyssotski K and M dwarfs yields 044/0rr for the two (Gaussian) components
of 0.37 (young disk) and 0.44 (old disk); the entire sample has 0.45. An analysis of
stars from the Gliese (1969) catalog (absolute magnitudes and line-of-sight velocities of
quality “C” or better, white dwarfs excluded, only one component of multiple systems
kept) gives 044/0rr = 0.62 (a}{; = 42kms™!) for 602 stars. (Another catalogue of
1004 stars, in which poorer-quality My values were also allowed, was also analyzed. No
significant differences between the two data sets were ever found in this or any of the
other measurements we describe in this paper.) i

The resolution of this discrepancy between theory and observation (pointed out by
Binney 1987) is unclear. It is possible that many determinations do not account fully
for the tail towards negative vg that we expect to be present in the data (for example,
velocities are sometimes fit to a Gaussian distribution). Another possibility, as we discuss
below, is that the axis ratio may be affected by oscillations.

An alternative, model-independent way to analyze the axis ratio problem employs
the velocity moments of the collisionless Boltzmann equation. Assuming a stationary,
axisymmetric galaxy, we eliminate the potential from the vg- and vpvg-moments of
this equation (Binney and Trémaine 1987, egs. 4-29a and 4-47) In the symmetry plane,
where og, = 0, we find

Ops vg + RW,R 1 1 B(VR%RR,,S) R O(vorge:)
= + B B8R T 5, e

ORR 274 20rRUg |VR OR v Oz
=_——-§._: “‘{" O ("""""""""aijk )
A—B ORRV: )’
where g denotes /9R and v is the density. Equation (7) shows that the corrections
to equation (3) may be thought of as arising from two sources: (i) the third moments
ORR¢, OR¢z, and Ogyg, Which would vanish if the distribution in v, were symmetric;
(i) the distinction between the Qort constants A and B defined in equations (4), and

the “observed” constants A and B, which are obtained by replacing the circular speed
v, by the mean speed 75 in equations (4). Notice that the right side of equation (7) is

(7)
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difficult to evaluate from local observations, because it depends on spatial gradients of
the third moments, which are large and uncertain.

The difference v. — Tg between the circular speed and the mean speed is known as
the asymmetric drift (see, e.g. Jahreiss and Wielen 1983). For our model DF (5), we can
obtain the asymmetric drift from equations {6):

2
Vg = ve + "t‘)‘c" Lo+ %ﬁ(—%s?‘ + 36 + HE+ )+ 0(0kr/vd).  (8)
(Recall that org is the squared velocity dispersion.) The term linear in ogrr is the one
usually used to estimate v. from Ty (a full three-dimensional calculation shows that
a correction term should also be included if d(vrvz)/0z is non-zero; see, e.g., Binney
and Tremaine 1987). The error in Ty arising from the quadratic term can be as large
as —1.7kms™? for a}g/; = 40kms~! (with ¢ = 2.5, about the largest plausible value);
while this correction is not negligible it is probably not a major source of uncertainty
in vg. 2

Equations (6) can also be used to estimate the corrections for dispersion that are
needed when measuring the Qort constants from the differential motions of old disk
stars. Such data measure not v, and its local gradient, but rather T3: hence a dispersion-
dependent correction is required to obtain the true Qort constants for the circular speed
curve v(R). In our model, which is based on a flat circular speed curve (A = —B =
%vc /Ro), the observed values A and B are given by

A=A1+b0(3+3-)+0@%)], B=B[1+b3 - 32+€)+0(*). (9)

For typical values £ = 2 and b = 0.03 we have A = 0.904, B = 0.99B. So A can
be underestimated by 10% or more, whereas B is affected only a little (see also Lewis
1990).

3. The effect of oscillations on local kinematics

3.1. OORT CONSTANTS

We first generalize the Qort constants for a non-axisymmetric or non-stationary disk
(Milne 1935, Chandrasekhar 1942). The mean velocity of the stars at a position in the
Galactic plane r = (z1, z;) relative to the Sun can be expanded in a Taylor series,

T; = Hijz; + O(2?), 10
72

where the coordinate axes &;, é; point towards £ = 0° and £ = 90°. Without loss of

generality we may write
_(K+C A-BY\.
H“(A+B K—-C’)’ (11)

? By constructing a suitable combination of ogp and o4y, it is possible to eliminate the O(c%;)
term, facilitating a linear extrapolation to determine v. from Uy. For example, at { = 2, 75 = v —
(1.380 R +0.T4044)/vc+0O(03, 5 /v53). Such a relation might be an improvement over the usual formula
(8); at the least use of such alternate formulae would provide a measure of the error from nonlinear
terms.

-~
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we have simply written the four components of the matrix H in terms of the four (pos-
sibly time-dependent) parameters. 4, B, C, K. Note that K measures the divergence,
V . ¥ = 2K, while B measures the vorticity, €; - V X ¥ = 2B, and the shear tensor
Uik + Tk — é,kv, depends only on A and C (here 77 ; = 3'17.‘/3:rk and we sum over
repeated 1nd1ces) The mean line-of-sight velocity Traq and proper motion % of objects
at (z1,z2) = r(cosf,sinf) are then given by (e.g. Chandrasekhar 1942):

Trad/r = K+ Asin20 + Ccos2l = K + v/ A? + C?sin2(£ — v,,),

* (12)
=B+ Acos2 — Csin2l = B+ v/ A% + C? cos2(£ — ,),

with tan 2¢, = —C/A. The angle 3, is the longitude of the kinematic Galactic centre.
In polar coordinates

24 = 94/R—-VR4/R—-T5p,
2B =—7v4/R+7VR 4/R — Vg p,
2C =—vg/R -7 4/R+ VR g,
2K = vr/R+7vg ,/R+7R g

(13)

If the disk is stationary and axisymmetric, then K = C = 0, and the equations reduce
to the usual formulae (4) for the Oort constants A and B.

. A disk in which K = 1, = 0 throughout is not necessarily stationary and axisym-
metric (a counterexample is the velocity field of eq. 2). Any disk in which V.¥ = 0
and Vg g = 0 has K = ¢, = 0.

Two unfortunate problems arise when we attempt to assess the observational con-
straints on K and %, (or C): (i) Some authors fit to models with variable K but zero
C, while others fit to zero K but variable C. There is no theoretical reason to prefer one
over the other, so models should always fit to both. (ii) Some authors fit for a constant
expansion term, Tyaq = k rather than rK. The k-term accounts for a constant offset in
velocity; such an offset is a useful component of the fit but does not substitute for the
K-term.

Observations indicate that K and ¢, are small near the Sun once the local system
(Gould’s Belt) is excluded. Typically this requires removing all stars within 0.3-0.6 kpc
from the Sun. From 240 OB stars at distances of 0.45-2 kpc from the Sun, Tsioumis and
Fricke (1979) found 4, = 1.54+3°* and K = 2.1+1.7kms~! kpc™'* (we use asterisks to
denote values that will enter into the weighted means derived below). du Mont (1977)
reports 1, = 10 7°* for 124 FK4 stars between 0.3 and 1.3 kpc distant; since du Mont
uses only proper motions he is insensitive to K. Using line-of-sight velocities of open
clusters (r = 0.3-2kpc), Lynga and Palous (1987) found K = 2.9 + 2.5kms~ kpc™!*,
Yy = 2.5 £ 6.6°* for clusters older than 30 Myr, whereas younger clusters give K =
—2.6+1.0kms ' kpc™?! and ¥, = —9.74+2.9° (we do not use the younger sample in our
weighted means since it is less well-mixed and more susceptible to local oscillations).
A similar investigation of 105 open clusters by Hron (1987) reveals “no significant”
K-term either; we shall quantify this result as K = 0 £ 1.5kms™ ! kpc™!* (the error
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is the quoted error in his measurement of Qort’s A). From Cepheids with r < 5kpc
Kraft and Schmidt (1963) found K = —1.5 £ 0.6 kms~' kpc™'*, although they prefer
to interpret their results in terms of a constant radial-velocity error k (possibly arising
from expansion of the stellar envelope). Humphreys’ (1970) sample of 333 supergiants
with » > 0.5kpc yields k = ~0.4 £ 0.5kms™, or K = <02+ 0.3kms ' kpc™'*. None
of the last three authors incorporated a C-term in their models. The classical analysis
of Cepheids by Joy (1939) (this time analyzed with a C-term but no K-term!) yields
by = —2.4 1 1.3°*. The starred estimates are plotted in Figure 1.

We do not feel able to offer realistic assessments of the errors in these measurements
of K and %,. We have adopted the following arbitrary procedure: we assume that
each measurement is subject to random errors described by the quoted error limits. In
addition, we assume that there is a random error of unknown variance {the “external”
error) that affects each measurement and that is not included in the quoted errors;
this variance is chosen to fit the dispersion between the results of different authors (cf.
Godwin and Lynden-Bell 1987 for a similar approach). Combining the two errors to
estimate the total error, we find the weighted mean and its standard deviation, then
arbitrarily double the standard deviation to obtain an error estimate that we call the
“likely error”. The doubling is simply a crude effort to obtain more realistic bounds on
the weighted mean. .

Using this procedure on the starred estimates above, we find the weighted means and
likely errors:

K =-0.354+05kms ™ kpc™?, Y, = ~1.3+2.3°. (14)

These limits are plotted in Figure 1. The range in Oort’s constant C implied by the
limits (14) is 0.6+1.1km s~ kpe ™. The B&S model predicts K = 0.4kms~! kpc ™! and
¥y = —3.8°, agreeing within 1.7 and 1.1 “likely errors” with the observations. The radial
gradient in radial velocity, T g = K + C is then less than 2kms~!kpc™! in absolute
value. Thus, differential motions in the solar neighbourhood provide no indication of
deviations from stationary circular motion outside the local system (r <300-600 pc).

3.2. THE RADIAL VELOCITY OF THE LSR

The Local Standard of Rest or LSR is the frame travelling with the mean velocity of
the stars in the solar neighbourhood (because of the asymmetric drift the mean velocity
depends on the dispersion of the stellar population; thus in a stricter sense the LSR
travels at the mean velocity of a hypothetical population with negligible dispersion).
A non-zero radial velocity of the LSR with respect to the Galactic centre would be
evidence for oscillations.

We first estimate the radial velocity of the LSR relative to the Sun, VRLSR — VRQG-
The classic observational summary is given by Delhaye (1965), who gives two estimates,
vR,LSR — VRe = 10.4kms™! (standard solar motion) and 9kms~! (basic solar motion),
i.e. the Sun moves inwards relative to the LSR. Delhaye finds no detectable dependence
of the radial velocity of the LSR on the velocity dispersion, which implies that small-scale



LARGE-SCALE OSCILLATIONS OF THE GALAXY 79

’ F TF
—a—]
LP dM
1 A |
——A——| ! A -
Hr * 1 Iip I}
I * | 1 bl 1
KS J
A A

Hu

TF=Tsloumis & Fricke (1979)
TF=Tsloumis & Fricke {(1979) dM=du Mont (1977)
LP=Lynga & Palous (1087)

LPaLynge & Palous (1987)
Hr=Hron (1987)
KS=Kraft & Schmidt (1863)

J=Joy (1939)
Hu=Humphreys (1870) 7 %
L L L r L 1 1 |/ 1 1 1 i 1 1 1 1 [ l 18 i1 I | S ] l |/% | L L 1.1 l 111

111 I £ 1 1 1
-5 0 5 ~15 -10 -5 O 5 10 15
K (km/s/kpc) V¥, (degrees)

Figure 1. Determinations of (left) Oort’s constant X and (right) the longitude of the kine-
matic Galactic centre ¥, (eqs. 10-12). The estimates shown are the ones marked by asterisks
in the text; error estimates are those of the authors cited. The midpoint of the shaded region
on the horizontal scale denotes the best value and the range of the shaded region denotes the
likely error. See text for details.

oscillations (due, for example, to local spiral structure, whose effects would be washed
out in a high-dispersion population) do not contribute to the mean radial velocity.

A more recent analysis by Ratnatunga and Upgren (1991) of the Vyssotsky K and
M dwarfs finds vg 1sr — vre = 8.1 £ 1.4kms™!*. This agrees well with Jahreiss and
Wielen’s (1983) estimate of 84 3kms™! (our error estimate), from older, less extensive
data for these stars. Murray et al. (1986) measured proper motions for ~ 6000 stars
towards the South Galactic Pole: using their parallaxes and proper motions for stars
with B—V redder than 0.8, we obtain a solar motion of 10.4 + 2kms™1* (the error
bar includes the estimated uncertainty in the zero point of the proper motion system).
Hron (1987) finds 7.4 £ 2kms™* for the best quality open clusters in his sample; he
also provides a list of many previous determinations of the solar motion. Jaschek and
Valbousquet (1991) determine the solar motion using 5800 stars from the “Bright Star
Catalog”. They find vgisr — vre = 11.3 £ 0.8kms™'* (straight mean over spectral
types), with no significant dependence on spectral type, age or distance.

As an independent check, we have analyzed the Gliese (1969) catalogue of nearby
stars. We find vprsr — vro = 11.4 £ 1.0kms™!*. Dividing the sample into roughly
equal thirds by ranking in |v,| gives 11.341.3, 9.1+ 1.5 and 13.8 +4.1kms™? for stars
with vertical speeds below 6, between 6 and 15, and above 15kms™ respectively. Thus
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we confirm that there is no significant dependence of the radial motion of the LSR on
velocity dispersion.

Combining the starred measurements as described in the previous section, we obtain
a weighted mean and likely error of vp1.5r — vre = 10.3 £ 1.3kms™" (the likely error
estimate includes a contribution from the estimated external error of 0.8kms™!). The
standard solar motion of 10.4kms™! lies well within the likely error, and is the value
we shall use in the rest of this paper. (Incorporating all the determinations listed by
Hron gives 8.7+ 1.1kms™*, with an external error of of 1.4kms™.) Figure 2 shows all
of the starred estimates, as well as the standard solar motion and the range implied by
our best estimate and likely error.

The velocity of the Sun relative to the local interstellar medium can be measured
by studying HII regions near the Galactic centre and anticentre directions. Fich et al.
(1989) found that the HII regions in their sample (mostly in the anticentre direction,
with a mean distance of 2.6 kpc) had a mean inward velocity of 4.2+ 1.5kms™! relative
to the LSR. This motion might be regarded as evidence for an oscillation with a non-
zero radial velocity gradient, v% p ~ —4.2kms™!/2.6kpc = —1.6kms™! kpc™!, or it
might arise from a small-scale oscillation to which the gas is responding more strongly
than the stars.

The motion of the interstellar medium inside the solar circle can be studied from
21 cm absorption in the Galactic centre radio source (e.g. Radhakrishnan and Sarma
1980). There is a strong absorption feature arising from gas all along the line of sight
to the Galactic centre, with mean velocity relative to the LSR of —0.23 = 0.06 kms~!
and dispersion 5kms™!. Assuming that the gas is approximately uniformly distributed
in radius, the narrowness of the feature implies that the radial velocity Tr varies by
< 5kms™! over the distance to the Galactic centre of about 8kpe, corresponding to
an average gradient [vg g| S 5kms™?/8kpc = 0.6kms™! kpc™?!, which is much smaller
than the limit derived from Qort’s constants in the previous section, but also less local.

We now discuss the determination of the radial velocity of the LSR vgLsr. The
simplest determination is from globular clusters, which we can see throughout the
Galaxy, and which we can reasonably assume to form a stationary system. Given
a catalogue of heliocentric line-of-sight velocities v;,q, we can derive the Sun’s out-
wards motion as vre = (vVrad cosf cos b)/{cos® £ cos® b), where {-) denotes an average
over the clusters. From Thomas’s (1989) compilation of the available data, we obtain
vpe = —7.9 £ 17kms™! with respect to the 27 clusters within 10° of the Galactic
centre which have measured radial velocities. Using all 115 clusters with line-of-sight
velocities yields vpg = —13 & 13kms™!. Correcting for the standard solar motion we
find vp Lsr =2+ 13kms™! and —3+13kms~!*. Thus, the globular cluster kinematics
provide no evidence for radial LSR motion, although the limits are not very tight.

One can also attempt to measure the radial velocity of the LSR by comparing the
velocity of the LSR to the mean velocity of high-velocity stars (with a}{ﬁ in excess
of 100kms™?), which presumably participate less strongly in any radial oscillation.
Unfortunately, the high dispersion implies that a large sample of stars is needed, and
the statistical error in existing samples is too large for a useful estimate: using the radial
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Figure 2. Determinations of (left) the radial component of the velocity of the LSR relative
to the Sun and (right) the radial velocity of the LSR. The estimates shown are those marked
by asterisks in the text; error estimates are those of the authors cited. The standard solar
motion (Delhaye 1965) is also marked. The shaded regions denote the range allowed by our
best estimate and likely error. See text for details.

velocities for high proper motion stars listed by Fouts and Sandage (1986), we find the
mean velocity relative to the Sun of 311 stars with ultraviolet excess §(0.6) > 0.15
to be 9g — vge = T+ 13kms™!; the 330 stars in the Carney and Latham (1987)
sample with [Fe/H] < —1 give 14 £ 12kms~'. Both numbers are consistent with the
standard solar motion determined from low-dispersion populations, but the errors are
large enough that a relative drift between the high- and low-dispersion populations as
large as 10-15kms™! cannot be excluded.

Ideally, to determine the radial velocity of the LSR we would like to measure the
mean radial velocity of a well-mixed and complete population of tracers localized near
the Galactic centre. Unfortunately, a number of complications are present:

(i) The stellar populations near the Galactic centre are kinematically hot, with line-of-
sight velocity dispersions ~ 100kms™!, so that many objects are required in order to
measure the mean velocity accurately (~ 1000 to measure vg 1 sr within 3kms™!).

(i1} The rotation speeds of cold populations remain high even at small distances from the
centre. Therefore any slight asymmetry in the longitude distribution of the sample
will bias its mean line-of-sight velocity.

(iii) Gas motions are very complicated near the centre. Maps of atomic or molecular
gas reveal many clumps, asymmetries, and “forbidden” (in an axisymmetric system)



82 KUIJKEN AND TREMAINE

motions. (But see Binney et al. 1991 for a coherent dynamical model.)

(iv) Optical measurements of objects near the Galactic centre can only be made in a
few windows where the extinction is relatively low. Recent work on the 2.3y 2 - 0
vibration band head of the CO molecule has provided the first measurements of
stellar velocities in the central regions of the Galaxy.

(v) There is no strong theoretical reason to expect that the Galactic centre—as measured
by the peak of the near-infrared emission—is necessarily the appropriate reference
point. For example, there might be an oscillation localized to the central few hun-
dred parsecs while the bulk of the Galaxy outside that radius was stationary and
axisymmetric.

Line-of-sight velocities have been measured over the past few years for stars within
a few parsecs of the Galactic centre. McGinn et al. (1989) have measured the mean
velocity and velocity.dispersion in the central 10 pc using integrated light spectra around
the 2.3x CO band head, which is mostly from low-mass stars. They find vp1sr =
—10 £ 25kms™** if the centre coincides with the source IRS 16; however, the result is
sensitive to the chosen centre because the stars rotate and the u.ncerta.mty of £10" in
the position of the centre implies an additional uncertainty of +10kms™?! in VR LSR-
Additional evidence of uncertainty is that measurements at four minor axis positions
yield vgisr = —47+8kms™!. Rieke and Rieke (1988) measured 54 stars in the central
6 parsecs and obtained vgLsp = —20 + 11kms™1* (as quoted in McGinn et al. 1989).
At larger radii (150 pc), OH/IR stars appear to be at rest relative to the LSR (Lindqvist
et al. 1989) within ~ 15kms™1; we assign these vrLsrR = 0+ 15kms™*. A sample of
planetary nebulae, Mira stars, and OH/IR stars within [¢| < 2° of the Galactic centre
yields vp,Lsr = 3 & 14kms~!* (Feast et al. 1980), and 109 planetary nebulae within
5° of the centre yield vp1sr = —13.6 4 10.5kms™!* (Kinman et al. 1988). The sample
volume for this last result is large enough that there is concern that the mean velocity
might be biased by any large-scale oscillation.

The kinematics of the gas near the galactic centre is very complicated. B&S offer
several arguments based on the Galactic centre molecular gas that suggest a positive
velocity for the LSR. (i) The average velocities of CO and *CO emission within 100’
of the centre are 19kms™" and 11kms™! respectively. However, most of the gas is
at positive longitudes, where velocities from Galactic rotation are positive (see Figure
21 of Oort 1977), so the velocities may reflect the central rotation curve rather than
motion of the LSR. (ii) A number of features in the molecular gas can be modelled
by an “expanding molecular fing” with a radius of about 200 pc (Oort 1977, Liszt and
Burton 1978, 1980). The features associated with the ring at £ = 0 lie at velocities
of 165km s‘1 and —135kms~! with respect to the LSR. B&S point out that the two
features would be symmetric relative to the centre, as one would expect for a circular or
elliptical expanding ring, if the LSR were receding from the Galactic centre at v R,LSR =
15kms™1. Like Qort (1977), we do not find the asymmetry surprising given the irregular
motion of the gas near the Galactic centre and therefore we do not feel that it provides
strong evidence for outward motion of the LSR. (iii) The Galactic centre is surrounded
by a lumpy ring of neutral gas with a radius of about 2 pc (Giisten et al. 1987). The
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velocity field of the ring suggests rotation, and Gisten et al. derive maximum rotational
velocities of 137 £ 8kms™! and —110 + 5kms™! relative to the LSR defined by the
standard solar motion; B&S point out that the asymmetry suggests that the LSR is
moving outward relative to the Galactic centre at about vprsg = 13 £ 9km sT1*,
However, the asymmetry arises because Giisten et al. introduced a warped ring model
to account for the different shape of the approaching and receding rotation curves.
The peaks in the observed velocities, before correcting for the presumed warp, are
at 100 + 5kms~! and —90 + 5kms™! relative to the standard LSR, consistent with
vrLsR = 5+ Tkms™!*. Our belief is that the velocity field in the ring is not regular
enough to distinguish these possibilities, so we have included both in determining our
mean estimate.

Combining the estimates marked by an asterisk according to the prescription in §3.1,
we arrive at a weighted mean and likely error

VRLSR = —1% gkmsnl, (15)

including an estimated external error of 5kms™!. All of the starred estimates, as well
as the range implied by the best estimate and likely error, are shown in Figure 2. For
comparison, B&S estimate vprsr = 14kms™?!, which differs from our result by 1.7
times the likely error.

Some other constraints on vg1sr are discussed in §4.

3. 3. VERTEX DEVIATION

We have argued in §2 that ogrg¢ = 0 in a stationary, axisymmetric galaxy. When oscilla-
tions are present, this component of the velocity-dispersion tensor may be non-zero; the
vertex deviation £, is the Galactic longitude of the largest principal axis of the velocity
ellipsoid and is given by
tan(2l,) = —2——%8 (16)
ORR — U4
We now derive a theoretical estimate of the vertex deviation. We multiply the
collisionless Boltzmann equation f; + vnfn — ®,0f/0v, = 0 by 1, then by wv;,
then by v;u; and integrate over velocity to obtain the Jeans equations of degree
0, 1, and 2. We then eliminate the potential ® ; and discard terms proportional to
oijk = (vi — T7){v; — U7){vk — Tx) since these are small compared to o; if the velocity
dispersion is small. We obtain (e.g. Borderies et al. 1983)

Cije + OikTj  + 5iTi x + 0ij Tk = 0. (17)

We then convert to polar coordinates (R, ¢) and linearize relative to an axisymmetric
state, setting
TR = e Refu; (R)ef(m¢—+9),

T3 = vc(R) + € Re[vy (R)e'(m¢$—+9), (18)

Op = 0'2,, + eRe[sabe"(m“s"“’t)],



84 KUIJKEN AND TREMAINE

where € < 1, 0% and o are related by equation (3), and o%s = 0; for simplicity,
we neglect asymmetric drift and set the unperturbed U3 to the circular speed v,. For a
power-law circular-speed curve v, x R®, we find

2ei(m¢_$—wt)
(1 — Q)Az

+(a+ 1)(202 + %mﬁ)u—é +i[2m(a + 1)Q + o] v_};] } + O(€%), (19)

eu =6Re{ [—2(&-'—1)91&1,}2—1:501,}[

where Y(R) = ve(R)/R, & = w — mQ, and Ay = 8(1 + &)Q? — &2. The Jeans equa-
tions can also be used to relate the perturbed velocities to the perturbing potential,

¢Re{y1(R) expli(mé — wt)]},

0= o[- 22, o= L |20+ a)in- %] e
where A; = 2(a + 1)Q? — &2, Equations (19) and (20) are valid so long as the radial
scale of the perturbing potential 1; exceeds the typical radial excursion of an orbit
max{[u; |, o¥2]/x, where & = [2(a + 1)]'/2Q is the epicycle frequency.

These expressions simplify considerably in some special cases:

(i) Near a Lindblad resonance (A &~ 0) we have vy = —%i&ul/ﬂ. Moreover since A; is

small the radial derivatives of #; and v; will be large. Equation (19) simplifies to

H(mo—wt)
€, = —eRe[ t1, e ] (21)

(1-a)

Thus radial compression leads to a positive vertex deviation, expansion to a negative
deviation. The vertex deviation and radial velocity oscillations are in (anti)phase
(i.e. they differ in phase by 0 or 180°, so that |¢,] is large at azimuths where [vg|
is large), while the azimuthal velocity perturbation is in quadrature with the vertex
deviation (i.e. they differ in phase by 90 or 270°). Notice that the formulae above
only hold when we are sufficiently far from the resonance that the local kinematics
are not polluted by stars from the opposite side of the resonance.
(ii) Near a corotation resonance (@ ~ 0) equation (19) simplifies to

€ i(mg—wt) U imn
I P TP R

This can be rewritten in terms of the Oort constants (13) as
£y = —3C/A+ O(e?) = o, + O(€). (23)

Thus, near corotation, the vertex deviation is the same as the offset in the double-sine
curve of mean velocity.
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(i) If the oscillation arises from tightly wrapped spiral structure, %;(R) « exp[i [ k(R)dR]
with [kR| 3> 1, (k > 0 for a trailing pattern) then

~ . <1 Dy i
wkiy o1 = ikQ(1 + o)y ¢, = eRe 6ik“Q0(1 + a)

= i{mo—wt) .
A1 ’ ! Al ’ A1A2(1 — C!) ¢le

(29)
In this case the vertex deviation oscillation is in (anti)phase with the tangential veloc-
ity, and in- quadrature with the radial velocity and the surface density perturbation
(which is gy = kpouy /@). Of course, the val1d1ty of this formula is limited because it
requires that the radial excursion of an orbit o} RR / K is less than about [k~ < R.
'If the dispersion exceeds this limit the perturbed forces at different phases of the
epicycle tend to average to zero, so that (24) will overestimate the response. A gen-
eralization of (24) that is also valid in the case oy 2k /k 2 1 was derived by Mayor
(1970).

(iv) The kinematic model in the Introduction (eq. 2) yields £, = (1—¢*)zy/R? = —Tg/vq
to lowest order in (1 — ¢*). A similar, but slightly more realistic dynamical ‘'model
is to assume that the potential of the gala.xy is ®(R,¢) = gln(:r +y%/4¢3%), which
for 1 — ¢2 small can be decomposed into an a.xlsymmetnc potential with circular
speed independent of radius (« = 0) and a perturbation with m = 2, w = 0, and
¥ = 1v2(1 — ¢} ). In this model equations (20) and (19) yield

. . 2i¢
Uy = 2’¢1, L = __?_‘_13.1., 2, = _4633(“1’16 ) _ _BRr (25)
2
Yo Vo L Vo

Once again the vertex deviation and radial velocity oscillations are in (anti)phase.

There have been many observational studies of the vertex deviation £,; for reviews
and compilations see Delhaye (1965), Mayor (1972), Wielen (1974), and Jahreiss and
Wielen (1983). In general, the stellar populations with the largest velocity dispersions
show the smallest vertex deviation. For example, Mayor (1972) lists five groups of
disk stars for which the dispersion o'}/ increases from 17kms™! to 42kms™=! and the
vertex deviation decreases monotonically from £, = 22° to 6°. Ratnatunga and Upgren
(1991) analyzed the kinematics of ~ 800 Vyssotski K and M dwarfs, and found a
significant vertex deviation £, = 12°+4° in the cooler (JRR = 31kms™!) component,

but none (—9°+6°) in the hotter (URR = 54kms™!) component. From proper-motion
and parallax measurements towards the South Galactic Pole by Murray et al. (1986),
we obtain £, = —1 & 7° (assuming that the proper motion errors are isotropic) for the
stars between 100 and 300 pc below the Galactic midplane. Erickson’s (1975) analysis
of the Gliese (1969) catalogue yields a vertex deviation of 9 & 3° for all stars together.

To reduce the sensitivity of estimates of the dispersion tensor to high-velocity stars,
we have computed rank correlation coefficients between vg and vy among stars in the
Gliese catalog. Bounds on the vertex deviation can be set by repeating this analysis
for the (vg,vy) distribution rotated through a range of angles and identifying those
angles for which the rotated sample shows no significant correlation. We find for the
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602 “good” stars (see §2) that vg and vy are anticorrelated (i.e. that there is a positive
vertex deviation) at the 99.5%, 91% and 75% (two-sided) significance level for the
|[W| < 6, 6-15 and > 156kms™! subsamples, and values of ¢, between 4° and 18°, —1°
and 14°, and —7° and 12° are consistent with the data at 95% confidence; the full
1004-star sample gives vertex deviation with > 99.9%, 99.5% and 60% confidence, and
intervals of 10° to 20°, 3° to 15°, and —5° to 11°. Although the third bin shows no
evidence for any vertex deviation, a deviation of up to 7° for the full sample or 9°
for the restricted one cannot be ruled out at the 1-o level by the observations. In his
analysis of the Gliese catalog data, Wielen (1974) coped with the outlier problem by
restricting the analysis to stars with (v} + (vg — v:)?)}/? < 40kms™!, so for the hotter
populations a significant fraction of the stars are rejected. Mayor’s (1972) clipping of
all stars with eccentricity above 0.15 is less severe, but not circularly symmetric in the
(vr,v¢)-plane. The method presented here is a stable alternative that introduces no
preferred direction and uses all the data.

To estimate the vertex deviation for the hotter disk stars, we have combined the
estimates from Mayor (1972), our analysis of the Gliese (1969) catalog, and Ratnatunga
and Upgren (1991), for all classes with radial dispersion > 30kms™1, computing the
weighted mean and likely error according to the prescription of §3.1. We find a weighted
mean and likely error

£, =5.514.2° (26)

with external error 2.5° (see Figure 3). For comparison the B&S model predicts £, =
—9.3°, which differs by 3.5 times the likely error.® This is the largest discrepancy between
the B&S model and our estimates of local kinematic constants.

The data suggest that the vertex deviation £, declines from ~ 20° for the coldest
stellar populations to a substantially smaller value—possibly near zero—with increasing
dispersion. Unfortunately, available data do not exclude the possibility that a non-zero
vertex deviation of up to about 10° persists in even the hottest disk stars. Perhaps the
HIPPARCOS satellite will provide the data that will settle this important question.

3. 4. THE VELOCITY ELLIPSOID AXIS RATIO

We may derive the perturbations in the dispersions ogrp and 44 in the same way that
we derived the vertex deviation (19):

SRR =1 [—2iuy, g +ih; uy — 2iQ(1 — @)44] ,
3¢ 1., -1 2mv; |, @7)
-0'_3; =5 'l(ha - 2R )Ul + R + 239(1 - a)el ’

where £; is the complexified vertex deviation and is given by £, = eRe[¢;e(m¢—1)],
and h,(R) is the local exponential scale length of the unperturbed velocity dispersions

3 B&S quote a vertex deviation of +10°; however the sign conventions they use do not appear to be
consistent. The number quoted here is derived using eq. (19).
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Figure 8. Determinations of the vertex deviation. The shaded region denotes the range
allowed by our best estimate and likely error, which are derived from the data with radial
dispersion > 30kms™!. See text for details.
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¢, (the ratio of the unperturbed dispersions in radius and azimuth is independent of
radius because of equation 3 and our assumption that the rotation curve is a power
law). The fractional perturbation in the axis ratio 044/ R is (346/934) — (SRR [o%R)-
For the special cases (i)-(iv) above, equations (27) simplify as follows:

(1)

(i)

(iv)

3.

Near Lindblad resonance:

84 —2iU1'R
Q;'ﬁ = ~ ) |3RR1 K S¢é- (28)

The oscillations in axis ratio are in quadrature to the oscillations in vertex direction
(compare eq. 21).

Near corotation resonance: Both sgr and sy4 are singular at this resonance; however,
when near the resonance, we have

SRR _ S48

ok T4s

mu; ]

1
=5[—m13+z(h ' R Y + R

(29)

Thus the axis ratio remains near the axisymmetric value even though the dispersions
diverge. : '
Tightly wound spiral:

SRR _ _2k2'¢1 366 12(1 + Ot)k2ﬂ2¢1 (30)
U?IR Az ’ ag¢ A1A2

The deviation of the axis ratio from its axisymmetric value, the radial velocity, and
the density all oscillate in (anti)phase. At radii between the inner and outer Lindblad
resonances (where Ay, Ay > 0), the density and the axis ratio maxima coincide.
Elliptical disk with flat rotation curve and ellipticity independent of radius: In this
case equations (25) yield '

spr _ (R/he +4)i1 3¢¢ (R/ho — 2)th (31)
0%, vd L ! v2 )
RR 0 ¢ 0

The oscillations of the axis ratio are in quadrature with oscillations in vertex direction
but in (anti)phase with oscillations in azimuthal velocity.

5. IMPLICATIONS

Clearly the existing data on local kinematics do not provide accurate estimates for the
vertex deviation and its variation with dispersion. The coldest populations show large
vertex deviations, which probably reflect incomplete mixing because of their young ages.

For the older, hotter populations the following two models are both consistent with the
local data: "

(@

The vertex deviation £, is independent of dJspersmn and equal to about 5° + 5°.
The absence of dispersion dependence in both £, “and TR then suggests that both
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arise from a large-scale oscillation. In this case, however, a vertex deviation as large
as 5-10° is difficult to reconcile with other evidence: (a) If the oscillation is caused
by a non-axisymmetric halo (as in case [iv] above) then £, = —277/v. so we expect
TR & —10 to —20kms™1. There is no evidence for such a rapid inward motion in
the data discussed in §3.2, which suggest near-zero or outward motion of the LSR.
(b) If we are near a Lindblad resonance (case [i]) then T = —Q¢, ~ —2 to
—5kms™ kpc™. This violates the limits [0% g| < 2kms~kpc™ obtained in §3.1
from limits on Oort’s. C and K constants. (c) Near a corotation resonance, £, = ),
which is less than 1° according to §3.1.

The vertex deviation declines with dispersion, from & 10° for young but well-mixed
populations to near zero for older, hotter disk populations. The decline suggests
that the vertex deviation is caused by a small-scale oscillation, perhaps a nearby
spiral arm or other mass concentration (as in case [iii]) above (see Wielen 1979 for a
general discussion of the effects of spiral structure on local kinematics). If this is so,
we can attempt to constrain our position with respect to the arm from the observed
kinematics. Figure 4 shows the vertex deviation and perturbed streaming motions
in the region between the inner and outer Lindblad resonance of a trailing (m = 2,
k = 20/ R, corotation at R = 1) spiral in a galaxy with a flat rotation curve. Contours
of constant positive (negative) vertex deviation are plotted as solid (dashed) lines,
and the potential minima (the centres of the spiral arms) are marked as crosses. Then,
if the Sun lies outside the corotation radius, the observed positive vertex deviation
requires us to be just outside (leading) the arm (i.e. kR — kR, € [0,7] at fixed
azimuth, where R, is the radius at the centre of the arm); if inside corotation, we
would have to lie just inside (trailing) the arm instead. To obtain a further constraint,
we use the line-of-sight velocity map of OB stars, compiled by Burton and Bania
(1974). The most striking feature on this map is a region of compression along the
line of sight towards £ = 120°, at a distance of ~ 2kpc: comparing with Figure 4
once again, we see that this would only be observed from the leading edge of an arm.
Thus, we conclude that if the vertex deviation and the OB star peculiar velocities are
a result of a tightly-wound spiral perturbation, the Sun must lie just outside an arm,
and outside the corotation circle. The general features of the data can be reproduced
in such a model. (Burton and Bania’s fit of the velocity field to a trailing spiral
density wave also placed the Sun on the outside edge of an arm: but because the
adopted corotation radius for their model is ~ 20 kpe, the vertex deviation predicted
by their model is negative.)

Thus we believe that the vertex deviation is mostly due to small-scale rather than

large-scale oscillations (option [ii] rather than [i]), although it would be reassuring to
have better data on the deviation so that we could detect its dispersion dependence
with more confidence.

Oscillations in the axis ratio of the velocity ellipsoid may explain the ~ 30% dis-

crepancy between the predicted and observed ratios for a flat rotation curve (§2). For
example, in case (iv) above, oscillations with zero pattern speed and constant ellipticity,
the amplitude of the fractional oscillations in the axis ratio is % times the amplitude
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Figure 4. Streaming motions and vertex deviation in a tightly-wound spiral pattern. The
unperturbed rotation curve is flat with circular speed v. = 1. The potential perturbation is the
real part of 0.002exp[20iIn R + 24(¢ — t)]; potential minima are marked by x’s. Streaming
motions are marked by small vectors whose tails are denoted by circles; at multiples of 5°,
contours of constant vertex deviation are marked by solid lines (positive deviation) or dashed
lines (negative deviation).

of the oscillations in the vertex longitude, and the vertex oscillates in quadrature with
the axis ratio. Thus if the Sun is close to a symmetry axis of the elliptical distortion in
the disk, we would expect a small vertex deviation and a large deviation in axis ratio
(because the observed axis ratio is smaller than the predicted one, the Sun must be
near the minor axis of the ellipse). An appealing aspect of this explanation is that the
fractional change in axis ratio is 3(93 — v.), so a 30% change in axis ratio requires only
a 10% oscillation in azimuthal velocity. It is also interesting that the Sun appears to lie
near the line of nodes of the Galaxy’s warp. In models in which the warp is the result of
a mismatch between the symmetry planes of the disk and a non-spherical halo (Toomre
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1983, Dekel and Shlosman 1983, Sparke and Casertano 1988), the line of nodes is the
major (minor) axis of the halo potential in the disk plane if the halo is oblate (prolate).
Thus it would not be surprising if the Sun were near the symmetry axis of an elliptical
distortion, which is consistent with the small vertex deviation and the near-zero values
for the Qort constants C' and K.

Of course, the velocity ellipsoid does not exhaust the information available in the local
velocity distribution. For example, we argued in §2 that the distributions of vg and v,
should be symmetric about zero. We have tested the symmetry of the v-distributions of
the Gliese catalogue by using the Kolmogorov-Smirnov test to compare the distribution
and its reflection about a hypothesized centre of symmetry. For the 602- and 1004-star
samples as well as the slices in |v;] mentioned above, the only asymmetry detected
at better than 90% significance is in the vy distribution: this shows very significant
(> 99%) asymmetry about the mean, as expected, and the vy-distributions of the |v,| >
15kms™! bins are also asymmetric about the median at better than 95%. However,
Jahreiss and Wielen (1983) point out that there is a noticeable asymmetry in the vg
distribution of the McCormick K and M dwarfs. The interpretation and significance of
this asymmetry is unclear.

3. 6. MIXING

Star formation does not occur at uniform rates across the Galactic disk. Spatial and
temporal variations in the star formation rate are gradually washed out as stars travel
at different velocities away from their birthplaces (“phase mixing”). To what extent
do the stars of the solar neighbourhood form a well-mixed system? This question is
fundamental to any interpretation of the kinematics of the solar neighbourhood, since
many of the predictions we have made are only valid for a well-mixed population.

Irregularities in the Galactic gravitational field heat stellar populations as they age
(Wielen 1977, Jenkins and Binney 1990). Thus, if vertex deviation is only present in the
kinematically cooler (and therefore younger) stars, there are at least two possible expla-
nations: the deviation could be caused by a short-wavelength oscillation on a well-mixed
population, or by incomplete mixing of the youngest stars in an otherwise unperturbed
disk. Here we estimate the mixing timescale to assess the second possibility. For previous
discussions, see Woolley (1965) and Mayor (1972).

Consider the simplified case of a group of stars that are born simultaneously in a
small patch of phase space of size Avy in velocity and Axy in space. Assume further
that once born, these stars respond only to the large-scale gravitational field of the
Galaxy, and not to each other, so that we can study their orbits separately. )

In the epicycle approximation, the orbit of a star initially at (R, ¢¢) with velocity
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(v o, vc(Ro) + vpo) is

R(t) =Ry + 20 vpo(l ~ CO8 Kt) + 2
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Upo SIN Kl

? Q
vg(t) =v(Ro) + vp0 [l + 23‘ (cos k.t — 1)] - -;—c-f-vgo sin K, t.

e ]

In these formulae (2, and &, are the usual azimuthal and epicycle frequencies evaluated
at the star’s guiding centre or mean radius R,.

We first ask how such an unbound group of stars would look to a local observer.
Equations (32) show that while R, vy and vy oscillate about a fixed mean, the azimuth
¢ of the group is sheared out at the rate proportional to |Af. |, the spread in azimuthal
frequencies of the guiding centres. Thus at large times, all of the stars in a given az-
imuthal interval A¢ < 1 would have the same guiding centre radius R, (we neglect the
possibility that the leading stars in the group may lap the trailing stars). The first of
equations (32) shows that the guiding centre radius is related to the initial radius and
velocity by

= Ro+ upo, (33)
where to sufficient accuracy we have replaoed Q., ke by , &, the frequencies evaluated
at the present radius. Since there is nothing special about the initial time, this relation
also holds if the initial radius and velocity are replaced by the present radius and
velocity. Thus for Qt >> 1 the stars from the group that are visible in a given azimuthal
interval occupy a narrow band in phase space given by

R+ 20 o constant; (34)
that is, the signature of incomplete mixing is streaks in R — vp Space.

The solar neighbourhood is well-mixed if many such streaks are present. To estimate
the mixing efficiency, let us assume that all stars of a particular type X are born in
" clusters containing Nx such stars, that these clusters are formed at a uniform rate p per
unit time and per unit area of the disk, and that the clusters disrupt soon after forming
into unbound groups of stars with typical internal velocities and sizes Av and AR. We
assume, as is probably the case, that the clusters’ velocities are much larger than their
sizes, Av/v, > AR/Ry or Av > 0.02kms~?(AR/1pc). The group shears out into a
stream of azimuthal extent AQ,t ~ (Av/v. ), and of radial extent (Av/v.)R (we do
not distinguish & from Q at this level of approximation). Thus the area of a stream
of age ¢ is A(t) ~ R*(Av/v.)’Q, and the number of streams overlapping at a given
position with age < ¢ is

n(t) =p /; t A(t)dt = pR*(Av/[v. )20t (35)
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The youngest and hence highest density stream visible in the solar neighbourhood will
have age t; such that n(#;) ~ 1, and a surface number density of stars Z; = Nx /A(ty).
The total surface number densits; of X-stars is ¥ x = pNx7x, where 7x is either the
age of the Galaxy or the lifetime of the stars in question (whichever is shorter), so we
may eliminate p to obtain

1/2
Iy v ( Nx T (36)
x Av \IxR2Qryx

Also, since p = L/(NT) is the same for all stellar types, we have in particular Nx /N, =
(Zx7e)/(Ee1x) where the asterisk subscript denotes the entire stellar disk population:
for our purposes it is adequate to set 7, = 7p, the age of the Galactic disk. Then, using
plausible parameters, we obtain

2 ~ 0.007 5kms™?1Gyr\ /N, T1p 50pc~? 1/2_ (37)
x Av  Tx 300 10Gyr X, ’

the ratio indicates the fraction of solar neighbourhood stars in the strongest stream.

For early A stars, with main-sequence lifetimes of T4 &~ 2 x 10® yr, we expect that
roughly 3.5% are in the strongest stream if these parameter values are correct. In this
case the observed structure in the early A star velocity distribution (see Eggen 1965,
Figure 2) is not likely to be the result of incomplete mixing. However, if only some
fraction fum of clusters form stars as massive as A stars, which could happen for example
if the IMF depends on star forming environment, then the stream strength is increased
by a factor fﬁl/ %. so equation (37) is likely to underestimate the velocity clumping.

Are stellar “moving groups” (Eggen 1965) such shredded clusters? It is quite possible
that fas and the parameters in equation (37) can be stretched enough so that the
observed clumpiness in the distribution of A stars can be reconciled with such a model.
One prediction of this model, already pointed out by Woolley (1965), is a narrowing
of the vg-, but not the vg-distribution of each stream with age: after 0.5 Gyr, the
tangential velocity width should amount to no more than ~ 1kms™! (though the shear
expressed in eq. 34 will project to add some further width if the radius range sampled is
nonnegligible). In addition, the number of stars in each group should decrease as t™2, i.e.
the density of stars in the (vg,v4) plane should be roughly the same within all groups
(conservation of phase-space density). While we have made no detailed comparison,
the A star distribution does appear to show some of these features to the eye. Further
support for the notion that the moving groups are physically associated stars, rather
than chance coincidences, comes from detailed photometric studies of stars with the
moving group kinematics, which suggest common metallicities and ages for the stars in
any one stream (a review of this subject is presented in Eggen 1989).
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4. The effect of oscillations on large-scale kinematics

The strongest evidence for large-scale oscillations is likely to be found in the kinematics
of distant tracers. The difficulty is to find a suitable tracer: a member of the disk
population that is visible across the Galaxy and whose distance and velocity can be
determined reliably.

There are major surveys of the region outside the solar radius (Ro < R < 2Rg)
in both carbon stars (Aaronson et al. 1989, 1990) and HII regions (Brand 1986; Fich
et al. 1989). There is no strong evidence of deviations from axisymmetry in either
survey, although detailed comparisons with the B&S or other models are not available.
Part of the problem is that the B&S model has a Lindblad resonance at 1.5Rg. Orbit
crossing is inevitable in the vicinity of this resonance; the detailed behaviour of the
gas will then depend on its effective viscosity, and collisionless populations will exhibit
an enhanced velocity dispersion rather than oscillations in mean velocity. Thus the
theoretical prediction is uncertain and its observational consequences are difficult to
detect. This problem is artificially minimized in the B&S model by smoothly truncating
the quadrupole component of the potential to zero before the resonance radius.

In the K giant survey of Lewis and Freeman (1989), the radial velocities along the
line of sight near the anticentre appear to deviate systematically from the LSR motion:
at B = 1.5Rg, 1.75Rp and 2.1Rp, they find 5R(R) — vgLsr = 13.0 + 4.2kms™!,
16.1 £ 4.6kms™" and 5.7 + 4.5kms™!.# If the outer regions of the Galaxy are not
oscillating, the only effect we could see in the velocities at these radii would be the
reflex of the LSR motion: then these stellar data suggest vp1sg = —11.6 £ 2.6kms™?
(an inward motion), opposite to the outward motion suggested by B&S. It would be
very interesting to confirm this result with different samples.

If the Galaxy has a single pattern speed (i.e., if there is some frame rotating at 2,
in which the density and velocity distributions are stationary), then one can derive
from the continuity equation an integral constraint on the line-of-sight kinematics of
the tracers in any distance-limited survey: let £(r,£) be the surface density of the tracer
at distance r (from the Sun) and longitude £, and let g(r) be the probability that an
object at distance r is included in the survey (the selection function). We define, for
any observable quantity f(r,£), (f) = 5" dr j;)z" deE(r,D)g(r) f(r,£). Then

(Vrad) + (vg,0 — QpRo)(siné) = vp13r{cosf). (38)

This formula requires uniform completeness in £, that is, the selection function must be
independent of longitude. Using the Galactic Hr distribution, eq. (38) yields vgLsr =
8kms™! if @, = 0 (areasonable lower limit), and v 15r = —4kms™! for a perturbation
that corotates at the sun. Estimating the error on this determination is very difficult.
Ideally we should apply the same method to different tracers, but unfortunately there
are few extensive data sets with the required ¢-coverage and uniform completeness.

4 1t is interesting that these deviations are opposite to the tail towards negative v;,4 seen in the HI
line profile towards the anticentre.
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4. 1. GAS KINEMATICS

The surface density of HI fallg rapidly at large radii and hence the “edge” of the Hi
distribution (as given, say, by the 1 K contour of brightness temperature) can be used to
trace the line-of-sight velocity of a streamline as a function of longitude. Spiral arms are
weak or non-existent well outside Ry so deviations from axisymmetry are more likely
caused by large-scale oscillations. The following analysis of the effects of oscillations on
a streamline follows Kuijken (1991).

Let the velocity field of the HI be vr(R, $)ér + vg(R, ¢)&4, where ¢ = 0 is the
line from the Galactic centre to the Sun (recall that ¢ increases counterclockwise when
. viewed from the South Galactic Pole). If the LSR (coordinates R = Rg, ¢ = 0) follows
the velocity field of the HI, then the line-of-sight velocity of HI at radius R and longitude
{is

vrad = V(R, ¢)(Ro/R)sinf — vy o sinf — vr(R, ¢)cos(d + £) + vr o cos¥, (39)

where vg,0 = v¢(R@,0) is the azimuthal velocity of the LSR, with a similar definition
for vg @, and the angles ¢ and £ are related by Rsin(¢ + £) = Rg sinf.
Now assume that oscillations are of order ¢ < 1, so we may write

vr = ca(R)sinlmé — ()], vy = ve(R) + B(R)coslmé — ()], (40)

where the functions o« and 3 can be deduced from equation (20) for a given potential
perturbation and d{(t)/dt = w is the frequency of the oscillation. We evaluate the
line-of-sight velocity along a streamline with mean radius R, to O(¢). To account for
variations in v, with radius we need to know the difference between the instantaneous
and mean radius of the streamline, which is R — R, = ey(R,) cos(m¢ — ) where v =
a/i = af(w—mf) and Q(R) = v.(R)/R. Thus

};G +7:(8,r)s Ro) sinf cos(m¢ — ()
’ ' (41)
— a, cos(¢p + £)sin(m¢ — {) — Besinfcos( — ag cosﬂsin(},

vrad =Ro(f), — Qp)sinf + e{ [ﬂ,

where subscripts correspond to the radii where the functions are to be evaluated. Fol-
lowing B&S, we note that the term independent of € is odd in £, so we eliminate this
term by forming

Avedge =vraa(€) + vrad(_‘g)

=2¢ SinC{ [ﬁs ZO + 78(9,3),1‘2@] sinfsinm¢ + a, cos(¢ + £) cosme — ag cosE}.

8
(42)
Note that if {( = 0 then Avegge = 0; this case corresponds to the model in the Intro-
duction in which the Sun lies on a symmetry axis so that oscillations are difficult to
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detect in the velocity field. For distant gas, R, 3> Rg, we have Rg(d2/dR), — 0 and
¢ ~ m — £ so that

Avedge = 2¢sin ( [ar,(—1)™+ cosml — agp cosf]. (43)

Thus we conclude that (i) the signature of radial motion of the LSR is a cos £ dependence
In Aveqge; (il) excess azimuthal motion of the LSR is undetectable in Avegge; (iii)
oscillations in the distant streamline with azimuthal wavenumber m cause oscillations
in Avegge as a function of longitude with the same wavenumber.

B&S analyze HI surveys and show that Avegg. varies approximately as cosf, with
an amplitude of 25 — 30kms™!. The analysis above shows that this variation could
result from either (i) outward motion of the LSR at about 15kms~? (the interpretation
favoured by B&S); or (ii) an m = 1 oscillation in the outer Galaxy and no radial velocity
for the LSR (Kuijken 1991). In either interpretation, Aveage should be zero at £ = 90°;
the actual zero lies at £ = 105°, consistent within the uncertainties.

Other evidence from HI kinematics does not clearly distinguish these two models.
B&S point out that the HI at £ = 180°, where the contribution from rotation to the
line-of-sight velocity is zero, is mostly at negative velocities, consistent with an outward
motion of the LSR that is not shared by more distant gas. However, similar behaviour
is expected for an m = 1 oscillation. In addition, Kuijken (1991) argues that the B&S
model contains a Lindblad resonance outside the solar circle; this implies that Tg(R)
reverses in sign and then declines for R > Rg, which should be reflected in a sharp
edge to the brightness temperature profile in velocity space rather than the observed
extended wing. However, hydrodynamical simulations are needed to predict accurately
the behaviour of the gas near the resonance.

Kuijken (1991) shows that the gradient of line-of-sight velocity with brightness tem-
perature is approximately odd around £ = 90° (although the plots are quite noisy); this
is evidence for an m = 1 oscillation since motion of the LSR would not produce this
asymmetry.

B&S argue that the integrated brightness temperature also shows asymmetries in
longitude that are consistent with outward motion of the LSR but not with an m = 1
oscillation. However, because the HI surface density falls rapidly with distance the
asymmetries are probably dominated by local gas, which participates in spiral structure
(the dominance of nearby gas is enhanced because B&S integrate over all latitudes
8] < 10°, s0 their beamwidth exceeds the HI scaleheight except near the Sun).

Differences in the HI terminal velocity curves between the northern (0 < £ < 90°)
and southern (360 > £ > 270°) hemispheres were first detected by Kerr (1962), who
postulated an outward LSR velocity v rLSR = Tkms™! to account for the difference.
The difference Avierm = Vterm(£) + Vterm(—2) is plotted by B&S and reaches a maximum
amplitude of 13kms™!, The terminal velocity asymmetry is less useful as a discriminant
for oscillation models, partly because the amplitude is small (the relevant physical
quantity is of course -;-Avte,m , which is only 3% of the circular speed) and partly because
much of the asymmetry may be caused by spiral structure. To lowest order in ¢,

Avterm = 2€sin( [ﬂ, sin m(90° — |} — ag cos £] ) (44)
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where the subscript ¢ means that the coefficient is evaluated at R; = Rp|sin¢|. B&S fit
their mode! to Avierm to determine the pattern speed of the oscillation; however, even
the best-fit pattern speed does not substantially improve the fit in. comparison to the
prediction Avierm = 0 for an axisymmetric, stationary galaxy. The same is true of other
low-m, large-scale oscillations. Only a high m or a short radial wavelength perturbation
can reproduce the details of the terminal velocity differences.

The plane of maximum HiI density is warped. The warp is nicely symmetric out to
about 1.5Rg (it can be modelled well as a superposition of concentric circular mutually
tilted planar rings), with the line of nodes nearly along the line from the Galactic.centre
to the Sun (Burton and te Lintel Hekkert 1986). Beyond this radius the symmetry is
lost: towards [ = 90° the warp angle keeps on increasing, but towards [ = 270° it
decreases, bending back towards the plane of the inner disk. The gas density in the
region of greatest warping is very small.

No revision in the kinematic distance scale can remove the asymmetry in shape
between the two sides of the warp, and this asymmetry is difficult to reproduce with gas
that follows closed orbits in any simple potential. Thus there is a strong possibility that
the outermost gas (beyond about 1.5Rg, say) is not on closed orbits with well-defined,
discrete oscillation frequencies. For this reason, any conclusions about the existence or
nature of oscillations drawn from the kinematics of distant gas are suspect. Efforts to
find a pattern speed for the large-scale oscillations of the Galaxy may be no more fruitful
than efforts to find the pattern speed of spiral structure in many external galaxies.

5. Oscillations in other galaxies

The detectability of large-scale oscillations in other disk galaxies depends strongly on
the azimuthal wavenumber. We first consider m = 2 oscillations, which distort an
azimuthally symmetric disk into a disk whose isophotes and streamlines are concentric
ellipses. The strongest instabilities in dynamical models of disk galaxies usually have
m = 2 (Toomre 1977, Sellwood 1985); in addition, both the bars found at the centres
of many disks and the two-armed “grand design” spirals found in some galaxies are
mainly m = 2 oscillations. We-concentrate here on elliptical distortions with aligned
major axes since these are much harder to detect than spiral distortions.

If disks are azimuthally symmetric, they appear circular when viewed face-on, while
elliptical disks only appear circular when the line of sight and the disk axis make an
angle of cos™! ¢ and the minor axis is normal to both. Thus for randomly oriented
elliptical disks the distribution of apparent axis ratios Q depends on the distribution of
true axis ratios ¢. Binney and de Vaucouleurs (1981) have examined the @Q-distribution
of ~ 103 spiral galaxies and find that for several Hubble types the distribution cannot
be fit by randomly oriented, flat, circular disks: there are too few apparently round
galaxies (@ ~ 1). They find that flat elliptical disks with ¢ = 0.9 provide substantially
better fits, but that a substantial population with larger ellipticities is incompatible
with the data. Grosbol (1985) digitized the images of ~ 600 disk galaxies from Palomar
Sky Survey plates and also finds too few round disk galaxies. Athanassoula et al. (1982)
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have also derived an average axis ratio ¢ ~ 0.9 from the distribution of apparent axis
ratios of outer rings and 25™ isophotes.

A related test is to identify face-on disks from narrow HI line widths and then to
measure the ellipticities of these disks (more elaborately, we may compare the “photo-
metric inclination” i, = cos™ Q determined from the assumption that the disk is flat
and circular with the “Fisher-Tully” inclination ipp = sin'"l(Av /AvpT) where Av is
the HI velocity width and Avpr is the width predicted by the Fisher-Tully relation).
In a sample of 212 disk galaxies with apparent axis ratio @ > 0.87, Lewis (1987) found
~ 20% with Fisher-Tully inclinations that would imply apparent axis ratios < 0.8 if the
galaxies were round and flat. Though this result should be treated with reserve since the
photometry is crude and there are possible systematic errors (e.g. warps may influence
the HI widths) it again suggests that intrinsic axis ratios ¢ ~ 0.9 may be common in
disk galaxies.

Kent (1990) has carried out a more careful study of a smaller sample of disk galaxies.
He has examined 32 galaxies whose Fisher-Tully inclinations imply that the apparent
axis ratio @ should exceed 0.9 if the disks are flat and circular; in fact, imaging shows
that the distribution of @ is roughly uniform between 0.75 and 1, implying a mean
intrinsic axial ratio of about 0.9.

Kormendy (1979, 1982) argues that many elliptical disk galaxies can be identified
photometrically, because they contain two or more elliptical disks or rings with different
apparent axis ratios or position angles, implying that not all can be round and coplanar.
These features are not associated with the warps seen in edge-on disks because they
appear at relatively high surface brightnesses, corresponding to radii where edge-on
disks are known to be flat. He derives a mean intrinsic axis ratio ¢ = 0.76 for the outer
rings; however, the ring may be associated with a resonance, so its ellipticity may not
reflect the overall ellipticity of the outer disk.

More recently, Bertola et al. (1991) have studied the misalignment between disk and
bulge major axes in a sample of 32 “bar-free” nearby spirals. If all this misalignment
is due to the disks, they deduce a typical disk axis ratio of 0.85, although the actual
value is probably higher since at least some of the misalignment is due to the bulges’
triaxiality. )

Oscillations can also be detected by analyzing the constant-velocity contours in HI
maps (Binney 1978; see also Bosma 1981). Both warped disks and elliptical disks distort
the constant-velocity contour field away from the simple shape expected for a flat,
axisymmetric disk. The presence of warps in disk galaxies is easier to establish than the
presence of elliptical disks, because warped edge-on galaxies are unmistakable, while
elliptical disks are difficult to detect unambiguously at any orientation. Nevertheless,
the common practice of fitting HI maps to models consisting of inclined, circular rings is
suspect, since flat, elliptical rings may often be a better approximation. Staveley-Smith
et al. (1990) show that warped and elliptical disks provide equally good fits to the Hi
velocity field of the irregular galaxy Michigan 160.

Elliptical disks arise naturally if they are embedded in triaxial dark halos {Binney
1978), and we may use models of halo formation to predict disk axial ratios. Dubinski
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and Carlberg (1991) have carried out N-body simulations of the formation of halos from
cold dark matter, which follow the collapse of individual proto-halos with high spatial
resolution (softening length < 1A~1kpc, particle mass < 10851 Mg, where & is the
Hubble constant in units of 100 kms~*Mpc™?). They find that the density profiles of the
halos can be fit to a Hernquist (1990) model, p = Ca~(a+a,)~3, where C is a constant,
a’® =z% +y?/q? + 22 /¢} and ¢;, ¢z are the axis ratios, 1 > ¢; > ¢2. The typical scaling
radius a, = 22h~1 kpc. In the limit R < a, the circular speed of the halo is proportional
to R1/2, so for. consistency with the observed flat rotation curves of disks the disk mass
must contribute substantially to the rotation speed; we assume that this extra mass is
axisymmetric so the only non-axisymmetric potential arises from the halo. If the axial
ratios are near unity then the non-axisymmetric component of the potential in one of
the principal planes is ®(R, ¢) = Re(t; exp 2:¢), where 91 (R) = i—ﬂGCa,‘%é(R/a),LR
and ¢ are the radius and azimuthal angle, g() is a function that we shall not bother
to write down but that is normalized so that g(z) 2 zasz - 0,and 6 =1—¢? or
1—(g2/q1)? depending on whether the normal to the principal plane is the long axis or
the short axis (motion around the intermediate axis is unstable).

The resulting velocity perturbations to the disk material are described by equations
(20) in the linear approximation. If the density gradients in the outer regions of the
unperturbed disk are large, the ellipticity of the disk will be that of its outermost orbits
(i.e. isophotes coincide with streamlines). Since the stars follow orbits described by
dR(t)/dt = Relu; exp(im¢(t) — iwt)] =~ Re[u, exp(—iwt)], the corresponding axis ratio
is ¢ = 1 — d where d € 1 is given by d = 2|u;/R|. Specializing equations (20) to
m = 2, a flat disk rotation curve (a = 0, circular speed v.) and w = 0 since the halo is
non-rotating, we obtain d = 1GC§[2¢(z) + z¢'(z)]/(4a%v?) where z = R/a,.

The maximum circular speed of the halo is given by v2,, = 37GC/a? so the axis
ratio of the disk is given by

578% 29(2) + 29" (2)]e=ra,

_ 61),2“,: 610g(1 +z) 6+ 15z + 1122
R z? 22(1+2)° |.rfa,

d=

B =

(45)

Assuming vmax = v, and setting R =~ 0.5a,, we find d = 0.26 (in fact, the distortion is
maximized at R = 0.45a, where d = 0.2044). The typical values of 6 found by Dubinski
and Carlberg (1991) are in the range 0.4 —0.7 (axis ratios ¢; = 0.56, g2 = 0.42), yielding
disk axis ratios in the range 0.92 to 0.86, consistent with the ratio 0.9 suggested by the
observations of external galaxies. In our own Galaxy, at R ~ 2R, the ellipticities of
the orbits should be ~ 0.166, corresponding to radial velocity oscillation amplitudes
ea of 0.06-0.11v,, or ~ 19kms~1. This should show up as a cos2¢ term in the Avegge
curve (eq. 43) of amplitude 2easin . A harmonic analysis of the observed curve gives a
cos 2¢ term of at most 10kms™?, consistent with the data as long as we are within ~ 8°
of a symmetry axis of the halo. However, a more detailed analysis, taking into account
the quadrupole of the response of the disk to the halo potential, is required for a more
thorough study of this model. :
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We now briefly discuss evidence for oscillations with m # 2. Many isolated disk
galaxies exhibit large-scale asymmetries in their HI distributions outside the optical disk
(Baldwin et al. 1980), which might be explained as large-amplitude m = 1 oscillations.
Unfortunately, there are no convincing long-lived models of galaxies that exhibit these
asymmetries, although the dominant instabilities in some galaxy models have m = 1
(Zang 1976, Toomre 1977, Zang and Hohl 1978, Sellwood 1985).

Axisymmetric (m = 0) oscillations can only be detected by detailed modelling of ve-
locity fields. Thus they are likely to be difficult to detect. There is no strong theoretical
reason to expect that axisymmetric oscillations are excited in disk galaxies; in fact, be-
cause the swing amplifier (Toomre 1981) amplifies only non-axisymmetric disturbances,
it is likely that axisymmetric disturbances die away in a few galactic rotation periods.
Nevertheless, we feel that fits of observations to models with all three wavenumbers
m = 2,1,0 are important, to establish how well the observations discriminate between
different models.

Summary

(i) We have examined the kinematics of the solar neighbourhood for evidence of oscilla-
tions. In a stationary, axisymmetric Galaxy, the following parameters should all be
zero: the vertex deviation £, in the hot disk stars, the Oort constants C and K [or
Yy = —% tan~1(C/A)], and the radial velocity of the LSR UR,LSR = UR. We estimate

by =55+4.2°
» = —13+£23°
4 1y -1 (46)
K=-035+05kms™ kpc™,
vRLsR = —1 £ 9kms™L.

All of these estimates are consistent with zero, as is the zero radial velocity of the
Galactic centre HI absorption feature. Thus there is no strong evidence for large-scale
oscillations from the kinematics of the solar neighbourhood.

(ii) The most comprehensive model of large-scale oscillations is that of Blitz and
Spergel (1991a), who propose that the oscillations are induced by a rotating tri-
axial spheroid. In their model m = 2, vg1sr = 14kms™!, the pattern speed is
0, = 5.5kms 1kpc™, the inner Lindblad resonance is at 1.5Rp, and the distant
Galaxy is nearly axisymmetric. The principal evidence for their model is the asym-
metry in the kinematics of the HI in the distant Galaxy. A possible problem is that
there is no evidence of the strong velocity gradients that might be expected to be
associated with the Lindblad resonance, either in stellar tracers outside the solar
circle, or in the HI distribution at the anticentre. The B&S model also does not
explain the asymmetry in the terminal velocity curves, although this may be due
to spiral structure. The observations discussed in item (i) are reasonably consistent
with the B&S model (which predicts £, = —9.3°, ¢, = —3.8°, K = 0.4kms~ ' kpc™?,
vpsr = l4km s“'l) but are more consistent with axisymmetric, stationary models;
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(iv)

(v)
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thus they do not provide evidence for the B&S model, although it is interesting that
such a strong oscillation can be introduced without contradicting these null results.
An alternative model (Kuijken ‘1991) is that the Galaxy is approximately axisym-
metric inside the solar radius but that an m = 1 (“lopsided”) oscillation is present
in the distant Galaxy. A possible problem is that asymmetries in the spatial density
of HI suggest an m = 2 rather than m = 1 oscillation, although these are probably
strongly affected by spiral structure near the solar circle. This model does not ex-
plain the asymmetry in the terminal velocity curves either. Lopsided models are less
appealing because there is no strong theoretical reason to expect an m = 1 oscillation
in the outer Galaxy; on the other hand they are observed!

The asymmetry in the shape of the Galactic warp cannot be removed by adjustments
to kinematic distances, suggesting that the kinematics of the distant HI may not be
described accurately by well-defined streamlines and a discrete oscillation spectrum.
In this case there is no substantial evidence for any coherent large-scale oscillation
of the Galaxy.

If the Galactic halo is triaxial, the disk should exhibit an m = 2 oscillation with low
pattern speed that increases in amplitude towards the outside of the Galaxy. There
is no evidence for such an oscillation, though if the sun were near the major or minor
axis of the halo such triaxiality would be extremely difficult to detect.
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Discussion

WHITE: There can be a serious difficulty in using apparent axis ratios to argue against
circular disks in that small-scale “noise” {due to HII regions, spiral arms, etc.) always scatters
the data toward higher apparent ellipticities. Are the analyses you referred to corrected for
such effects? )

TREMAINE: Kent obtains a distribution of apparent axis ratios that is uniform between
0.75 and 1 for a sample of nearly face-on galaxies, and corrects for noise and other selection
effects to obtain an intrinsic axis ratio of 0.9. Errors due to spiral arms could be further reduced
by using photometry in the near-infrared rather than in the visible.

NELSON: How does the bar of Blitz and Spergel and Weinberg compare with the HI bar
observed at the galactic centre several years ago?

KUILJKEN: Blitz and Spergel (1991a, 1991b) actually detected two distinct m = 2 oscilla-
tions. One is a triaxiality of the extended Galactic “spheroid” or “thick disk”, which would
have to extend beyond the solar circle. The second oscillation, which appears to agree with the
one detected by Weinberg (1991), affects the inner few kpc of the Galaxy only, and is unlikely
to disturb the kinematics at the solar neighbourhood or beyond. This latter “bar” is in the
same sense as the HI bar, and B&S even claim that it shares the tilt out of the Galactic plane
that was proposed by Liszt and Burton (1980) for the much smaller molecular elliptical disk.
MERRIFIELD: If the vertex deviation of cold populations is caused by very local effects,
whereas the vertex deviation of hotter populations is due to large-scale asymmetries in the
Galaxy, is it just a coincidence that all populations seem to have a vertex deviation with the
same sign?

TREMAINE: Yes.

GERHARD: Triaxial equilibrium models with p o< r~2 and small cores may not exist
{(Miralda-Escudé and Schwarzschild 1989), so the outer halo may not be able to sustain a
triaxial shape.

BINNEY: We shouldn’t forget that from ~ 10kpc out there are clear indications that galaxies
are not in anything like steady states. So one must trust with caution the argument that a
configuration is improbable because no such equilibrium is possible.

KUIJKEN: | agree with Binney’s comment. In any event, the Dubinski-Carlberg halos are
obtained from an N-body integration and hence represent the dynamics self-consistently. The
density of the Hernquist models that they approximate falls off more steeply than r~2 at large
radii: the asymptotic decline is the same as for the so-called “perfect elliptical galaxies”, which
can be built self-consistently.

PFENNIGER: Do you assume that your elliptical deformation of a disk has a pattern speed?
If not, it cannot be self-gravitating because loop orbits in a non-rotating potential are elongated
perpendicularly to the potential.

TREMAINE: Our approximations take into account only the quadrupole from the (at most
slowly-rotating) halo potential. It is true that the disk will tend to counteract this quadrupole
moment somewhat.

BINNEY: Diego Garcia Lombas has recently analyzed a sub-sample of large galaxies in the
APM survey. This sample is 5-10 times larger than that provided by the RC2 and much more
homogeneous. He concludes that disk galaxies definitely cannot be modelled as axisymmetric
systems. There is a deficit of apparently round systems, which requires disks to be elliptical.



