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ABSTRACT. There is little direct dynamical evidence for dark matter in the solar system. How-
ever, fairly general models for the formation of the planetary system predict that dark matter in the
form of fossil planetesimals is likely to be present in two locations: an extended spherical cloud with
semi-major axes between 103 AU and 4 x 10 AU, and a flat disk in the region of the outer planets
or just beyond them. The outer part of the extended cloud is probably the source of new comets
(the Oort cloud), and the disk is probably the source of the Jupiter-family comets. The mass in the
extended cloud may exceed the mass in the cores of the giant planets; thus most of the metals in
the solar system outside the Sun may be in the form of dark matter. I also review the evidence for
a tenth planet, Planet X, and for the companion star Nemesis. Neither is very probable, since the
observations that they are invoked to explain (residuals in the orbits of Uranus and Neptune, and
periodicities in the cratering and extinction records) are only marginally significant. In addition,
the proposed objects have unusual properties: Planet X must be at least ten times more distant and
massive than any other planet, and Nemesis must have a very improbable orbit. Finally, I surnma-
rize dynamical constraints that strongly suggest that the Sun has no companion more massive than
about 0.03 Mg. '

Introduction

Most of us are mainly interested in baryonic dark matter because of the role it plays in
galactic structure and cosmology. Thus I begin by describing why dark matter in the solar
system is relevant to this broader context.

First, of course, all of the dynamical arguments for dark matter in galaxies are based on
the assumption that Newton’s laws of motion and law of gravity are correct, and the solar
system provides by far the most accurate tests of these laws on large scales.

A second reason is that some forms of baryonic dark matter may be most easily detected
in the solar system. For example, if brown dwarfs comprise most of the dark matter in the
Galactic disk, and if they form binaries at the same rate as main sequence stars, then there
may very likely be one or more brown dwarfs orbiting the Sun.

It seems certain that dark matter in galaxies is intimately related to galaxy formation;

37

D. Lynden-Bell and G. Gilmore (eds.), Baryonic Dark Matter, 37-65.
© 1990 Kluwer Academic Publishers. Printed in the Netheriands.



38

similarly, I shall argue that the nature and distribution of dark matter in the solar system
provides both insights and puzzles that bear on the formation of the solar system.

Finally, recall that there have been two major dynamical puzzles in the solar system
since 1800: the unexplained residuals in the orbit of Uranus that led to the discovery
of Neptune, and the anomalous precession of Mercury’s perihelion that was explained by
general relativity. One puzzle was explained by a new but commonplace object, and the
other by radical new physical laws. These two classes of explanation are also seen in one
of the main issues addressed by this meeting: will dark matter in galaxies be explained
by commonplace objects such as brown dwarfs, or by novel physical laws and exotic new
particles?

1. Dark Matter in the Planetary System

Dark matter located between the planets can be detected by its gravitational influence on
planetary orbits. The best limits come from Kepler’s law, which states that in the absence
of dark matter the period P and semi-major axis a of a planet of negligible mass are related
b
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The perturbing effects of the planetary masses are straightforward to account for and will
not be discussed here.
Distances are measured in terms of the astronomical unit ( AU), which is defined by the
relation
AU

@y @
The constant in the brackets is approximately 27 divided by the number of days in a year,
so that the Earth’s semi-major axis agq is very nearly 1 AU.

Direct range measurements by radar and spacecraft tracking give both the value of 1 AU
and the semi-major axes to the other planets in centimeters. The standard IAU (1977)
value for the astronomical unit is 1 AU = 1.49597870 x 103 cm.

If there is dark matter in the system, the semi-major axes a, for other planets that are
deduced from range measurements will differ from the semi-major axes a, deduced from
the orbital periods and Kepler's law (1). If for simplicity I assume that the dark matter
is distributed spherically, with mass AM(r) interior to radius r, then the apparent mass
of the Sun determined from equation (2) and the value of the astronomical unit will be
My = Mg + AM(ag). Then the semi-major axis to another planet as deduced from
ranging, and the semi-major axis as deduced from Kepler’s law, will be given by

= G M,. (1)

G Mg = (0.01720209895)*
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Pz = G[M@ + AM(ar)]g P2 4 = GM@', (3)
which yields for AM <€ Mg

=14 36 where e AM(a,) - AM(a@)'

> ~ yo (4

The values of ¢ determined from least-squares fits to solar system ephemerides are all
consistent with zero (Talmadge et al. 1988, Anderson et al. 1989) and the 1o upper limits
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Table 1 Limits on dark mass in the planetary

system

planet method  distance (AU) e(1lo)

Mercury radar 0.4 <3x10-8
Mariner 10

Venus radar 0.7 <3x10-8

Mars Mariner 9 1.9 <1x10-°

Viking

Jupiter Voyager 5.2 <2x10-"

Saturn Voyager 9.5 -

Uranus Voyager 19.2 <3x10-¢

Neptune  Voyager 30.0 -

NoTEs: Data from Talmadge et al. (1988) and
Anderson et al. (1989). Dashes indicate that

data exist but are not yet analyzed and pub-
lished.

are shown in Table 1. These provide approximate limits on the dark mass in solar masses
contained between the planets, although of course any dark mass contained inside Mercury’s
orbit would not be detected.

Limits on dark mass can also be derived by comparing observed perihelion precession
rates with those predicted from mutual planetary perturbations and general relativistic
effects. This test is sensitive to the gradient dAM(a)/dr at the planetary orbit rather than
the difference AM(a) — AM(ag). For AM(r) « r the limits (from the orbits of Mercury
and Mars) are somewhat less sensitive than those from ranging (Talmadge et al. 1988).

The main known source of dark matter in the planetary system is the asteroid belt.
The total mass of the belt is quite uncertain, due to the unknown contribution from faint
asteroids, but is at least 2x10-° M, (Hughes 1982). The masses of the largest few asteroids
can be directly determined from their perturbations on the orbit of Mars (Standish and
Hellings 1989).

2. Residuals in the Orbits of Uranus and Neptune

Residuals in the orbit of Uranus of ~ 100” led to the prediction of Neptune by LeVerrier
and Adams in 1845. Neptune was discovered in 1846 within 1° of LeVerrier’s predicted
position.

Remaining residuals in Uranus’s orbit of a few arc seconds led to predictions of a tenth
planet by Lowell in 1915 and Pickering in 1928. Lowell initiated a systematic survey for a
tenth planet which led to the discovery of Pluto by Tombaugh in 1930, within 6° longitude
of the predicted positions (see Hoyt 1980 for a history).

The Pluto mass needed to remove the residuals is between 0.5Mg and 5Mg (see
Duncombe and Seidelmann 1980 for a review of Pluto mass estimates; Mg = 1 Earth
mass= 3.04035 X 10~¢ Mg). However, discovery of Pluto’s satellite Charon (Christy and
Harrington 1978) showed that the mass of the Pluto-Charon system was only 0.002Mp,, far
too small to have any detectable effect on the orbits of Uranus and Neptune. Since Pluto
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cannot account for the residuals, the discovery of Pluto close to the predicted position must

have been accidental; thus, if the residuals are real, it is likely that some undiscovered dark

mass is responsible.

The best available theory for the orbits of Uranus and Neptune is the JPL ephemeris DE
200, which is based on fitting observations to 1978. The residuals between DE 200 and the
observations show three distinct anomalies (Seidelmann and Harrington 1988):

(1) Observations of the right ascension of both Uranus and Neptune made since 1978
already deviate systematically from the DE 200 predictions, by 0.5” after only 10
years.

(ii) Uranus observations prior to 1900 cannot be fit in right ascension. It is possible that
systematic errors in the early observations are the source of this discrepancy.

(iii) Prediscovery observations of Neptune by Lalande in 1795 and Galileo in 1613 cannot
be fit. However, the deviations are only four times the estimated error for the Lalande
observations, and the scale of Galileo’s drawing showing Neptune is uncertain (Kowal
and Drake 1980).

While the residuals are larger than expected from the known observational errors, it is
probably prudent to regard them as setting upper limits on, rather than providing firm
evidence for, dark matter in the solar system.

Constraints on dark matter are also available from two other types of probe at similar
distances (20 to 40 AU).

The Pioneer 10 spacecraft shows no evidence of unmodelled acceleration to a level |AF| <
5 x 10~ cm sec—2 out to about 35 AU (Anderson and Standish 1986). If I set |AF] =
GAM/r?, r = 40 AU, then I obtain a crude limit on dark mass

AM $1.3x 107 Mg = 4M,,. (5)

In the near future this limit will be improved substantially by the addition of data from
Pioneer 11 and Voyager 1 and 2, and the distance will increase to ~ 50 AU.

Comets are excellent probes of distant dark mass, both because their aphelion distances
can exceed those of any planet, and because their eccentricity and inclination are large
so that precession is easier to detect. Limits on the anomalous precession of the orbit of
Halley’s comet since 1835 yield (Hamid, Marsden and Whipple 1968, Yeomans 1986)

AM $0.3Mg at 40AU. (6)

There are reasons to treat the limits (5) and (6) with caution. They are obtained from
the largest extra acceleration that can be added to a fixed solar system model without
introducing unacceptable errors in the trajectory of the spacecraft or comet. However,
the mass causing this acceleration would also perturb the planet orbits and change the
best-fit values for the planetary masses and orbital elements. Thus the models are not
self-consistent. A proper approach would require a simultaneous fit to both planetary data
and the data from the spacecraft or comet. The limits (5) and (6) could be substantially
too low if there is a large covariance between the dark mass and one or more of the other
free parameters.

Another concern is that the solution for the orbit of Halley’s comet contains free param-
eters that model the nongravitational acceleration due to mass loss (Yeomans 1986). These
parameters may mask acceleration due to dark mass.
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Conclusion, The residuals in the orbits of Uranus and Neptune are poorly understood, and
it is not clear whether they are large enough to require the presence of dark mass. However,
if dark mass is the major cause of the residuals, then the needed amount is at most about
5Mpg located at about 40 AU (since this is the largest Pluto mass that dynamicists have
invoked to explain the residuals). The Pioneer spacecraft gives a similar limit; Halley’s
comet gives a substantially lower but less rigorous limit.

Since the perturbing effects of a distant mass M at radius r scale as M/r2, the limit
given by residuals in the orbits of the outer planets can be written as

AM(r) < 5M, (ﬁ)a. (7)

2.1 PLANET X

The most popular explanation for residuals in the Uranus and Neptune orbits is an undis-
covered Planet X that orbits beyond Pluto.

The search that led to the discovery of Pluto still provides the best limits on the brightness
of any undiscovered planets (Tombaugh 1961). Tombaugh covered 75% of the sky, mostly
to a limiting magnitude V' = 17, almost two magnitudes fainter than Pluto. Unless Planet
X is on a highly inclined orbit and happened to be near the ecliptic pole at the time of the
search, then it must be substantially fainter than Pluto.

The apparent brightness of a distant planet is proportional to pR?/r*, where p is the
planet’s albedo, R is itt radius and r > 1 AU is its distance from the Sun. Pluto’s geometric
albedo is high (0.6; see Tholen et al. 1987), and the albedo of Planet X may be lower; since
both the albedo and the exact limiting magnitude of Tombaugh’s search are uncertain, I
will simply assume that Tombaugh’s failure to detect Planet X implies that its ratio R?/r*
must be smaller than Pluto’s. Thus

R R? M, M
—Z <L or &<, (8)
ri " ord ré " 1S

where Pluto’s distance and mass are 7, = 40 AU and M, = 0.002M, and I have assumed
that Planet X and Pluto have the same density. If Planet X is to explain the residuals in
the orbits of Uranus and Neptune, its mass must be close to the upper limit (7), so I shall
write

3
Tz
M. =nx M (3755 ) (9)
where 1 cannot be much smaller than unity.
Combining equations (8) and (9), I find
r: 2 50002 AU, M, 2 10%n M,,. (10)

Thus, even for 7 as low as 0.3, Planet X must be at least a factor of ten more distant
than all the known giant planets and more massive than any of them (r, ~ 300 AU, M, ~
103 Mg = 0.003 Mg; Jupiter’s mass is only 314Mg). In fact, the required mass is so large
that the object should probably be regarded as a degenerate dwarf star rather than a
planet. A brown dwarf with this mass and distance would probably be visible in the IRAS
Point Source Catalog (Chester 1986; the luminosity and effective temperature are given by
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Stevenson 1986), but only at high Galactic latitude. More distant brown dwarfs satisfying
equation (9) would be even more massive and even brighter in the infrared; they would also
violate other dynamical constraints (§5).

There have been several attempts to determine the location of Planet X from the resid-
uals. Since it is probably very distant, its orbital motion is negligible, so all that can be
determined is its position (to within a reflection through the Sun) and the ratio M, /r3. At
present there is no consensus on a predicted location (Harrington 1988, Gomes 1989; see
Seidelmann and Harrington 1988 for a comparative review).

My own opinion is that the residuals in the orbits of Uranus and Neptune are not due to
a tenth planet. Either the observational errors have been underestimated, or the accuracy
of the theoretical models has been overestimated, or some unmodelled dynamical effect is
responsible,

Our understanding of the Uranus and Neptune residuals will improve in the future. The
Voyager encounters have now provided much more accurate masses for both planets as well
as direct ranges. More accurate angular positions of the outer planets will become avail-
able through ring occultations and Hubble Space Telescope observations of their satellites.
There will also be general improvements to solar system ephemerides from millisecond pul-
sars, VLA observations of satellites, and spacecraft such as Magellan, Galileo, and Cassini
(Standish 1986).

3. The Outer Regions of the Solar System

Before discussing specific models for dark matter beyond the planetary system, it is worth-
while to review some general aspects of dynamics in the outer solar system.

3.1 THE ROCHE SURFACE

Tidal forces from the Galaxy establish an outer boundary to the solar system (Antonov and
Latyshev 1972). If I approximate the Galaxy as axisymmetric and assume that the Sun
travels on a circular orbit in the Galactic plane, then a test particle orbiting in the combined
field of the Sun and Galaxy conserves its Jacobi integral {e.g. Binney and Tremaine 1987)

- tax (Ro+ P+ Bo(Ro+r) = A WE). (1)

Here Ry and r are the positions of the Sun relative to the Galactic center and the test
particle relative to the Sun, ®4 is the potential due to the Galaxy, and € is the angular
velocity of the Sun in its Galactic orbit. The velocity v is measured in a frame rotating
with the Sun at ©. Ishall write r = (z, y, z) where the 2-axis points away from the Galactic
center and the z-axis to the Galactic pole. I also write &z = $5(R, 2) where R measures
distance from the Galactic center in cylindrical coordinates. Then
1 9%4(R,0)
7 3R (12)
Since v? is non-negative, the region accessible to a particle with a given Jacobi integral
is bounded by the inequality W(r) < E;. Expanding W(r) to second order in the small
quantity 7/ Ry and eliminating Q(R,) using equation (12) yields
GMy 1 [82‘1’(; 189, . . 10%°®¢
23R " ROR Jipoy. | 2 073 (o)

EJ = %Vz

0 = YRye,, where  Q*(R) =

2* + constant.  (13)

W(r)=—
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The quantity ir square brackets is just RdQ?*(R)/dR; when evaluated at Ry this is equal
to —4A(A — B) where A and B are the usual Oort constants (e.g. Binney and Tremaine
1987). Also, 3?®5/82? can be eliminated using Poisson’s equation V2@, = 4rGp(R, 2),
where p is the local density of Galactic material. Thus, equation (13) becomes (Antonov
and Latyshev 1972, Heisler and Tremaine 1986)
w = -G Mo
r

— 2A(A - B)z® + [27Gpo + A* — B?)z? + constant, (14)

where py = p(R,,0).

The last closed surface W = constant surrounding the Sun is known as the Roche surface,
W = Wpx. The Roche surface is a natural measure of the boundary of the solar system in
that (i) a particle at rest that is inside the Roche surface will always remain inside; (ii) any
particle outside the Roche surface is not prevented from escaping by the Jacobi integral or
any other analytic integral of motion. Numerical calculations (Hénon 1970) confirm that
the Roche surface provides a qualitative measure of the boundary of a mass subject to tidal
forces. Hénon found that the fractional volume of phase space at a given Jacobi integral
E; that was occupied by escape orbits increased rapidly once E; > Wpg, although a few
retrograde orbits can remain bound at arbitrarily large distances.

The Roche surface intersects the coordinate axes at £z, *y,;, £z, where

z —[_‘GMQ " =2z
L= 4A(A—B) y YL = 3TL,

—~ [27Gpo + A? — Bz = 3(G Mo)*/°[4A(A - B)'V.

G Mg (18)

2L

The Roche surface has roughly the shape of a triaxial ellipsoid, except for cusps at the
points (+zy,0,0), which are saddle points of W (the collinear Lagrange points).

For py = 0.15 Mg pc~? (the mean from Bahcall 1984 and Kuijken and Gilmore 1989),
A =144kms 'kpc!, B = —12.0kms~'kpc~' (Kerr and Lynden-Bell 1986), the Roche
surface crosses the coordinate axes at

zr = l.4lpc, yr = 0.94pc, zr = 0.67pc.

Thus the Roche surface is about (2 — 3) x 10° AU from the Sun. Numerical calculations
of the stability of orbits in the Galactic tidal field are roughly consistent with this result,
yielding a maximum aphelion distance of about 2 x 10° AU (Smoluchowski and Torbett
1984).

3.2 EVAPORATION

Large orbits are unlikely to survive because they are perturbed onto escape orbits by
stochastic gravitational forces from passing stars and giant molecular clouds (GMCs).
The half-life of bound test particles of semi-major axis a in a background of passing stars
has often been discussed in the context of survival of binary star systems. Heggie (1975)
estimated that half of an ensemble of particles bound to the Sun would escape in a time

2x 104 AU
tl'lz =6 X 101°yr ('—-)'i-——'A——) .

_ (16)
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Heggie considered only “catastrophic” encounters, that is, encounters strong enough to

disrupt the system completely. In fact, weaker “diffusive” encounters that lead to a gradual

random walk of the test particle to less tightly bound orbits are more important than

catastrophic encounters. Including both types of encounter, Bahcall, Hut and Tremaine
(1985) found

4

ti2 = 4.5x 10%yr (E—X—I‘?—AU) , (17)

roughly a factor of ten shorter than Heggie’s estimate.

These calculations neglect the effects of the Galactic tidal field, which increases the
escape rate. Weinberg, Shapiro and Wasserman (1987) account crudely for the tidal field
by assuming that the binary system is disrupted when its semi-major axis exceeds 1pc and
find

s =4 % 10°yr for 1.5x 10 AU S a $8x10°AU.  (18)

(2 x 10* AU)"“
—
The disruptive effects of GMCs are much harder to estimate, both because the parameters
of the clouds are poorly known and because the encounters are relatively rare (see Hut
and Tremaine 1985 for a discussion of the uncertainties). Using a plausible set of GMC
parameters, Weinberg et al. (1987) found that perturbations from GMCs and stars led to
a half-life for a binary with a = 2 X 10* AU that was about a factor of two shorter than the
half-life due to perturbations from stars alone.

These results suggest that the half-life of dark matter bound to the Sun is less than the
age of the solar system if its initial semi-major axis exceeds about (1 — 2} x 10* AU. Once
the initial semi-major axis of the dark matter exceeds 5 x 101 AU, the probability that it
will still be bound to the Sun is substantially less than 10%. Thus perturbations from stars
and GMCs establish an effective outer boundary to the distribution of dark matter that is
several times smaller than the Roche distance of (2 — 3) x 10° AU.

3.3 THE OUTER BOUNDARY OF THE ECLIPTIC

The orbits of most of the planets lie within a few degrees of a common plane known as the
ecliptic, reflecting the formation of the planets from a flat disk of dust and gas. However, at
larger distances, the torque exerted by Galactic tides over the lifetime of the solar system
is large enough to destroy any disk structure that was originally present.

The strongest component of the Galactic tide is described by the potential (Morris and
Muller 1986, Heisler and Tremaine 1986)

P = 21Gpoz? (19)

(cf. eq. 14; I use the fact that A?, B? & 27Gpy). This potential exerts a torque N =
—r X V&; which causes the angular momentum vector L of a particle orbit to precess
around the Galactic pole. The Galactic pole is tipped by an angle i = 60.2° from the ecliptic
pole. Thus a flat ecliptic disk of collisionless particles on circular orbits is converted into a
fattened spheroidal distribution whose symmetry axis is the Galactic pole; the thickness of
the distribution can be measured by (22)/({z?) 4+ (y?)) = sin? i/(2 — sin? ) = 0.604, not far
from the value 0.5 expected for a spherical distribution. The time scale for fattening-up or
isotropizing the disk is #;,, = |L|/|IN|; thus disk structure can only survive out to a radius
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Tiso Where t;,, equals the age of the solar system, t,, = 5 X 10% yr. To order of magnitude I

find
M@l/S

(27rp0t“)2/3G1/3
At larger distances the weaker components of the Galactic tidal field, as well as pertur-

bations from passing stars and GMCs, will isotropize the dark matter distribution even
further.

=5x 10°AU. (20)

Tiso ~

4. A Minimal Theory of Solar System Dark Matter

It is useful to ask whether theories of formation of the solar system naturally give rise to
dark matter, and, if so, what its nature and distribution would be.

We believe that the Sun was originally surrounded by a gas disk from which the planets
formed. If most of the disk mass in non-volatile material was incorporated into the cores
of the giant planets, then the surface density in non-volatiles can be estimated by smearing
each giant planet core into an annulus reaching halfway to the next planet (see Figure 1).
The resulting distribution can be fit to a power law

2
T(r)~l4gem™ (E:X—U) . (21)

As the gas disk cools, the non-volatile material condenses into grains that settle into a thin
disk. Once enough material is gathered in this disk, it becomes gravitationally unstable.
The most unstable wavelength is (Goldreich and Ward 1973, Binney and Tremaine 1987,
eq. (6-54); see Safronov 1960 for an early discussion)

A, = 272y r3 ’
Mg

(22)

so the dominant mass of the condensations (“planetesimals”) may be written as

m, = B(fA)? = 3 x 10%g (6%)2 (lgfm_2)3 (10:w)6’ (23)

where f is a dimensionless number less than unity. A natural choice is f = 0.5, since the
overdense region is half a wavelength in size. However, f may be much less than unity, if
instabilities develop before all the non-volatile material has settled. Notice also that m, is
only weakly dependent on distance from the planet so long as the radial density distribution
is close to that of equation (21).

The orbits and sizes of the planetesimals evolve through a variety of processes including
collisions, fragmentation, accretion, gas drag and gravitational scattering. Many are even-
tually incorporated into the cores of the giant planets. Residual planetesimals that have
survived to the present time are a possible source of dark matter in the solar system, and
in the rest of this section I will discuss dynamical constraints on the distribution of residual
material of this kind.

Orbits in the solar system can be grouped into two classes: regular and chaotic (see
Lichtenberg and Lieberman 1983). Regular orbits are characterized by linear divergence of
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surfsce density of cores of giant planets
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Figure 1. Estimated surface density distribution of non-volatile material in the protoplanetary
disk. The masses contained in the rock-ice cores of the giant planets (Stevenson 1982) have been
spread uniformly over annuli reaching halfway (logarithmically) to the adjacent planets. The
solid line is the power-law fit given in equation (21).

nearby trajectories and discrete power spectra (i.e. they are quasiperiodic). Examples of
objects on regular or nearly regular orbits include the planets, their satellites, and most of
the asteroids. The evolution of regular orbits can be predicted to high accuracy using the
standard methods of celestial mechanics. Chaotic orbits are characterized by exponential
divergence of adjacent trajectories and power spectra with a continuous component. The
evolution of chaotic orbits is very sensitive to the initial conditions and hence is difficult
to predict. For example, planet-crossing orbits are generally chaotic because they can be
strongly affected by a chance close encounter with the planet. Pluto’s orbit is nearly regular,
even though it crosses Neptune’s, because the 3:2 Neptune-Pluto resonance prohibits a close
encounter. In practical terms, a solar system orbit can only be said to be regular over a
given time scale, since it may exhibit weak chaos on a much longer time scale. For example,
Sussman and Wisdom (1988) argue that the orbit of Pluto is actually weakly chaotic, even
though its orbital elements appear to vary quasiperiodically over time scales as long as
several hundred million years.

4.1 PLANETESIMALS ON REGULAR ORBITS

Planetesimals can survive if their orbits are regular or nearly regular over time scales com-
parable to the age of the solar system, ¢,, = 5x 10° yr. Unfortunately, the behavior of orbits
over these time scales is not well understood. As an example, consider the evolution of a
planetesimal in a circular orbit in the ecliptic plane, subjected to perturbations from the
planets. What will the orbit look like after a time t,, as a function of the initial radius? Is
the orbit stable, in the sense that it remains nearly circular? Will its eccentricity grow, so
that it crosses the orbit of an adjacent planet and eventually is ejected by a close encounter?
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Or will it, like Pluto, evolve into a planet-crossing orbit that is stabilized by a low-order
resonance?

We have only fragmentary answers to these basic questions. Direct numerical integrations
show that most near-circular orbits between Jupiter and Saturn are ejected in $ 107 yr
(Franklin, Lecar and Soper 1989). On the other hand, the existence of the asteroid belt
strongly suggests that most near-circular orbits with semi-major axes between about 2.2 AU
and 3.2 AU are stable over an interval £,,—with the exception of orbits near some low-order
resonances with Jupiter (Wisdom 1982, 1983). Investigations using an approximate area-
preserving map instead of the accurate equations of motion suggest that most near-circular
orbits between the planets are stable over a time t,,; however, ejection occurs for orbits
in narrow bands around each planet, for most orbits between Jupiter and Saturn, and for
some orbits between Uranus and Neptune (Duncan, Quinn and Tremaine 1989a).

Bands of semi-major axis in which near-circular orbits are stable may host substantial
populations of planetesimals. However, no solar system objects other than the planets and
their satellites have been found so far on stable orbits, except for the asteroids between
Mars and Jupiter; nor is there any dynamically detectable extra mass between the planets
(§1). This lack of debris in the planetary system is a remarkable fact that so far has eluded
explanation. Perhaps some aspect of the formation process swept the planetesimals out
of the system, or perhaps accurate orbit integrations would show that most near-circular
orbits are weakly chaotic, so that almost all planetesimals are ejected on 10° yr time scales.

An interesting speculation is that the estimate (21) for the density of the protoplanetary
disk may be valid to distances much larger than Neptune’s semi-major axis of 30 AU. If
so, and if I assume that the formation of Neptune depleted the protoplanetary disk only
out to about 35 AU, then there should be a residual mass AM(r) =~ 30Mg log(r/ry) inside
radius r > ro = 35 AU, probably in the form of planetesimals. This hypothetical disk was
discussed by Kuiper (1951) and is sometimes called the Kuiper belt. It is amusing that the
mass AM(r) derived in this way is just below the dynamically determined upper limit (7).

4.1.1 The Kuiper Belt as a Source for Jupiter-family Comets.  Indirect evidence for the Kuiper
belt is provided by the Jupiter-family comets (comets with orbital period P < 20yr). These
have a much flatter distribution of orbits than comets with longer period: their median
inclination relative to the ecliptic is only 10° whereas comets with much longer periods have
a roughly isotropic distribution of inclinations (Marsden 1983). Also, the Jupiter-family
comets are much more numerous than comets with longer period: there are 104 known
Jupiter-family comets, compared with only 17 in the period range 20yr < P < 200yr (this
may however partly be a selection effect, since there are more chances to discover a comet
with a shorter period). Numerical simulations show that the inclination distribution and
orbital period distribution can only be reproduced if the Jupiter-family comets originate on
low-inclination planet-crossing orbits with perihelia in the outer planetary system (Duncan
et al. 1988, 1989b). Roughly 10—20% of these objects are then scattered by the giant planets
to perihelia ¢ $ 2 AU where they become visible. It is likely that these comets come from
the Kuiper belt, and that they are either the original planetesimals that condensed out
of the protoplanetary disk, or possibly fragments of planetesimals broken up by collisions
(see Greenberg et al. 1984 for a discussion). Thus there are two distinct sources of comets:
those with periods P < 20yr come from the Kuiper belt (Edgeworth 1949, Kuiper 1951,
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Whipple 1972), while those with P 2 20 yr come from a separate isotropic source, the Oort
cloud (see below).

The lifetimes of planret-crossing orbits are generally short compared with the age of
the solar system. Thus Jupiter-family comets must spend most of their lives on nearly
regular orbits in the Kuiper belt, and evolve onto chaotic planet-crossing orbits at a slow,
steady rate. The mechanism of this process is still uncertain. One possibility is that weak
instabilities gradually convert regular near-circular orbits onto chaotic planet-crossing ones;
simple dynamical models suggest that such instabilities are likely to be present for near-
circular orbits between Uranus and Neptune (Duncan et al. 1989a).

4.1.2 Chiron.  The object Chiron was discovered by C. Kowal during the Palomar Solar
System Survey (Kowal, Liller and Marsden 1979, Kowal 1989). Chiron is unresolved with
magnitude m,; = 18, suggesting a radius 150 km(p/0.05)~/2, where p is its geometric
albedo. Chiron is the only known minor plaret with perihelion well beyond Jupiter’s orbit.
It orbits between Saturn and Uranus (¢ = 13.7AU, e = 0.38, ¢ = 6.9°) on a chaotic
trajectory that is expected to lead to ejection by Saturn or a close encounter with Jupiter
in 10% — 10%yr (Oikawa and Everhart 1979). The short lifetime of Chiron’s present orbit
suggests that it evolved from a more stable orbit in the recent past. It is probable that
Chiron spent most of its life on a nearly regular orbit in the Kuiper belt, and that it is
simply a large comet following the same evolutionary path that produces the Jupiter-family
comets,

4.1.8 Detection of Objects in the Kuiper Belt. = The detection of belt objects would offer
considerable insight into the formation of the solar system.

To obtain a simple “straw man” model for comparison with the observational limits, I
shall assume that the total belt mass is AM = 1My, that the density of belt objects is
p = lgcm~3, that the total angular extent of the belt normal to the ecliptic is 2A8 = 0.2
radians, and that the belt material is concentrated at a distance » = 40 AU from the Sun. I
assume that the number of objects in the belt with radii between R and R+dR is n{R)dR,
where

by+1
(=g (2)", r<n
ba41
K (E_".) R>R
RO R k] 0-

I set by, = 2 since this reproduces the size distribution of cometary nuclei (Shoemaker and
Wolfe 1982). This index is also consistent with (i) the inferred size distribution of the
objects responsible for cratering the Galilean satellites (Shoemaker and Wolfe 1982); (ii)
experimental measurements of the size distribution resulting from fragmentation (Hartmann
1969); (iii) the observed size distribution of the particles in Saturn’s rings (Cuzzi et al. 1984).
I shall also take Ry = 10km, since this is close to the maximum observed size of cometary
nuclei.

The power-law index b, at the high-mass end is quite uncertain. I shall consider two
values, by = 3.5, roughly the largest value occurring in sources such as gravel, crushed rock,
crater fragments, etc. (Hartmann 1969), and b, = 7, which occurs in a numerical model of
planet growth by accretion of planetesimals (Greenberg et al. 1984, Figure 12).
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One approach is to search optically for slow-moving objects, much as Tombaugh searched
for Pluto. The apparent magnitude of a belt object will depend on its optical geometric
albedo p, which I take to be 0.05 since albedos in the outer solar system are usually low.
The expected number of objects per unit solid angle brighter than visual magnitude V is

then ‘
0.5 1.75 7
0.04 deg™2h (%) (0%) (40 fU) 10-%7(20-V)  for b, = 3.5,
R 4.5 :p 3.5 40 AU 14 (25)
s ) () (B2 s

where h = (AM/1Mg)(1gcm=3/p)(0.1 rad/A#8).

A number of searches for slow-moving objects in the ecliptic have been carried out,
and the limits from these searches are plotted in Figure 2, along with the estimates from
equation (25). Tombaugh (1961) carried out a visual search covering 1530 (deg)® to an
approximate limiting magnitude V' = 17.5. Luu and Jewitt (1988) searched 300 (deg)’ to
V = 20 using Schmidt plates, and 0.34 (deg)® usmg a CCD detector to V' = 24.5. Kowal’s
(1989) Solar System Survey covered 6400 (deg) to V' = 20 using Schmidt plates. Some of
these magnitude limits may be over-optimistic since faint trailed objects are harder to detect
than point sources (e.g. Gehrels 1981). Asteroid surveys also provide useful limits, although
it is not certain that asteroid observers would always notice the short trails that an object
at 40 AU would produce in a typical exposure. Major surveys include the McDonald Survey
(Kuiper et al. 1958) of 14,400 (deg)® to V' = 16; the Palomar-Leiden Survey (van Houten
et al. 19702 of 216 (deg)® to V = 19.5; and the Kiso Schmidt Survey (Ishida et al. 1984) of
1944 (deg)” to V' = 18.4. Additional searches for slow-moving objects are presently being
undertaken by M. Duncan and H. Levison using a CCD and by R. Webster, A. Zytkow,
and me using Schmidt plates. None of these searches has yielded any slow-moving objects
except for Tombaugh’s discovery of Pluto and Kowal’s discovery of Chiron.

Figure 2 shows that theoretical predictions of the density of Kuiper belt objects are so
uncertain that they provide very little guidance. However, it is encouraging that one of
our estimates predicts that Kuiper belt objects should already have been discovered. The
discovery of even a few belt objects would be so informative that it is worthwhile to strive
to improve the observational limits.

Since the optical albedo of belt objects is likely to be low, it is tempting to look for the
belt in the infrared. The thermal emission from a black body at 40 AU peaks (i.e. »B,(T)
is maximized) at A = 80u. The IRAS satellite detected emission from the ecliptic plane
at 60y and 100u, but it is difficult to remove the effects of interplanetary dust at smaller
radii to measure the contribution from the Kuiper belt (see Jackson and Killen 1988 for
a discussion). The expected contribution is also difficult to estimate, since the thermal
emission is dominated by very small particles in a belt with b, > 2.

Planned space-based infrared telescopes such as SIRTF could detect individual large
bodies in the belt. However, the advantage of higher emissivity is more than offset by the
limited aperture, limited telescope time, and limited number of pixels in infrared array
detectors.

Belt objects will occasionally occult stars (Bailey 1976, McClintock 1985). The size
of the first Fresnel zone in the V band is vAr = 1.8km(r/40 AU)!/2, so that objects
smaller than a few kilometers will not produce sharp shadows. For simplicity, let me then
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Figure 2. Limits on the number
density per square degree of Kuiper belt
objects brighter than visual magnitude
V. The data points are 99% confidence
upper limits. The papers referred to by
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Houten et al. (1970); KSS=Ishida et
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concentrate on objects with radii > R, = 10km, for which geometrical optics should be
a good approximation. Early-type stars are better candidates for occultations than late-
type stars, since they have smaller angular diameters for a given apparent magnitude.
The angular diameter of the star must be substantially smaller than the angular diameter
of the belt object (7 x 10~* arcsec for a 10 km body at 40 AU); for example, AO stars
satisfy this constraint if their apparent magnitude is substantially fainter than V = 2.
At opposition, the apparent angular speed of the belt objects mainly reflects the Earth’s
orbital speed vy = 30km s~!; thus the duration of an equatorial occultation is At =
2R/vg = 0.7 s(R/10km). For the assumed size distribution of belt objects (eq. 25), the
mean interval between occultations by belt objects larger than Ry is

o (350) (o) (k) () (e0)
11x10 hr(AM 1gem-3) \10km) \20AU/ \011ad/’ (26)

for both b, = 3.5 and b, = 7. The detection rate can be greatly improved by monitoring a
field rich in blue stars (e.g. a nearby open cluster) with a CCD, and also by searching for
partial occultations by bodies whose size is comparable to the size of the Fresnel zone. Thus
the expected occultation rate could be as high as one every few hundred hours. With two
telescopes separated by about 1km, the signature of an occultation would be unmistakable,
and the size distribution of the occulting bodies could also be estimated. Thus detection
of belt objects by occultations appears to be technically feasible.

4.2 PLANETESIMALS ON CHAOTIC ORBITS

Planetesimals on chaotic orbits can be lost through collision with the Sun or a planet or
through escape from the solar system. I will focus here on some interesting aspects of
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Figure 3. The rms energy change per perihelion passage due to planetary perturbations, as a
function of perihelion distance. The light squares, light triangles, light circles, dark squares, dark
triangles and dark circles correspond to inclination ranges relative to the ecliptic of 0° — 30°,
30° — 60°,...,150° — 180°. Each point is determined from 3000 passages of parabolic orbits
with random argument of perihelion. From Duncan et al. (1987), following a figure in Ferndndez
(1981).

the escape process, partly because they have direct observational consequences and partly
because the escape process is relatively well-understood. The following arguments are
mostly taken from Duncan et al. (1987).

In most cases, escape does not result from a single close encounter with a planet, but
rather occurs through a gradual random walk or diffusion to less and less tightly bound
orbits (this is also true for escape of stars from star clusters and is a consequence of the long
range of the gravitational force; see Binney and Tremaine 1987, §8.4.1). During this random
walk the perihelion of the planetesimal remains fairly constant, so that the orbit becomes
more and more eccentric as it becomes less tightly bound. The planetesimal receives an
energy kick each time it passes through the planetary system near perihelion; the orbit is
chaotic because each kick depends on the detailed configuration of the planets at that time
and hence is effectively random.

For convenience I shall parameterize the energy using the variable £ = 1/a, where a is
the semi-major axis (the usual energy is E = —1G Mgm/a). Let ((Az)?)!/2 = D, be the
rms change in = per perihelion passage (the “diffusion coefficient”); D, is a function of the
perihelion distance ¢ and inclination i (see Figure 3) but is almost independent of a since
all high-eccentricity orbits are nearly parabolic near perihelion. The diffusion coefficient
decreases by a factor of 100 between ¢ < 5AU and g ~ 20 AU, reflecting the fact that
Jupiter dominates the perturbations of orbits with ¢ < 5 AU while the smaller planets
Uranus and Neptune dominate for ¢ & 20 AU.
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The characteristic time scale t; for evolution of the semi-major axis is related to the
square of the rms energy change per orbit, as is usual for a random walk:

pZ 6
ty=PX =1x10 yr(
D

4 1/2 4 A1\ ?
10 AU) (10 AU ) ’ 27)

D

where P is the orbital period (eq. 1). The diffusion time is generally much less than the
age of the solar system, and thus almost all planetesimals on chaotic planet-crossing orbits
should reach escape energy long before the present epoch.

However, diffusion toward zero energy does not lead inevitably to escape. The torque
from the Galactic potential (19) changes the angular momentum L and thus the perihelion
g of the planetesimal orbits. Once the perihelion exceeds gmax =~ 35 AU (i.e. once there are
no longer close encounters with the planets) planetary perturbations become ineffective,
energy diffusion stops, and the orbital energy is frozen. Since L = V2G Mgq for highly
eccentric orbits and dL/dt ~ 4mGpoa?, the characteristic time for the perihelion to reach
@max 15 t(gmax ), Where

2G Mgq)Y/?
t(q) = 2S00
4T Gpoa

104AU)’_ (28)

=6x107yr(

The energy is frozen in at the semi-major axis a; where #(gmax) first becomes smaller than
the diffusion time 24,
D, 4/3

104 AU"‘) '
Many planetesimals escape on the next orbit once the energy z § D,. Thus most planetes-
imals on highly eccentric orbits will eventually escape if z; = a;l < D.; otherwise Galactic
tides will remove most of them from planet-crossing orbits before they escape. The criterion
that most orbits do not escape is therefore

a; = 15X 105AU( (29)

D, $3x107°AU, (30)

which holds for ¢ 2 15 AU (Figure 3).

These results show that planetesimals on chaotic, highly eccentric orbits with perihelia
in the Jupiter-Saturn region mostly escape, in a time much less than the age of the solar
system. However, most planetesimals on orbits with initial perihelia in the Uranus-Neptune
zone will remain bound to the solar system, on orbits with semi-major axes = (5 — 10) X
103 AU (based on equation 29, with the diffusion coefficient D, = 1075 AU™!, which Figure
3 shows is typical for orbits with random inclinations and 20 AU 5 ¢ 5 30 AT).

Thus it is likely that the solar system is surrounded by a cloud of planetesimals at semi-
major axes a & (5—10) x 103 AU. The cloud is slowly disrupted by encounters with passing
stars and GMCs (eq. 18) and by the removal of planetesimals that happen to re-enter the
planetary system, but neither of these processes will disrupt the cloud by the present time.

These crude arguments are confirmed by Monte Carlo simulations of the evolution of
eccentric orbits subject to planetary perturbations, the Galactic tide, and perturbations
from passing stars (Duncan et al. 1987). In particular, the simulations confirm that:

(i) The survival of planetesimals on very eccentric orbits depends strongly on their initial
perihelion distance g. Less than 6% of planetesimals with ¢ < 10AU remain bound
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to the solar system after a time ?,, = 5 x 10%yr, but 30 — 40% of planetesimals with
perihelia in the Uranus-Neptune region (20 AU < ¢ < 30 AU) are still bound after this
time. The survival probability may be decreased by the uncertain effects of GMCs.

(ii) The surviving planetesimals are distributed in an extended cloud that surrounds the
Sun, with a median semi-major axis 5 X 103 AU. More than 90% of the planetesimals
in the cloud have semi-major axes between 1 x 103AU and 4 x 104 AU.

(iii) The planetesimal cloud is roughly spherical for semi-major axes X 5 x 103AU and
is flattened towards the ecliptic at smaller semi-major axes, consistent with equation
(20). The planetesimals are uniformly distributed over each energy hypersurface in
phase space (i.e. the eccentricity distribution is uniform in e?).

The formation of this planetesimal cloud is a natural consequence of any model for the
formation of the solar system in which the giant planet cores are formed by accreting
planetesimals. The distribution of orbits of planetesimals in the cloud is determined by the
interplay between the Galactic tide and perturbations from the giant planets. Although
the orbital distribution is straightforward to predict, at present we cannot reliably predict
the total number or total mass of planetesimals in the cloud, since both the distribution of
planetesimal masses and the fraction of planetesimals that evolve to chaotic planet-crossing
orbits are unknown.

4.3 COMETS

The most striking feature of the distribution of comet orbits is a sharp peak in the dis-
tribution of the energy = = 1/a near zero energy. The peak is centered near z = z, =
5x 10-*AU™Y, with a width £5 x 10-3AU~! (see Ferndndez 1985 and Oort 1986 for
reviews and Marsden, Sekanina and Everhart 1978, Everhart and Marsden 1983 for the
data; here a refers to the “original” semi-major axis that the comet had before entering
the planetary system). The existence of this peak led Oort (1950) to propose that the
solar system was surrounded by a spherical cloud of comets with typical semi-major axis
z;! = 2 x 10 AU. Oort pointed out that any comets that we see have sufficiently small
perihelion (¢ § 2 AU) that they receive an rms energy impulse {(Az)?)1/2 ~ 10-3 AU (see
Figure 3) as they pass through the planetary system; since this is much larger than z. the
comets will not return to the Oort cloud but will either escape (if Az < 0) or return on a
much more tightly bound orbit (if Az > 0). Thus we require a flux of fresh comets from
the cloud to resupply the peak; this is provided by stellar perturbations and the Galactic
tide, which continually change the perihelion distances of comets in the cloud.

There is every reason to believe that Oort’s comet cloud is the same as the planetesimal
cloud that was derived on dynamical grounds in the previous subsection.

If this belief is correct, we must explain why the typical semi-major axis of comets in the
observed peak is z7! = 2x 10* AU, whereas the median semi-major axis in the planetesimal
cloud was predicted to have the smaller value 5 x 10 AU. A comet is only visible if its
present perihelion ¢ $ 2 AU; however, for any perihelion < 15 AU the diffusion coefficient
is so large (Figure 3) that diffusion in energy is more rapid than the rate of change of
perihelion (Z; from equation 25 is shorter than (g = 15AU) from equation 28). Thus
objects from the planetesimal cloud diffuse in erergy at roughly constant perihelion once
¢ 5 15AU. Comets can therefore only be detected near energy z. if their present perihelion
is § 2AU but their last perihelion was X 15AU; this requires that t(g = 15 ATU) from
equation (28) is less than the orbital period P (eq. 1). In other words, planetesimals only
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reach ¢ § 2 AU with the semi-major axes that they had in the cloud if that semi-major axis
exceeds (Heisler and Tremaine 1986, Morris and Muller 1986)

[(15 AU M?
a = |——2%——

2

17
— 4
Py ] =29 x 10* AU, (31)

which is in adequate agreement with the location of the observed peak of 2 x 10* AU.
There are several interesting consequences of the identification of the Oort comet cloud

with the theoretical planetesimal cloud:

i The theoretical arguments predict the radial distribution of comets, which is not directly
accessible to observation since the only detectable comets are those from the outermost
part of the cloud, a & 2 x 10* AU. Hills (1981) already noted the coincidence of ap with
the observed semi-major axes of comets from the Oort cloud and suggested that most
of the cloud could be hidden at smaller semi-major axes; however, Hills estimated that
the hidden inner cloud (a < 2 x 10* AU) could contain several hundred times as many
comets as the observable cloud (a > 2 x 10* AU), whereas the numerical simulations of
the formation of the planetesimal cloud yield a smaller ratio, about five (Duncan et al.
1987).

ii The result implies that comets formed in the protoplanetary disk, either through grav-
itational instability (eq. 23) or by fragmentation of larger bodies. Moreover, the rate
of discovery of new comets from the Oort cloud permits us to estimate the mass of the
planetesimal cloud. For this we need three independent numbers: the rate at which
new comets brighter than some limiting flux pass through a perihelion < 1AU (4 per
year brighter than magnitude H = 10 following Everhart 1967 and Weissman 1983); the
number of new comets per year passing through a perihelion < 1 AU per comet in the
cloud (1.1 x 10~!? from simulations by Heisler 1989, assuming that we are not now in a
comet shower [see below]); and the total mass in comets per comet brighter than H = 10
(1.2 x 10'7 g following Weissman 1986). Thus we arrive at a total cloud mass of 70 My,
with an uncertainty of at least a factor of three. This is almost the same as the total
mass in the giant planet cores (~ 75M from Stevenson 1982); in other words, of order
half of the mass in metals outside the Sun is likely to be dark.

iii The flux of comets reaching the Earth will not be constant in time, since a close or slow
encounter with a passing star will shake the cloud strongly enough that comets from the
inner part of the cloud may be thrown onto orbits with perihelion < 1 AU. For 1 -2 Myr
after such an encounter, the flux of comets reaching the Earth may increase by a factor
of 20 or so (Figure 4). These comet “showers” (Hills 1981) occur every 50 Myr or so.
It has been suggested that multiple comet impacts on the Earth during such a shower
may cause substantial environmental stress and lead to mass extinctions, including the
extinction of the dinosaurs at the Cretaceous-Tertiary boundary 65 Myr ago (Hut et al.
1987; see van den Bergh 1989 for a general review).

iv The size and mass of the comet cloud depends strongly on the orbits and masses of the
planets, and the strength of the Galactic tide. Thus the comet clouds surrounding other
stars are probably very different from the Oort cloud.

5. Has the Sun a Companion Star?

Many stars are members of binary systems, and it is possible that the Sun has a distant
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Figure 4. A Monte Carlo simulation of the flux of new comets over a 250 Myr interval. The
simulation includes the effects of perturbations from the Galactic tide and passing stars, but not
GMCs. The graph shows the total number of comets passing through perihelion with ¢ < 2AU
in each 1 Myr interval, from an initial populatlon of 1.44 x 107 comets, The initial distribution
of semi-major axes of comets in the Oort cloud is taken from Duncan et al. (1987), and the
simulation uses a modified version of the code described by Heisler, Tremaine and Alcock (1987).
From Heisler (1989).

undiscovered companion, perhaps a neutron star, brown dwarf, or black hole. Optical and
infrared searches have not yet revealed any candidate companions (Perlmutter et al. 1986,
Chester 1986). A hypothetical distant companion called “Nemesis” has been invoked to
explain possible periodicities in the record of mass extinctions and impact craters on Earth
(see below). Here I review the dynamical limits on the mass M. and distance r, of a
possible companion. Many of the limits are crude and the discussion here is only intended
to produce order-of-magnitude estimates rather than reliable dynamical bounds.
All of the limits derived below are shown on Figure 5.

Constraints from Celestial Mechanics.  Residuals in the orbits of the outer planets give the
limit (7), which can be rewritten as

3
Tz
M. $02M, (W) . (32)

The Voyager range to Uranus (Table 1) implies that the mass of any companion inside
the orbit of Uranus is
M, $3x107% Mg, r; S 20AU. (33)

The binary pulsar PSR 19134-16 provides another limit. The orbital period of the system
changes at arate P/P = —8.6077x 1017 -1, which is 1.010£0.011 times the rate predicted
by general relativity (Taylor and Wmsberg 1989). The Sun would accelerate toward a
companion at a rate a = GM, /r3, which would change P by an amount § P = — Pa cos ¢ /¢,
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where ¢ is the angle between the binary pulsar and the solar companion as seen from the
Sun. I replace |cos¢| by 0.5, which should be a typical value, and assume that general
relativity is correct so that |§P/P| < 0.02 from the timing data, to obtain the limit

2
M, $017 Mg (m_:;[ﬁ) . (34)

Consiraints from Orbital History.  These limits are based on the probable evolution of the
companion orbit and assume that the companion has been present since the origin of the
solar system 5 X 109 yr (= t,,) ago.

As shown in §3.2, it is unlikely that a companion can survive perturbations from passing
stars and GMCs for a time ¢,, unless its semi-major axis is < 5 x 10 AU. Thus I assume

r. S 5% 10°AU. (35)

To obtain another constraint, consider a companion whose radius r. exceeds the distance
at which orbits are isotropized by the Galactic tide, = 5x 102 AU (eq. 20). Its orbital angular
momentum vector L, will not generally be aligned with that of the planetary system L,.
Moreover, |L,| will exceed |L,|, at least for M, & 10~* Mg, and hence L, will precess
around L, due to the torque exerted on the planets by the companion. The characteristic
time in which the direction of L, will change by one radian is

47'3 P, m,-(GM@r,-)llz _ 10 ( Tz )3 (M@)
R om0 Y \1eaw) \ 3 ) (36)

where the factor 4 accounts crudely for projection effects at a typical orientation of L,
relative to Ly, and the sum is over the orbital radii r; and masses m; of the giant planets.

Mutual torques between the planets are strong enough that their orbits will precess
together so long as t, & 1 X 10%yr. Thus it is not surprising that the planetary orbits lie
close to a common plane. However, the solar quadrupole moment is so small that its spin
angular momentum is almost unaffected by planetary torques. (The precession time for
the solar spin due to planetary torques is 101 — 10! yr.) Thus the fact that the solar spin
axis lies only 7° from the ecliptic strongly suggests that the orientation of the ecliptic has
not changed by more than about 0.1 radian since the formation of the solar system. This
implies that t,, < 0.11,, or,

t

T

3
= 3
10740 AU) for r, 2 5 x 10° AU, (37)

Mz s 0-4 M@ (

Another constraint (Hills 1985) is that no companion more massive than about M, =

0.02 Mg could have passed within about 30 AU of the Sun without imparting excessive

eccentricities and inclinations to the planetary orbits. The probability that a companion
has had no perihelion passage with ¢ < 30 AU is exp(—1), where

2q tas

== 38
The factor 2q/a is the fractional area of the constant energy surface in phase space that is

occupied by orbits with perihelion < ¢, and appears because the Galactic tide and stellar
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perturbations cause the companion orbit to fill the energy surface uniformly. The second
factor involves the orbital period P (eq. 1) and the time t(g) required for the perihelion to
change by ¢ (eq. 28). If t(¢) < P then consecutive perihelion passages will have perihelion
distances that differ by & g, so the number of independent chances the companion has to
hit the target area with perihelion < g is just t,,/P; on the other hand, if #(g) > P there
will be of order #(q)/P successive perihelion passages with perihelion distance < g, so the
number of independent chances is reduced to 2,,/t(g).
Equation (38) yields

% = min [30 (lﬂ‘aAU)s’ Y ( IOfAU)] , (39)

Thus the chance that the companion has passed within 30 AU is large (¢ > 1) for 2 x
10*AU < a $ 4 X 10 AU, and I arrive at the constraint (Hills 1985)

M, 5002Mg for 2x10°AU $r, $4X101AU. (40)

Constraints from Comets. The model for the formation and evolution of the comet cloud
that I described in §4.2 fits the cometary orbit distribution quite well. Any companion
must be small enough that this agreement is preserved.

For example, the observed distribution of inverse semi-major axes in the Oort cloud peaks
within z, = 5x 10~* AU of zero energy (energy measured in units of —G Mg /2), in good
agreement with the dynamical prediction (31). Any companion with r, < 22! contributes
—GM_ [r; to the measured energy of the comets and hence destroys this agreement unless
(Kirk 1978)

M, s %M@T;ZL‘C = 0.025M® (ﬁﬁ) . (41)
I have argued that new comets with a < 10* AU are not seen because the time #(q =
15 AU) required for their perihelia to change by 15 AU exceeds the orbital period P (eq. 31).
A companion star exerts an additional torque on the comet orbit given approximately by
N. = fGM,min(a?/r3,r2/a®) where I take f ~ 0.3 to account for projection effects. If
the companion is massive enough, this torque will exceed the torque from Galactic tides,
and the time #(g) in equation (28) must be replaced by t.(q) = (2G Mgq)'/?/N,. Then
the condition that the comets with @ = (5 — 10) x 103 AU do not contribute to the flux
of new comets is that ¢.(¢ = 15AU) > P in this range of semi-major axis. The resulting
constraints on the companion mass are

5x 103AU
Tz

1x 104 AU
r:
r.t

1xX104AU

2
M, 50.04 M, ( ) 7 S5 X 108AU,

1/2
$0.03 Mg ( ) 5% 10°AU S 1, S 101 AT, (42)

3
$0.03 M, ( ) 10 AU K .

The combination of all these limits (Figure 5) shows that we do not expect the Sun
to have any companion of mass M, 2 0.1 Mg and that for most of the possible range of
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Figure 5. Upper limits on the mass Mz of a solar companion star at radius rz. The limits
come from residuals in the orbits of the outer planets (eq. 32, label “residuals”), ranging to

Uranus (eq. 33, label “ranging”), timing the binary pulsar (eq. 34, label “pulsar”), evaporation
by passing stars (eq. 35, label “escape”), the alignment of the solar equator with the ecliptic
(eq. 37, label “solar spin™), the small eccentricities of the planets (eq. 40, label “planets”), the
typical semi-major axes of Qort cloud comets (eq. 41, label “energy”), and the non-observance
of new comets with a < 101 AU (eq. 42, label “Oort cloud size”). The nearest star, a Cen, is
marked for comparison.

distances the limit is closer to 0.03 Mg. Thus it is unlikely that the companion is a neutron
star (minimum mass ~ 0.09 Mg, Shapiro and Teukolsky 1983), or a hydrogen-burning
main sequence star (minimum mass ~ 0.08 My, D’Antona and Mazzitelli 1985). The only
remaining possibilities are black holes, brown dwarfs (M 2 0.001 Mg, gravitational forces
balanced by degeneracy pressure) or planets (M < 0.001 Mg, Coulomb attraction balanced
by degeneracy pressure).

5.1 NEMESIS

Raup and Sepkoski (1984) pointed out that the record of mass extinctions over the past
250 Myr showed a possible periodicity at a period of 26 Myr. This result led Alvarez and
Muller (1984) to suggest that a similar period, 28.4 Myr, was present in the record of major
impact craters. Both these periodicities may be due to a single astronomical phenomenon:
periodic showers of comets. In a strong shower some comets would strike the Earth, leaving
large craters and causing substantial environmental stress that may lead to widespread
extinctions.

It is difficult to find a mechanism that produces comet showers with this period. The
most interesting suggestion is that the Sun has a companion star, “Nemesis”, with a semi-
major axis of 9.2 X 10* AU (so that the orbital period P = 28 Myr), and that Nemesis
plunges through the comet cloud at perihelion and thereby triggers a shower (Davis, Hut
and Muller 1984, Whitmire and Jackson 1984; see Shoemaker and Wolfe 1986 or Tremaine
1986 for reviews of this and other suggestions).
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Unfortunately Nemesis is very vulnerable to perturbations from passing stars. Its semi-
major axis and period can change significantly within the duration of the cratering and
extinction records (250 Myr), which would erase any detectable periodicity. The probability
that the period wanders by less than about 15% during this time (about the maximum
allowable) is only p; =~ 0.14 (Weinberg et al. 1987). In addition, the half-life of a binary
with this semi-major axis is only about t;;3 = 5 x 10®yr (Weinberg et al. 1987, without
GMCs; with GMCs included the lifetime is even shorter); thus the a priori probability that
Nemesis was discovered at this special time (i.e. just before it escapes) is p; = ty/2/t., = 0.1.
The joint probability p;p, = 0.014 is small enough that the Nemesis hypothesis is very
unlikely. Weissman (1985) and Shoemaker and Wolfe (1986) reach similar conclusions.

A more prosaic explanation is that the statistical evidence for periodicity is misleading.
Many authors have commented on this issue (e.g. Kitchell and Pena 1984, Hoffman 1985,
Shoemaker and Wolfe 1986, Grieve et al. 1987, Heisler and Tremaine 1989) so here I will
mention only two points, relating to the cratering and extinction record respectively.

(i) The statistical significance of the periodicity in the cratering record is based on the
null hypothesis that craters are independent events described by a uniform Poisson
process. Figure 4 shows that this is not so: a substantial fraction of the total comet
flux arrives in brief, intense bursts or showers. The resulting distribution of crater
ages may show correlations which could lend spurious extra significance to periodic
models.

(ii) The original list of 12 extinction events in Raup and Sepkoski (1984) was revised to a
list of 8 events by Sepkoski and Raup (1986). Both the original and revised list were
claimed to be periodic at the 99% confidence level. Some problems with the statistical
analysis in these two papers were pointed out by Tremaine (1986); after correcting
these problems Raup and Sepkoski (1986) concluded that their list of 8 events did
not show significant periodicity. However, they then revised the timings of two of
the events to obtain a new list of extinction events which was once again significant,
this time at the 99.9% level. I cannot comment on the paleontological plausibility of
these revisions, but any revisions occurring after the original periodicity hypothesis
was introduced may be unintentionally and subjectively biased. This is a well-known
problem in psychology experiments, where considerable effort is expended to minimize
or eliminate such bias by using blind observers; unfortunately, similar precautions are
difficult to apply in this case.

6. Summary

There is little or no direct dynamical evidence for substantial quantities of dark matter in
the solar system. However, the observational and theoretical constraints on the amount
and distribution of dark matter lead to several interesting conclusions:

(i) The upper limit on dark mass in the region of the terrestrial planets is < 3 x 10-8 Mog;
within the orbit of Uranus the limit is $ 3 X 10~ M. On the other hand, we believe
that the planets were assembled from billions of planetesimals that condensed out of
the gaseous protoplanetary disk. Then why is the planetary system so clean? Was
planet formation so efficient that virtually every planetesimal was incorporated into
a planet or ejected from the system? Did something sweep the residual planetesimals



60

out of the system? Or are most orbits in the planetary system weakly chaotic, so that
residual planetesimals are ejected on < 10°yr time scales?

(ii) The orbits of Uranus and Neptune show unexplained residuals from the best available
theoretical models, which may be due to dark matter. Spacecraft and comet trajecto-
ries show no unexplained anomalies at a comparable level of accuracy, so the residuals
may arise simply from an underestimate of the systematic observational errors. If the
residuals are due to an undiscovered Planet X, it must be at least ten times more dis-
tant and massive than any known planet, and is more properly called a brown dwarf
rather than a planet.

(iii) The outer boundary of the solar system is set by the tidal-field of the Galaxy at about
2 X 105 AU from the Sun. However, orbits with semi-major axes exceeding about
5 X 10* AU are unlikely to survive perturbations from passing stars and GMCs for the
lifetime of the solar system. Orbits exceeding 5 X 103 AU in size will typically have a
random orientation and will not lie in the ecliptic.

(iv) Planetesimals that are perturbed onto Uranus- and Neptune-crossing orbits will nat-
urally evolve into a cloud surrounding the Sun at distances of 103 AU to 4 x 10* AU.
Objects from the outer part of the cloud can be identified with “new” comets. Thus the
existence and properties of the Oort comet cloud follow naturally from fairly general
models for the formation of the planetary system.

(v) The mass of the planetesimal cloud may be 100Mg or more; thus the dark mass in
the cloud may exceed the total mass in the cores of the giant planets.

(vi) The Jupiter-family comets probably arise from a disk-like source in the outer planetary
system. Objects in this source (the Kuiper belt) could be detected by systematic
occultation surveys, and may be visible if the mass function decays slowly at the high-
mass end. Chiron may be a member of the Kuiper belt that has wandered into the
region of the giant planets.

(vii) The hypothetical solar companion Nemesis probably does not exist since its orbit is
improbable and the evidence for periodicity in the cratering and extinction records is
weak.

(viii) It is unlikely that the Sun has a companion with mass & 0.03 M.

References

Alvarez, W., and Muller, R. A. (1984) ‘Evidence from crater ages for periodic impacts on
the Earth’. Nature 308, 718-720.

Anderson, J. D., and Standish, E. M. (1986) ‘Dynamical evidence for planet X’, in R. Smolu-
chowski, J. N. Bahcall, and M. S. Matthews (eds.), The Galaxy and the Solar Sys-
tem, University of Arizona Press, Tucson, 286-296.

Anderson, J. D., Lau, E. L., Taylor, A. H., Dicus, D. A., Teplitz, D. C., and Teplitz,
V. L. (1989) ‘Bounds on dark matter in solar orbit’. Astrophys. J. 342, 539-544.

Antonov, V. A., and Latyshev, I. N. (1972) ‘Determination of the form of the Oort
cometary cloud as the Hill surface in the Galactic field’, in G. A. Chebotarev,
E. I. Kazimirchak-Polonskaya, and B. G. Marsden (eds.}, The Motion, Evolution of
Orbits, and Origin of Comets, Reidel, Dordrecht, 341-345.



61

Bahcall, J. N. (1984) ‘K giants and the total amount of matter near the Sun’. Astrophys.
J. 287, 926-944.

Bahcall, J. N., Hut, P., and Tremaine, S. (1985) ‘Maximum mass of objects that constitute
unseen disk material’. Astrophys. J. 290, 15-20.

Bailey, M. E. (1976) ‘Can “invisible” objects be observed in the solar system?’ Nature 259,
290-291.

Binney, J. J., and Tremaine, S. (1987) Galactic Dynamics, Princeton University Press,
Princeton.

Chester, T. (1986) ‘A statistical analysis and overview of the IRAS point source catalog’,
in F. P. Israel (ed.), Light on Dark Matter, Reidel, Dordrecht, 3-22.

Christy, J. W., and Harrington, R. S. (1978) ‘The satellite of Pluto’. Astron. J. 83,
1005-1008.

Cuzzi, J. N., Lissauer, J. J., Esposito, L. W., Holberg, J. B., Marouf, E. A., Tyler, G. L.,
and Boischot, A. (1984) ‘Saturn’s rings: properties and processes’, in R. Greenberg
and A. Brahic (eds.), Planetary Rings, University of Arizona Press, Tucson, 73-199.

D’Antona, F., and Mazzitelli, I. (1985) ‘Evolution of very low mass stars and brown dwarfs.
I. The minimum main-sequence mass and luminosity’. Astrophys. J. 296, 502-513.

Davis, M., Hut, P., and Muller, R. A. (1984) ‘Extinction of species by periodic comet
showers’. Nature 308, 715-717.

Duncan, M., Quinn, T., and Tremaine, S. (1987) ‘The formation and extent of the solar
system comet cloud’. Astron. J. 94, 1330-1338.

Duncan, M., Quinn, T., and Tremaine, S. (1988) ‘The origin of short-period comets’. As-
trophys. J. Lett. 328, 1.69-L73.

Duncan, M., Quinn, T., and Tremaine, S. (1989a) ‘The long-term evolution of orbits in the
solar system: a mapping approach’. Icarus 82, (in press).

Duncan, M., Quinn, T., and Tremaine, S. (1989b) ‘Planetary perturbations and the origin
of short-period comets’, submitted to Astrophys. J.

Duncombe, R. L., and Seidelmann, P. K. (1980) ‘A history of the determination of Pluto’s
mass’. Icarus 44, 12-18.

Edgeworth, K. E. (1949) ‘The origin and evolution of the solar system’. Mon. Not. Roy.
Astron. Soc. 109, 600-609.

Everhart, E. (1967) ‘Intrinsic distributions of cometary perihelia and magnitudes’. Astron.
J. 72, 1002-1011.

Everhart, E., and Marsden, B. G. (1983) ‘New original and future comet orbits’. Astron.
J. 88, 135-137.

Ferndndez, J. A. (1981) ‘New and evolved comets in the solar system’. Astron. Astrophys.
96, 26-35.

Fernindez, J. A. (1985) ‘The formation and dynamical survival of the comet cloud’, in
A. Carusi and G. B. Valsecchi (eds.), Dynamics of Comets: Their Origin and Evo-
lution, Reidel, Dordrecht, 45-70.



62

Franklin, F., Lecar, M., and Soper, P. (1989) ‘On the original distribution of the asteroids.
II. Do stable orbits exist between Jupiter and Saturn?’ Icarus 79, 223-227.

Gehrels, T. (1981) ‘Faint comet searching’. Icarus 47, 518-522.

Goldreich, P., and Ward, W. R. (1973) ‘The formation of planetesimals’. Astrophys. J.
183, 1051-1061.

Gomes, R. S. (1989) ‘On the problem of the search for Planet X based on its perturbations
on the outer planets’. Icarus 80, 334-343.

Greenberg, R., Weidenschilling, S. J., Chapman, C. R., and Davis, D. R. (1984) ‘From icy
planetesimals to outer planets and comets’. Icarus 59, 87-113.

Grieve, R. A. F., Sharpton, V. L., Goodacre, A. K., and Rupert, J. D. (1987) ‘Detecting
a periodic signal in the terrestrial cratering record’, in G. Ryder (ed.), Proceedings
of the 18th Lunar and Planetary Science Conference, Cambridge University Press,
Cambridge, 375-382.

Hamid, S. E., Marsden, B. G., and Whipple, F. L. (1968) ‘Influence of a comet belt beyond
Neptune on the motions of periodic comets’. Astron. J. T3, 727-729.

Harrington, R. S. (1988) ‘The location of Planet X'. Astron. J. 96, 1476-1478.

Hartmann, W. K. (1969) ‘Terrestrial, lunar, and interplanetary rock fragmentation’. Icarus
10, 201-213.

Heggie, D. (1975) ‘Binary evolution in stellar dynamics’. Mon. Not. Roy. Astron. Soc.
173, 729-787.

Heisler, J. (1989) ‘Monte Carlo simulations of the Oort comet cloud’, in preparation.

Heisler, J., and Tremaine, S. (1986) ‘The influence of the Galactic tidal field on the Oort
comet cloud’. Icarus 65, 13-26.

Heisler, J., and Tremaine, S. (1989) ‘How dating uncertainties affect the detection of peri-
odicity in extinctions and craters’. Icarus 77, 213-219.

Heisler, J., Tremaine, S., and Alcock, C. (1987) ‘The frequency and intensity of comet
showers from the Oort cloud’. Icarus 70, 269-288.

Hénon, M. (1970) ‘Numerical exploration of the restricted problem. VI. Hill’s case: non-
periodic orbits'. Astron. Astrophys. 9, 24-36.

Hills, J. G. (1981) ‘Comet showers and the steady-state infall of comets from the Oort
cloud’. Astron. J. 86, 1730-1740.

Hills, J. G. (1985) ‘The passage of a Nemesis-like object through the planetary system’.
Astron. J. 90, 1876-1882.

Hoffman, A. (1985) ‘Patterns of family extinction depend on definition and geological
timescale’. Nature 315, 659-662.

Hoyt, W. G. (1980) Planets X and Pluto, University of Arizona Press, Tucson.

Hughes, D. W. (1982) ‘Asteroidal size distribution’. Mon. Not. Roy. Asiron. Soc. 199,
1149-1157.

Hut, P., and Tremaine, S. (1985) ‘Have interstellar clouds disrupted the Oort comet cloud?’
Astron. J. 90, 1548-1557.



63

Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker,
E. M., and Weissman, P. R. (1987) ‘Comet showers as a cause of mass extinctions’.
Nature 329, 118-126.

Ishida, K., Mikami, T., and Kosai, H. (1984) ‘Size distribution of asteroids’. Publ. Astr.
Soc. Japan 36, 357-370.

Jackson, A. A., and Killen, R. M. (1988) ‘Infrared brightness of a comet belt beyond
Neptune’. Earth, Moon, and Planets 42, 41-47.

Kerr, F. J., and Lynden-Bell, D. (1986) ‘Review of galactic constants’. Mon. Not. Roy.
Astron. Soc. 221, 1023-1038.

Kirk, J. (1978) ‘On companions and comets’. Naiure 274, 667-668.

Kitchell, J. A., and Pena, D. (1984) ‘Periodicity of extinctions in the geologic past: deter-
ministic versus stochastic explanations’. Science 226, 689-692.

Kowal, C. T. (1989) ‘A solar system survey’. Icarus 77, 118-123.

Kowal, C. T., and Drake, S. (1980) ‘Galileo’s observations of Neptune’. Nature 287, 277-
278.

Kowal, C. T., Liller, W., and Marsden, B. G. (1979) ‘The discovery and orbit of (2060)
Chiron’, in R. L. Duncombe (ed.), Dynamics of the Solar System, Reidel, Dordrecht,
245-250.

Kuijken, K., and Gilmore, G. (1989) ‘The mass distribution in the galactic disc. III. The
local volume density’. Mon. Not. Roy. Astron. Soc. 239, 651-664z

Kuiper, G. P. (1951) ‘On the origin of the solar system’, in J. A. Hynek (ec@ Astrophysics:
A Topical Symposium, McGraw-Hill, New York, 357-424. ~_..- a

Kuiper, G. P., Fujita, Y., Gehrels, T., Groeneveld, I., Kent, J., van @esﬁrd@ck G., and
van Houten, C.J. (1958) ‘Survey of asteroids’. Astrophys J. Siipp, ﬁZSQ 427,

Lichtenberg, A. J., and Lieberman, M. A. (1983) ‘Regular and stocha,stlm ion i, Springer-
Verlag, New York. =
T3 ~,,,§

,_—
-

Luu, J. X., and Jewitt, D. (1988) ‘A two-part search for slow-moving objects’. Astron. J.

95 1256-1262,
Marsden, B. G. (1983), Catalog of Cometary Orbits, Enslow, Hillside. = =

Marsden, B. G., Sekanina, Z., and Everhart, E. (1978) ‘New osculating orbits for 110 comets
and analysis of original orbits for 200 comets’. Astron. J. 83, 64-71.

McClintock, J. (1985). Private communication.

Morris, D. E., and Muller, R. A. (1986) ‘Tidal gravitational forces: the infall of “new”
comets and comet showers’. Icarus 65, 1-12.

Oikawa, S., and Everhart, E. (1979) ‘Past and future orbit of 1977 UB, object Chiron’.
Astron. J. 84, 134-139.

Oort, J. H. (1950) ‘The structure of the cloud of comets surrounding the solar system, and
a hypothesis concerning its origin’. B.A.N. 11, 91-110.

Oort, J. H. (1986) ‘The origin and dissolution of comets’. The Observatory 106, 186-193.
Perlmutter, S., Burns, M. S., Crawford, F. S., Friedman, P. G., Kare, J. T., Muller, R. A,,

OBt



64

Pennypacker, C. R., and Williams, R. W. (1986) ‘The Berkeley search for a faint
stellar companion to the Sun’, in M. C. Kafatos, R. S. Harrington, and S. P. Maran
(eds.), Astrophysics of Brown Dwarfs, Cambridge University Press, Cambridge, 87-
92.

Raup, D. M., and Sepkoski, J. J. (1984) ‘Periodicity of extinctions in the geologic past’.
Proc. Nat. Acad. Sci. 81, 801-805.

Raup, D. M., and Sepkoski, J. J. (1986) ‘Periodic extinction of families and genera’. Science
231, 833-836.

Safronov, V. S. (1960) ‘On the gravitational instability in flattened systems with axial
symmetry and non-uniform rotation’. Ann. d’Astrophys. 23, 979-982.

Seidelmann, P. K., and Harrington, R. S. (1988) ‘Planet X—the current status’. Cel. Mech.
43, 55-68.

Sepkoski, J. J., and Raup, D. M. (1986) ‘Periodicity in marine extinction events’,in D. K. El-
liott (ed.), Dynamics of Extinction, Wiley, New York, 3-36.

Shapiro, S. L., and Teukolsky, S. A. (1983) Black Holes, White Dwarfs, and Neutron Stars,
Wiley, New York.

Shoemaker, E. M., and Wolfe, R. F. (1982) ‘Cratering time scales for the Galilean satellites’,
in D. Morrison (ed.), Satellites of Jupiter, University of Arizona Press, Tucson, 277-
339.

Shoemaker, E<Xl., and Wolfe, R. F. (1986) ‘Mass extinctions, crater ages and comet show-
ers’, ingl. Smoluchowski, J. N. Bahcall, and M. S. Matthews (eds.), The Galaxy
and th@olar System, University of Arizona Press, Tucson, 338-386.

Smoluchoxygl;dfj’gﬁnd Torbett, M. (1984) ‘The boundary of the solar system’. Nature 311,

53, £ £
-~
Standish, E%(NSG) ‘Numerical planetary and lunar ephemerides: present status, preci-

sioﬁr:d;aguracies’, in J. Kovalevsky and A. Brumberg (eds.), Relativity in Celestial
Mechaﬁc@"‘and Astrometry, Reidel, Dordrecht, 71-83.

Standish, E. I\é, and Hellings, R. W. (1989) ‘A determination of the masses of Ceres, Pallas,
and V@a from their perturbations upon the orbit of Mars’. Icarus 80, 326-333.

Stevenson, D. J. (1982) ‘Formation of the giant planets’. Planet. Sp. Sci. 80, 755-764.

Stevenson, D. J. (1986) ‘High mass planets and low mass stars’, in M. C. Kafatos, R. 5. Har-
rington, and S. P. Maran (eds.), Astrophysics of Brown Dwarfs, Cambridge Univer-
sity Press, Cambridge, 218-232.

Sussman, G. J., and Wisdom, J. (1988) ‘Numerical evidence that the motion of Pluto is
chaotic’. Science 241, 433-437.

Talmadge, C., Berthias, J.-P., Hellings, R. W., and Standish, E. M. (1988) ‘Model-
independent constraints on possible modifications of Newtonian gravity’. Phys.
Rev. Letlers 61, 1159-1162.

Taylor, J. H., and Weisberg, J. M. (1989) ‘Further experimental tests of relativistic gravity
using the binary pulsar PSR 1913+416’. Astrophys. J. 345, 434-450.



65

Tholen, D. J., Buie, M. W,, Binzel, R. P., and Frueh, M. L. (1987) ‘Improved orbital and
physical parameters for the Pluto-Charon system'. Science 237, 512-514.

Tombaugh, C. W. (1961) ‘The trans-Neptunian planet search’, in G. P. Kuiper and B. Mid-
dlehurst (eds.), Planets and Satellites, University of Chicago Press, Chicago, 12-30.

Tremaine, S. (1986) ‘Is there evidence for a solar companion star?’, in R. Smoluchowski,
J. N. Bahcall, and M. S. Matthews (eds.}, The Galaxy and the Solar System, Uni-
versity of Arizona Press, Tucson, 409-416.

van den Bergh, S. (1989) ‘Life and death in the inner solar system’. Publ. Astron. Soc.
Pac. 101, 500-509.

van Houten, C. J., van Houten-Groeneveld, 1., Herget, P., and Gehrels, T. (1970) ‘The
Palomar-Leiden survey of faint minor planets’. Astr. Astrophys. Suppl. 2, 339-448.

Weinberg, M. D., Shapiro, S. L., and Wasserman, L. (1987) ‘The dynamical fate of wide
binaries in the solar neighborhood’. Astrophys. J. 312, 367-389.

Weissman, P. R. (1983) ‘The mass of the Oort cloud’. Astron. Astrophys. 118, 90-94.

Weissman, P. R. (1985) ‘Dynamical evolution of the Oort cloud’, in A. Carusi and
G. B. Valsecchi (eds.), Dynamics of Comets: Their Origin and Evolution, Reidel,
Dordrecht, 87-96.

Weissman, P. R. (1986) ‘The mass of the Oort cloud: a post Halley reassessment’.
Bull. A. A. S. 18, 799.

Whipple, F. L. (1972) ‘The origin of comets’, in G. A. Chebotarev, E. I. Kazimirchak-
Polonskaya, and B. G. Marsden (eds.), The Motion, Evolution of Orbits, and Origin
of Comets, Reidel, Dordrecht, 401-408.

Whitmire, D. P., and Jackson, A. A. (1984) ‘Are periodic mass extinctions driven by a
distant solar companion?’ Nature 308 713-715.

Wisdom, J. (1982) ‘The origin of the Kirkwood gaps: a mapping for asteroidal motion near
the 3/1 commensurability’. Astron. J. 87, 577-593.

Wisdom, J. (1983) ‘Chaotic behavior and the origin of the 3/1 Kirkwood gap’. Icarus 56,
51-74.

Yeomans, D. K. (1986) ‘Physical interpretations from the motions of comets Halley and
Giacobini-Zinner’, in Proceedings of the 20th ESLAB Symposium on the Explo-
ration of Halley’s Comet (ESA SP-250), 419-425.



