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ABSTRACT

The basic physics governing the structure of galaxies is
described by the collisionless Boltzmann equation and the
Jeans theorem. I review the derivation of these results and
their application to spherical ghlaxies, and discuss a va-
riety of techniques for constructing equilibrium models of
spherical galaxies. I review general results on the stability
of sphenca.l galaxies and recent work on the radial-orbit
instability. Finally, I discuss the statistical mechanics of
violent relaxation and derive a heuristic distribution func-
tion that appears to describe the end-produét of violent
relaxation.

1. INTRODUCTION

One of the most important research areas of the last decade in galactic
dynamics has been the study of triaxial galaxies, in which all three principal
moments of inertia are different. These systems arise naturally in the collapse
of non-equilibrium stellar systems and in mergers of stellar systems, and many,
possibly most, real galaxies are likely to be triaxial to some extent. Thus it is
proper to begin this lecture by describing why I think the study of spherical
galaxies is still important. First, spherical galaxies are the simplest realistic
stellar systems. Infinite slabs or cylinders are artificial because they do not
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approximate the global geometry of real galaxies, and disk systems have more
complicated potential-density relations than spherical ones. Second, spherical
systerns are an important special case of triaxial systems, and it is difficult to
understand the behavior of triaxial systems until we understand their limiting
behavior in the spherical case. Finally, there are many major issues about the
dynamics of spherical galaxies that are still unresolved.

The lecture will be divided into sections on equilibrium (§2), stability
(§3), and formation (§4). As far as possible I will treat each topic indepen-
dently. Much of the basic material is covered in a textbook that James Binney
and I have recently completed”), and from which I have drawn heavily.

1.1 Basic Fquations

The fundamental function that describes the distribution of stars in a
galaxy is the distribution function (hereafter DF) f(x,v,t), defined so that
f(x,v,t)dxdv is the mass contained at time ¢ in the phase-space volume
element (x,v) — (x + dx,v + dv).! Of course, the DF can be defined for
quantities other than mass, for example luminosity, number of stars, number
of K giant stars, etc. Initially, I will define the DF in terms of luminosity since
that is directly observable in external galaxies while mass and number of stars
are not.

The crucial feature of galaxies that makes their dynamics relatively easy
to understand is that there are no binary interactions between stars. The
collision time for a typical star in the solar neighborhood is about 107 years,
far longer than the age of the Galaxy. Moreover, gravitational interactions
between individual stars are so small that we can assume that each star’s
trajectory is determined solely by the large-scale potential field of the galaxy.
The recognition of this fact makes it easy to derive the equation that describes
the evolution of the DF.

The equation of continuity in fluid mechanics is

ap dp d

5 TV (V) =5+ 3% (pv:) =0, (1)

1 Notice that I define phase space to be position-velocity space rather than position-
momentum apace.
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where I have used the summation convention. The DF represents the density in
phase space and satisfies a continuity equation as well, since stars are neither
created nor destroyed:

af a ,.. 3
Et_ + a:t,' (f.?:,) + av,'

(fo:) =0, (2)

where the dot denotes a time derivative. We know that i; = v; and, since
collisions and star-star gravitational interactions are neglected, 9; = —(V®);,
where ®(x,t) is the gravitational potential of the galaxy. Moreover dv;/dz; =
0 (since z; and v; are independent coordinates in phase space), and 8®/dv; =
0 (since the gravitational potential depends only on position, not velocity).

Hence
ﬂ + _af _ od of _
ot vi ozx; dx; Ov; -

This is the Viasov or collissonless Boltzmann equation, and is the fundamental
equation that governs the time evolution and structure of galaxies.

0. (3)

The collisionless Boltzmann equation can be rewritten in other forms.
Recall that in three dimensions the Eulerian and Lagrangian derivatives are

respectively
2 D .
at|’ Dt~ ot at

(4)

The Eulerian derivative is the rate of change measured by an observer at a
fixed location, while the Lagrangian derivative is the rate of change measured
by an observer travelling with a fixed particle or fluid element. Similarly, in
six-dimensional phase space we may define the Lagrangian derivative as the
rate of change measured by an observer travelling through phase space with
a given star,

D
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Comparison with equation (3) shows that the collisionless Boltzmann equation
can be written in the simple form

D
__i = Q. (6)
Dt

This equation says that if an observer is attached to a given star travelling

through the galaxy, the local phase-space density of stars that he measures
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Figure 1. The evolution of the phase-space distribution of particles in the one-
dimensional potential well $(z) = —(1++v/1 + 22)~! (the isochrone potential). The
initial DF is uniform in phase space in the region centered on (z,v) = (1,0) that
is defined by (z — 1)? + v2 < (0.2)2. The toordinate axes have unit length. The
orbital period for a particle at (z,v) = (1,0) (the time required to return to its
original position) is 16.67 time units. The three plots are at { = 0, £ = 15, and
t = 60.

around him remains constant. In other words, the flow of stars in phase space
5 sncompressible.

A qualitative example of this kind of behavior is provided by a marathon
race. If the runners travel at a constant speed, then the runners, like the stars
in a galaxy, satisfy the collisionless Boltzmann equation. At the start of the
race, the spatial density of runners is high, but they have a wide range of
ability and hence trave£ with different speeds, so their ﬁhage—spa.cg density‘is
not sé high. At the finish line, the spatial density of runners is low, but at
any particular time, the runners passing the finish line have nearly the same
speed. Thus the phase-space density at the finish is the same as at the start,
just as the collisionless Boltzmann equation predicts.

Another example is provided by a set of particles in a one-dimensional
potential well (Figure 1). The particles are initially located in a small region
with velocities near zero and phase-space density fo, as in Figure'l (a). After
their release, the particles fall down the potential well and oscillate back and
forth. The particles with lower energy have shorter period, so the phase-space
distribution begins to twist into a spiral, as in (b). As time goes on, the spiral
becomes narrower and longer, as in (¢). However, the phase-space density
within the spiral remains constant, as the collisionless Boltzmann equation
predicts.



97

After many orbits, the DF can become twisted into a.very tightly wound
spiral. In this case, if we measure the phase-space density 'with coarse res-
olution, we would find 2 lower phase-space density than fg, Because regions
with f = fo and regions with f = 0 occupy the same resolution: element. In
otlier words, the so-called coarse-grained DF does not necessarily satisfy the
collisionless_Boltzmann equation. The coarse-grained DF f-can"be.defined
more precisely by dividing phase space into a set of macrocells and defiring f
to bé the average value of the DF within each macrocell. The coarse-grained
DF can be an important concept, because observations always have'limited
resolution and hence measure a coarse-grained DF rather than the “true” or
fine-grained DF. -

‘There is a simple application of these results to an interesting problem
in cosmology. It has been suggested that neutrinos of non-zero rest mass are
the particles that provide the dark mass in:galaxies. <In the early Universe,
neutrinos are in thermal equilibrium and hencé their DF has the Fermi-Dirac

form
1 1

fo = -I_Lgexp(pc/kT) +1 (7

Here h and k are Planck’s constant and Boltzmann’s constant, p is the mo-
mentum, and ¢ is the speed of light.? After the Universe cools below about 1
MeV, the rfeutrinos are no longet in thermal equilibriumm. Nevertheless, the
DF (7) continues to apply, since Both the momentum of the neutrinos and the
temperature of the Universe fall at the same rate, proportional to (1 + 2z) 2,
where z is the redshift49).

Once galaxies begin to form, the DF (7) is no longer valid. However, the
neutrinos still satisfy the collisionless Boltzmann equation, so that Df, /Dt =

0. Since the observable coarse-grained DF, which we may denote by TP, is the
average over a macrocell of the fine-grained DF f,, we may conclude that -fp
can never exceed the maximum value of f,, which is %h"s by equation (7).
This argument can be used to set a lower limit to the neutrino rest mass if

the neutrinos are indeed the main component of dark mass in galaxies®®).

Professor Ruffini and I had a long discussion about the validity of this
argument after his lecture. As I understand it, Professor Ruffini argues that
since the collisionless Boltzmann equation is classical, it cannot be applied to
situations in which the phase-space density of neutrinos is close to'the limit
set by the Pauli principle, A~2. My contention, howevér, is that quantum

2 In this discussion only, I will use a phase space based on position and momentum rather
than position and velocity, and denote the corresponding DF by f,. For non-relativistic
particles of mass m, fp = f/m3,
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mechanical effects are only important in this context if there are two-body
interactions, and that since the neutrinos only interact with the mean gravi-
tational field of the galaxy the classical collisionless Boltzmann equation pro-
vides an accurate description. Let me leave the resolution of this dispute as a
homework exercise: Is the classical collisionless Boltzmann equation valid in
galaxy-sized systems of non-interacting particles when .the phase-space den-
sity is not small compared to the degenerate limit, A~2? This problem has not

been addressed in the literature, so correct answers to the homework problem
should be publishable.

1.2 Equations for Spherical Systems

We now write the collisionless Boltzmann equation (3) in spherical co-
ordinates (r,0,4). The simplest approach is to use the form Df/Dt = 0,
equation {6), which can be written in spherical coordinates as

of  .8f  sof .d8f . 3f . Bf of _
>+ a—+e +¢¢ Fo; T V05, +eg, - =0. (8)

Here we have written the velocity in spherical coordinates as v = v,8, +
veéy + v¢e¢ We eliminate r, 9 and qS using the relations v, = 7, vy = 10,
vy = rsin 0, and use Newton’s law in the form

6_“ﬁ+m§_a¢
Ty or’
5o = _ v + vgcotﬂ 1 od (9)
r r r 80°
o Uty vavy cot _ 1 0%
L r rsind 8¢

Combining these results, we obtain the collisionless Boltzmann equation in
spherical coordinates,

_+ r—"+

df _ 8f  vedf vy Of (v3+vg a<1>)af
+ + -3

ot dr r 08 rsinﬂ EY) r Ay
1/, ~ ~ of .}. 1 9%| 8f _
+ . (%cotﬂ VU,V Y, ) Bve [v,,(v,- + vg cot 0) + <in0 3¢>] Jvg =

(10)
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In the simple case of spherical symmetry, where 8/30 = 8/8¢ = 0 and vy
and v; enter only in the combination v + v3 = v{, we have

af _ af (g;f _dcp) 3f _vewdf _

0. (1)

3{+v'6_r+ r dr / Ov, r Jdu;

The most we can hope to obtain from observations of a spherical galaxy is
the surface brightness and distribution of line-of-sight velocities as a function
of projected radial distance from the center of the galaxy. The line-of-sight ve-
locity distribution is measured from the broadening of spectral linés that arises
because different stars have different Doppler shifts. In fact, with present-day
techniques the detailed velocity distribution cannot be measured accurately;
the best we can do is'to determine the second moment of the distribution,
i.e., the root-mean-square velocity along the line of sight, 0,(R).> Therefore
it is useful to relate the DF to o, and other observables.

The luminosity density or emissivity is

7 (x) =ff(x,v,t)dv. (12)

The mean velocity Vv is given by

§7; = / vif (%, v,t)dv, (13)

and the velocity-dispersion tensor ¢ is given by

joij = [ (v: — 3) (v — B3) f(x, v, £)dv. (14)

Of course o is a symmetric tensor. If the galaxy has spherical symmetry
then the emissivity depends only on the radial coordinate r. Furthermore, I
shall henceforth assume that all properties of the galaxy are independent of
direction; thus the mean velocities in the two angular directions must vanish,

Vg =v4 =0, (15)
and the velocity-dispersion tensor must satisfy
00 = Og4, Oop = Orgp = 0pg = 0. (16)

3 1 ghall use r and R, respectively, to denote distances from the center of the galaxy in
three dimensions and in the plane of the sky.
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We also assume that the galaxy is in a steady state, so %, = 0.

To obtain an equation involving o we simply multiply the collisionless
Boltzmann equation (11) by v, and integrate over velocity space, fdv =
ivr ff°oo dv, f0°° vidyv;. Since we assufne a steady state, f/8t = 0 and we

ave

o /dva,. +/dv ( . dr) v,.avr . dvv,.vtavt = 0. (17)

The first integral is just jo,,. To evaluate the second we first carry out the
integral over v,, [ dv,v.(8f/8v,), = — [ dv,f, where we assume that f — 0
as |v,| = oo. To evaluate the third we first carry out the integral over v,
[ 2mvedvive(8f/8v:) = —2 [ 27vidv, f, where we assume f — 0 as v — oo.
Thus equation (17) becomes

d,. 23 .dd
E(Jarr) + Tj(orr - 000) == E;' (18)

Here we have used the relation [ dvv?f = 2joge = 2j044. Equation (18) is
sometimes called the equation of hydrostatic equilibrium since it is similar to

dr ;’.
where p is the pressure, equal to the mass density times the one-dimensional
velocity dispersion. The main difference between equation (19) and equation
(18) is that in the stellar system, in contrast to the fluid, the mean-square
velocities in different directions need not be the same.

A stellar system in which o,, = 099 = 0y4 is said to be isotropsc since
its velocity-dispersion tensor is isotropic, 0;; = 026;;. In this case equations
(18) and (19) are identical if we replace 5 by p and jo? by p. Another special
case is the shell model, in which o,, = 0, that is, all the stars move on circular
orbits. Shell models are mainly useful because they are easy to construct
and analyze; it seems unlikely that real galaxies are well-approximated by
shell models. A final special case is the radial-orbit model, in which ogg = 0;
one disadvantage of radial-orbit models is that they always imply a singular
density at the center (j(r) diverges at least as fast as r~2 as r — 0).

One general and useful result is the following: in any spherical, steady-
state stellar system that has no singularities or divergences in the potential
or DF, the ratio o,+/0gp — 1 as r — 0, i.e., the velocity-dispersion tensor
is isotropic near the center. Doug Richstone and I convinced ourselves of
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this several years ago, but the argument was never published and the exact
conditions on the potential and DF needed for central isotropy have never been
worked out. Once again, I leave this as a (probably publishable) homework
exercise.

In general, however, there is no reason to suppose that dtellar’'systems
are isotropic, except near their centers. In fact, most plausible models of
galaxy formation suggest that the velocity-dispersion tensor is nearly radial
(0¢r > 0gp) in the outer parts of the galaxy.

1.3 The Jeans Theorem

The most efficient way to solve the collisionless Boltzmann equation for
spherical systems is through the use of integrals of motion. An sntegral of
motion is any function I(x,v) of the phase-space coordinates such that

2 Ix(t), V()] = 0 (20)

along the trajectory of a star x(t), v(t) = x(t). The simplest example of an
integral is the energy per unit mass in a steady-state potential ®(x), E =
1 v? + &(x). In a spherical potential the three, components of the angular
momentum per unit mass J = x X v are also integrals. (From now on, for
the sake of brevity I will drop the phrase “per unit mass” in using these
expressions.) Notice that the expression on the left side of equation (20) is
just DI/Dt where D/Dt denotes the Lagrangian derivative in phase space
defined in equation (5).

The concept of an integral of motion leads immediately to the Jeans
theorem, one of the central results in the study of galaxy dynamics: Any DF
that is a function only of integrals of motion s a solution of the steady-state
collisionless Boltzmann equation. The proof is very easy. Consider a DF of
the form f{Ii(x,v), La(x,V),...,Ix(x,V)], where I,..., I are k integrals of

motion. We have

Df <~ 8f DI,

Dt 4~ 0dl, Dt (21)

But DI,,/Dt = 0 since I, is an integral of motion; hence D f/Dt = 0, which
means that f satisfies the collisionless Boltzmann equation in the form (6).4

, 4 There is also a converse of the Jeans theorem; however it is more complicated to
formulate and to prove and it will not be needed for our purposes 7
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According to the Jeans theorem, in a spherical system any DF of. the form
f(E,J) is automatically a solution of the steady-state collisionless Boltzmann
equation. If we assume once again that all properties of the galaxy are in-
dependent of direction, then f can depend on J only through its magnitude,
and we may write

f(x,v) = f(E,J%) = f(30% + 8(r),r*v]), (22)

where as usual v; is the tangential velocity component. It can also be shown
that all solutions to the steady-state collisionless Boltzmann equation that are
spherically symmetric in all their properties have the form (22). A particularly
simple set of DFs are those that depend only on energy, f = f(E). These are
often called isotropic systems since the velocity-dispersion tensor is isotropic
at all radii; however, this is somewhat misleading since there are isotropic
systems in which the DF depends on both E and J? (see reference 10).

2, CONSTRUCTING EQUILIBRIUM SPHERICAL GALAXIES

The problem that I address in this section is how to construct a model
galaxy, that is, how to find a DF f(x,v) that is consistent with all the observ-
able properties of a given galaxy.

Of course, we do not know that any given galaxy is spherically symmet-
ric; at most, we observe that the surface brightness distribution on the plane
of the sky I(x) is circularly symmetric and assume that the galaxy is spher-
ical rather than, for example, oblate with its pole pointing towards us. A
worthwhile exercise is to estimate how good this assumption is: for example,
if the apparent axial ratio determined from the surface brightness is, say, in
the range 0.9 to 1, what is the probability that the true axis ratio is, say, less
than 0.5 (in which case the assumption that the galaxy was spherical would
be badly in error)? This requires knowing the distribution of apparent axial
ratios of galaxies and assuming that all galaxies are either oblate or prolate
(see reference 28, §5-2).

With the assumption of spherical symmetry, the surface -brightness is
related to the emissivity by the integral equation?)

_ @ j(r)rdr
I(R) =2 fR S (23)
This an Abel-type integral equation which can be solved to yield
. 1 [ dlIl dR
i==7) &V

(24)
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As I mentioned in §1.2, we can obtain a limited amount of information
about the distribution of stars in velocity space from spectroscopic observa-
tions. About the best that can be done with present-day techniques is to
determine the root-mean-square velocity along the line of sight, o,(R). The
line-of-sight dispersion velocity o, is related to the components of the velocity-
dispersion tensor o,,, 044 = 09 by

® g,0(r2 — R%) + 0ppR2 j(r)rdr

I(R)o?(R) =2 fR 2 v

In order to construct a dynamical model of the galaxy we must know the
potential ®(r). The potential can only be directly determined in rare cases,
for example when the galaxy contains a circular disk of gas whose rotation
curve can be measured. In general we are forced to make some plausible but
arbitrary assumption about ®(r). Perhaps the most common is that the mass-
to-light ratio p(r)/7(r) = Y(r) is independent of position. Then the potential
can be obtained to within a constant multiplicative factor by solving Poisson’s
equation

(25)

1d ,d®
vig = L9292 _ arin).
d 23 4 47 GY5(r) (26)

However, it should be remembered that there is very little direct evidence
that this assumption is valid, especially in the outer parts of galaxies.

Thus, in the context of spherical galaxies, our goal may be stated as
follows: for an assumed potential ®(r), find the DF f(E,J?) that yields the
observed surface brightness distribution I(R) and the line-of-sight dispersion
measurements o, (R).

It is immediately evident that this problem is underconstrained: even if
we are given the potential, and even if the line-of-sight dispersion is known
at all radii, we cannot determine a function of two variables (the DF, which
is a function of E and J?) from two functions of one variable (the surface
brightness and dispersion, which are functions of the radius). Thus we must
decide on some prescription for choosing which of the many possible DFs that
solve the problem is likely to provide the most realistic representation of the
galaxy.

2.1 The Eddington-Osipkov-Merritt Method

The first approach to determining the DFs of spherical stellar systems
was invented by Eddington!?) and was generalized and greatly improved by



104

Osipkov?®) and Merritt??). The basic assumption of the Eddington-Osipkov-
Merritt (hereafter EOM) method is that the DF is a function of a single

variable
J2

Q=E+55,

(27)

with a free parameter r, which is called the anssotropy radius. (Models with
r2 < 0 can also be constructed but these are generally less interesting.)

Using the definition of the emissivity (12) we have
i(r) = /f(E,Jz)dv

= 27r/ dv,.f vedv f (207 + 207 + 8,J7) (28)

2r3(E-9) 2 2
_2r dE/ dIFf(E,J?)
V2(E — &) — J2/r2

r2

According to the EOM assumption, f(E,J?) = f(Q). Substituting Q for J?
and changing the order of integration we obtain

i(r) = 4”‘/“2 : dQf(Q)\V/Q — @. (29)

1+ 5
ra.

This is an Abel-type integral equation, which can be solved analytically to

yvield f(Q).

The EOM method ylelds a solution for the DF for each assumed value of
the anisotropy rddius ra of course, it may be that the resulting DF is negative
in some region of phase space, in which case it is not a physmally acceptable
solution (stars emit l1ght$ut do not, absorb it!). For each physically acceptable
amsotroPy radius, we can compute the llne-of-mght dispersion o,(R) from the

DF, and then choose the anisotropy radius that provides the best fit to the
observed dispersions.

The physical meaning of the anisotropy- radius is that for r < r, the
velocity-dispersion tensor is approximately isotropic, while for r > r, the
orbits are mainly radial. [In fact, it is straightforward to verify that for any
EOM model o, (r) = (1 + r2/rZ)oge(r).]

The EOM method has many virtues. It is simple to apply and yields a
straightforward one-parameter family of models for comparison with the data.
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Moreover, it'yields models that have an isotropic'velocity-dispetsion tensor in
the central regions and nearly radial orbits'in the outer parts, features that I
argued in §1.2 were common to many plausible models of galaxy formation.

The main disadvantage of the EOM method is that it is based on a specific

hypothesis [f = f(Q)] that may not apply to most real galaxies. It is also
difficult to generalize to triaxial models.

The search for black holes in the centers of:galaxies described by-Jokhn
Kormendy is one example of a problem for which the EOM method s ill-
suited. The argument for the presence of a black: hole in the center of -a
galaxy like M31 is that no physically plausible DF can match the observations
of the emissivity distribution and the dispersion profile unless the potential
includes a contribution from a central dark mass. This argument could not be
made using the EOM method alone, since one could always argue that a more
general form for the DF, without a central dark mass, would permit models
to be constructed that agreed with the observations.

2.2 Linear Programming .

The use of linear programming for constructing DFs of stellar systems
was introduced in a seminal paper by Schwarzschild3®). Schwarzschild was
concerned with the much more difficult problem of constructing models of
triaxial galaxies, where approaches like the EOM method are inapplicable
since in general we do not even have explicit expressions for the integrals of
motion. However, linear programming can also be applied to the simpler task
of constructing spherical models3!).

In the context of spherical galaxies, Schwarzschild’s method begins
by dividing energy-angular momentum space up into K bins, centered at
(E¢, J2), i =1,...,K and occupying the area E; — %AE; < E < E; —i—“%AE,-,
JE - 3AJ2 < J? < JE + ZAJ2. The six-dimensional phase-space volume
associated with bin ¢ can be shown to be v

AV; = / dxdv = 42T, AE;AJZ, (30)
bin §

where T,(E,J?) is the radial period, that is, the time required for a star to
travel from apocenter to apocenter (see eq. 44). It is assumed that all the stars
in bin ¢ have energy F; and angular momentum J;; in other words, the stars
are assumed to lie on only K distinct orbits (strictly, on K distinct sets of
orbits, with random orientations but the same energy and angular momentum
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within each set). This is equivalent to the assumption that the DF has the
form f(E,J?) = Z£1 fi6(E—E;)6(J%— J?), where 6 denotes the Dirac delta
funciion. The set of values (E;, J?) is called the orbit library. I will denote
the mass of stars in orbit ¢.by w;, the orbit weight; the relation between w;
and f,' is

w; = Tf;AV,‘, (31)

where T is the mass-to-light ratio.

The next step is to divide the galaxy into discrete bins in radius, with
bin j containing the radii r;—y < r < r;, 5 =1,...,N. Here ro = 0. The
luminosity contained in bin j is

Ti

AL; = 47r[ r2dr j(r). (32)

i—1

Instead of trying to construct a DF that reproduces the emissivity distribution
7(r) exactly, we only attempt to reproduce the luminosities AL,.

Assuming that the potential ®(r) is known, it is straightforward to com-
pute the quantity m;;, the fractional time that orbit ¢ spends in bin 5. A
galaxy model consists of the K orbit weights w; since these specify the distri-

bution of stars in phase space. The equation that we must solve to determine
the {w;} is

K
AL; = Zm,-jw,-, Jj=1,...,N. (33)

t=1

There are several features of this equation that deserve to be explicitly
stated:

(i) Since the DF must be non-negative, we must have w; > 0 in any physically
acceptable model.

(i) Measurements of the line-of-sight dispersion o,(R) also provide con-
straints that are linear functions of the w;; hence fitting the dispersion

profile is no different in principle from fitting the surface brightness pro-
file.

(ili) The number of orbits in the orbit library, K, must generally be much
larger than the number of radial bins, N, since two-dimensional (E, J?)
space must be sampled by more points than one-dimensional r space.
Thus the solutions {w;} to the set of linear equations (33) are not unique;
this corresponds to a.property mentioned earlier, that the DF of a spher-
ical galaxy is underconstrained.



107

(iv) Any solution {w;} represents an ezact solution of the collisionless Boltz-
mann equation, since the DF is a set of Dirac delta functions at specific
values of E'and J? and hence satisfies the collisionless Bélfzmann equa-
tion by the Jeans theorem. The only approximation involved is that! the
solution only reproduces the luminosity emitted in each radial bin, ALj;,
rather than the exact luminosity density j(r). This is not a serious lim-
itation, since the bin sizes can easily be made much smaller than the
resolution of our telescopes. However, this solution for the DF, though
exact, is unrealistic, since it consists of a set of spikes in (E,J 2) space
whereas the real DF probably varies smoothly. A better solution could be
obtained by dividing (E,J?) space into cells and replacing single orbits
by bundles of orbits that generate a constant DF within each cell, but I
will neglect this improvement in this lecture for the sake of simplicity.

We now use linear programming to choose one solution {w;} from the
many possible solutions of equation (33). Linear programming is a math-
ematical technique for determining the maximum of a linear function of K
variables (the profit function), when the range of the variables is restricted by
linear equalities or inequalities. In our case the variables are the w;’s, and the
range of the w;’s is restricted by the N equalities of equation (33) and the K
inequalities w; > 0, t+ =1,..., K.

The term “profit function” arises, of course, because linear programming
is most commonly used in business, economics, and other areas where limited
(and non-negative!) resources must be allocated in such a way as to maximize
profit. One remarkable and very appealing feature of linear programming is
that by using an iterative technique known as the simplex method the solution
can usually be found in a number of iterations that is only of order K.

To construct a galaxy model using linear programming, we must choose
some linear function of the orbit weights to be the profit function, P. There is
no unique “best” profit function, and the choice of profit function must reflect
our preconceptions about galactic structure. For example, if we believe that
galaxies consist of stars on near-radial orbits, we may choose

K
P=-)Y Jiw, (34)
i=1
which minimizes the mean-square angular momentum of the stars. On the
other hand, to construct a model in which the stars are on nearly circular
orbits, we may choose

K
P = +th2wn (35)

=1
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which maximizes the mean-square angular momentum. It is not hard to
construct models with an isotropic velocity-dispersion tensor®!) or even to
construct EOM models with an appropriate choice of the profit function. The
profit function is flexible -enough to permit us to examine a wide range of
models consistent with the data.

As an example of the use of linear programming, in Figure 2 I show
the velocity-dispersion profiles o, (R) for three models with surface-brightness
profiles that satisfy de Vaucouleurs’ empirical law,

I(R) = Io exp[(R/Re)**). (36)

In these models the mass-to-light ratio is assumed to be independent of radius,
and ‘the velocity dispersion is measured in units 6f (GM/R.)}/?, where M is
the total mass. In general, models with near-radial orbits have line-of-sight
dispersions that are lower in the outer parts and higher near the center than
models with near-circular orbits. In principle, therefore, fitting the dispersion
profile to observations could provide information on the orbit distribution;
however, the effects of the orbit distribution are difficult to disentangle from
a possible radial dependence of the mass-to-light ratio.

Geometrically, the set of orbit weights consistent with the data can be
viewed as a K — N dimensional polygon in the K dimensional space whose
coordinate. axes are the orbit weights. The orbit weights that maximize the
profit function lie at a vertex of :the polygon. - This is both a virtue and
a defect: on one hand, linear programming is useful because it generates
extreme models—for example, the most nearly radial orbits or the maximum
mass-to-light ratio—and provides an efficient way to explore the limits of the
range of consistent models; on the other hand, it seems more likely that real
galaxies lie somewhere in the middle of the range of possible models, and
therefore linear programming cannot easily produce a single “most likely”
model.

2.3 The Mazimum-Entropy Method

One plausible way to produce.a “most likely” model consistent with the
observational constraints is to maximize the entropy,

S=— f dxdv f log f. (37)



1 lllllll ] i III»IIII i T 1T 1hiall

\ radial -

sy
_ isotropic

e

circular

line—of—sight dispersion oy

de Vaucouleurs

RN ool I -
1 1 10

Figure 2. The root-mean-square velocity dispersion along the line of sight
as a function of radius, for a galaxy, with constant mass-to-light ratio and de
Vaucouleurs’ surface-brightness profile (eq. 36). The dispersion is méasured in units

of (GM/R.)*/2. The curves are for models with near-radial orbits, circular orbits,
and isotropic velocity-dispersion tensor (from reference 31).

(I have suppressed an irrelevant factor of Boltzmann’s constant.) A stellar
system is not necessarily in a maximum-entropy state because it is not in ther-
modynamic equilibrium (relaxation to thermodynamic equilibrium is mainly
due to gravitational interactions between individual stars and takes about
1018 yr, far longer than the typical age of 101°yr). In fact, it can be shown
that there is no maximum-entropy state of an isolated self-gravitating sys-
tem of fixed mass and energy, because the entropy can increase without limit
(see §4). Nevertheless, given the observational constraints on the emissivity
profile and dispersion profile, and an assumed form for the potential, we can
ask what is the maximum-entropy state consistent with these constraints, and
there are several reasons why the maximum-entropy model—in this limited
sense—provides the most natiral model to represent the real galaxy. First,
entropy increases in any relaxation process (see §4 for a more detailed dis-
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cussion), and hence in the absence of other considerations, models with large
entropy are more plausible than models with small entropy. Second, models
with large entropy tend to have smooth DFs, which seems to be a desirable
feature. Finally, the determination of the DF from observations is essentially
a deconvolution process, and maximum-entropy methods have proved to be
extremely efficient in many deconvolution problems in radio astronomy, image
processing, etc.

To apply the maximum-entropy method to galaxies, we can use the same
set of K bins in energy-angular momentum space and N radial bins that we
used in linear programming. The entropy (37) may be written

K
= — Z w; log(w;/AV;), (38)

i=1

where AV is the phase-space volume associated with bin ¢ (eq. 30), and I
have dropped an unimportant multiplicative factor of the mass-to-light ratio
T. A more general form is

K

S=—) Ci(w), (39)

t=1

where C;{w) is any convex function, that is, a function with d?C/dw? > 0.
In this more general form, it is not guaranteed that the entropy increases in
a relaxation process, but it is still usually true that smooth DFs correspond
to large values of the entropy.

Thus, we simply instruct the program to maximize S from equation (39)
subject to the constraints (33), plus any constraints arising from velocity-
dispersion measurements (see reference 32 for details). We do not explicitly
impose the constraints w; > 0; these constraints tend to be satisfied auto-
matically since the maximum-entropy solution is “smooth” and hence avoids
negative weights. It is‘straightforward to check that the orbit weights are
non-negative after the solution been obtained.

As an example, I show in Figure 3 the maximum-entropy galaxy with an
emissivity profile given by Plummer’s law,

j(r) = m (40)

One shortcoming of the maximum-entropy method is evident from Figure 3:
the radial and tangential velocity dispersions are roughly equal at all radii,
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Figure 8. The maximum-entropy
galaxy with a brightness profile given
o by Plummer’s law (40). The model is

normalized so that the central line-of-
sight dispersion is 100 units. The solid

and dashed lines show /oy and /ogg
log(r) respectively (from reference 32).

while in fact we expect that the orbits should be predominantly radial at
large radii. This problem raises the interesting issue of how the maximum-
entropy method can be modified to find the “most likely” model consistent
with both the observations and our beliefs about the structure of galaxies.
An interesting first step in this direction has been made by Dejonghe®).

2.4 Future Prospects

In the last few years we have developed a flexible and efficient set of
tools for constructing galaxy models. In the study of stellar structure, the
existence of similar tools for the numerical construction of stellar models led
to explosively rapid progress. In the study of galaxies, the prospects are less
hopeful, for two main reasons. First, there is no analog of the Hertzsprung-
Russell diagram, which showed strong and distinctive correlations between
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many properties of stars (e.g., color and luminosity); in the case of galaxies it
is much less clear which observational features demand explanation. Second,
models of stars are unique once the mass and chemical composition are given
(the Vogt-Russell theorem), while many different models of a given spherical
galaxy are likely to be consistent with even the best available data.

Despite this uncertain future, there are a number of promising avenues

of research in this area:

(i)

(i)

(iii)

(iv)

Richstone and I have found that very careful programming is needed to
produce reliable dispersion profiles in models based on a discrete set of
orbits. The reason is basically that each individual orbit has a square-
root singularity in its contribution to the emissivity at its turning points
(apocenter and pericenter), and the dispersion profiles depend on the
gradient of the emissivity (eq. 18). Further work is needed to produce
accurate, flexible codes that can be used as “black boxes” by observers
who wish to construct galaxy models.

The construction of axisymmetric or triaxial galaxy models often requires
only a straightforward gerleralization of the methods used for spherical
galaxies (indeed, linear programming was first used to construct a triaxial
galaxy®®)). However, the problems mentioned in item (i) become even
more severe, and we are far from being able to produce good velocity-
dispersion maps for such systems by any of the methods described above.
(An alternative approach due to Bishop®) does yield smooth dispersion
maps at some cost in generality.)

What other methods are available for constructing galaxy models besides
linear programming and maximum entropy? Bishop’s approa.chs) has
already been mentioned; an iterative algorithm devised by Lucy!8) and
applied by Newton and Binney?”) and Statler®®) is efficient but produces
a model whose properties depend in a complicated way on the starting
point of the iteration.

In a certain sense the main problem we face at present is that constructing
DFs of spherical galaxies is too easy-——so many different models match the
data that we don’t know what to do next! We are badly in need of other
constraints, arising perhaps from stability arguments or from a better
understanding of the formation process, to limit the range of models that
we must consider.
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3. STABILITY OF SPHERICAL GALAXIES

Somewhat surprisingly, the study of the stability of spherical stellar sys-
terhs is still in a primitivé state. Much more effort has been expended on
studying the stability’ properties of disklike stellar systems than of spheres
Thus, there are many good prospects for important research ir this field.

So far I have generally let the DF represent the density of luminosity in
phase space. In this section the DF will represent the density of mass, since
we are now interested in dynamics rather than observations. Hence Poisson’s
equation takes the form

V2 = 471G [ f(x,v)dv. (41)

To analyze stability, one myst linearize the collisionless Boltzmann equa-
tion around an equilibrium spherical initial state and then solve the linearized
collisionless Boltzmann equation and the Poisson equation, which together de-
termine the perturbed DF fi(x,V,t), the perturbed density p;(x,), and the
perturbed potential ®,(x,t). It can be shown (most clearly in reference 5)
that all such solutions can be written as a sum of functions of the form

O1(x,t) = B (r)Yem (0, p)e %, (42)

where Y ¢, (0, ¢) is a spherical harmonic. The squared eigenfrequency w? is not,
necessarily real; that is, spherical systems can be either overstable [Im(w) > 0,
Re(w) # 0] or unstable [Im(w) > 0, Re(w) = 0].

The eigenfunction @4, (r) is determined by an integrodifferential equation
that is straightforward to derive (see, e.g., reference 30), but as yet no general
code has been written to find the solutions. I expect and hope that someone
will write the required code within the next year or two. Until this is done we

must be content with a number of results that have been derived for special
cases.

The most powerful results have been derived in the case where the DF
depends only on energy and not angular momentum, f = f(F). Many of these
results were derived by the Soviet physicist V. A. Antonov in two seminal
papers in the early 1960’s1+?), In particular:

(i) A spherical-stellar system with DF f(E) and df /[dE < O is stable if the
barotropic gaseous system with the same unperturbed density distribution
15 stable. Here a barotrope is a gas in which the pressure is a function
only of the density, p = p(p). This result permits many known stability
results for stars to be carried over to galaxies.
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(i) A spherical stellar system with DF f(E) and df /[dE < O is stable to all
non-radial perturbations, that is, to perturbations with £ > 0.

(iii) A spherical stellar system with DF f(E) and df /dE < 0 is stable to radial
perturbations if its unperturbed density po(r) and potential do(r) satisfy
the inequality

daﬂo
<0. 43
az3 = (43)
Together, these three theorems are powerful enough to prove stability

for almost all spherical systems with DF f = f(E) and df /dE < O that are
plausible models for real galaxies.

An even more powerful theorem was later proved by Doremus, Feix and
Baumann!*:17+35);

Any spherical stellar system with DF f(E) and df [dE < 0O is stable.

Unfortunately the proof of this remarkably general theorem is very diffi-
cult to follow. There is also some concern because the same group has claimed
that anisotropic systems with DF f(E, J2) satisfying 8f/0E < 0,9f/3J% < 0
are also stable, and this proof is contradicted by numerical experiments2).
Thus it would be a worthwhile exercise to check the proof of this theorem
and to determine whether there is a simpler and more physically appealing
approach than the ones in the literature.

The stability of spherical shell models (¢,, = 0) is still largely unexplored.
Here the analysis is much simpler, because eigenfunctions are determined by
an ordinary second-order differential equation rather than by an integrodif-
ferential equation; nevertheless, few general results are known. In the case
where the density falls as r~2, the shell model is stable®®). Some N-body
simulations of other shell models have been carried out and show no sign of
instability.

The stability of models composed of stars on radial orbits (0gp = 044 = O
was first explored by Antonov®. Antonov showed that all such models were
unstable. This result suggests that models composed of stars on near-radial
orbits may also be unstable. This interesting possibility, although recognized
fifteen years ago, has only been subject to intense investigation in the last
three or four years, largely because (i) Antonov’s result was published in
Russian in an obscure conference proceedings; (ii) analytic work!), which is
now believed to be incorrect, implied that most interesting systems composed
of stars on near-radial orbits were stable. The Soviet work on what has
come to be called the radial-orbst tnstability only became widely known in
the West with the publication of an English translation of a two-volume work
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Figure 4. Development of the radial-orbit instability in an
initially spherical stellar system with near-radial orbits (from
reference 25).

on the equilibrium and stability of collisionless stellar systems by Fridman
and Polyachenko®). At about the same time, Barnes%) independently carried
out N-body experiments that demonstrated the existence of an instability in
spherical systems composed of stars on near-radial orbits. These developments
stimulated more extensive numerical experiments that are described in papers
by Merritt and Aguilar?®) and Merritt?5). Figure 4 is taken from the latter
paper and shows the evolution of a typical system that is subject to the radial-

orbit instability. The instability deforms the spherical system into a triaxial
one.

The physical origin of the radial-orbit instability has been discussed by a
number of authors. Let me first give two simple but incorrect explanations: (i)
Since the tangential dispersions ogg = 044 = 0 in a galaxy composed of stars
on radial orbits, it is sometimes argued that the galaxy is Jeans unstable to
short-wavelength perturbations in the tangential directions. This argument
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is misleading because the growth time for the Jeans instability is of order
(Gp)~1/% where p is the local density, while the orbital period is of order
(Gp)~1/?, where 7 is the mean density interior to the point in question. Since
in general 7 > p, the orbital period is shorter than the growth time, so that the
approximation on which the Jeans instability is based, that the surroundings
are static and homogeneous, is false. (ii) It is also sometimes argued that
radial orbits have no “restoring force” that prevents their orientations from
drifting, and hence that it is natural for self-gravity to lead to clumping of
neighboring orbits. This argument neglects the fact that orbits are not rigid
bodies; the response of a radial orbit to a torque is to gain angular momentum
and become less radial, not necessarily to shift its orientation.

The correct explanation is due to Palmer and Papaloizou®®); an earlier
saper by Lynden-Bell?®) gives essentially the same explanation in a different
context. An orbit in a spherical potential has two periods, the radial period T,
and the azimuthal period Ty. The radial period is the.time required to travel
from apocenter to pericenter and back, while the azimuthal period is defined
so that 2x /T, is the mean angular speed. These periods are given by

T _zfa dr
"), [2(E - ®) - J?/r2)1/2’
T, J dr

T, =« /,, r22(E — ®) — J2/r3|1/2"

(44)

Here J is the angular momentum, p is the pericenter, and a is the apocenter.
An orbit is closed if T, and T, are commensurable; for example, orbits in a
Keplerian potential have T, = T, and are ellipses with one focus at r = 0,
while orbits in, a quadratic potential &(r) = Kr? have T, = %Ta and are
ellipses centered on r = 0. Another example of a closed orbit is a radial
(J = 0) orbit in a potential that is non-singular near r = 0; these orbits have
T, = %Ta are are simply straight lines through r = 0.

Near-radial orbits in a potential that is non-singular near r = 0 can be
approximated as nearly straight lines whose orientation slowly drifts or pre-

cesses (Figure 5). It is not.hard to see from equations (44) that the orientation
angle ¥ of a near-radial orbit precesses at a rate

& = %(1-— 211,_1‘;") (45)

(Note that ¢ is measured in the plane normal to J and increases in the di-
rection of orbital motion.) The term in brackets is zero for radial orbits and
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Figure 5. Near-radial orbits in a.potential that is smooth near r = 0. (a) A typical
orbit can be approximated as a highly elongated ellipse that precesses slowly. The
center of the galaxy is marked by an X. (b) A mass concentration (dotted lines)
exerts a torque on near-radial orbits on either side.

increases as the angular momentum of the orbit increases; in fact it can be
shown that

( 2:’:;) Th(E) + O(J?), (46)

where

h(E) =

47
7 i, (/ v R \/Z_E) (a)
®(r2) = E, and I have assumed that ®(r = 0) = 0.

Now consider orbits in a given plane with polar coordinates_(r, ¢), where
¢ increases in the direction of orbital motion. Suppose that a mass concen-
tration develops slowly along the line ¢ = 0. The energy of an orbit does not
change, because the perturbation is nearly stationary; however, the angular
momentum changes because the perturbation is non-a.xisymmetric. The con-
centration exerts a positive torque on nea.r-radial orbits with ——2-1r <¢Y<O0
and a negative torque on orbits with 0 < ¢ < ix (see Figure 5). If R(E) >0
then the positive torque increases both J and (1-—-—Ta/ T,) when —37 < <0
so these orbits precess more rapidly towards the mass concentratxon Simi-
larly, the precession rate 1 of orbits with 0 < ¢ < 7 is slowed. In this case
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near-radial orbits can be trapped to oscillate with their long axes aligned with
the mass concentration, thus enhancing its effects and leading to instability.
On the other hand, for A(E) < 0 near-radial orbits can only be trapped at
right angles to the mass concentration, where their gravity suppresses the
disturbance. (Lynden-Bell?®) calls orbits with h(E) < 0 “donkey” orbits,
since they resist a pull by twisting in the opposite direction.) In most po-
tentials that behave smoothly near r = 0, h(E) > O so that instability can
arise if near-radial orbits make a sufficiently large contribution to the overall
potential.®

The radial-orbit instability is one of the most interesting aspects of the dy-
namics of spherical galaxies to arise in recent years. Moreover, it seems likely
that the instability sets significant constraints on the structure of real galax-
ies. For example, Merritt?4) has shown that one of the best available models
of the giant elliptical galaxy M87, constructed by Newton and Binney2?), is
unstable; and Dejonghe and Merritt19) have argued that spherical galaxies
obeying Plummer’s law (eq. 40) that are constructed using the EOM method
are unstable unless the anisotropy radius ro > 1.1.

4. DISSIPATIONLESS FORMATION OF GALAXIES

In this part of the lecture I consider only a very limited model problem
connected with galaxy formation. In particular, I will assume that galaxy
formation is dissipationless, that is, that stars form from the intergalactic gas
before the galaxy forms, so that galaxy formation is a problem of collisionless
dynamics rather than gas dynamics.

Let us imagine an irregular distribution of stars with small random ve-
locities. If the stars are released at ¢ = 0, they will fall together due to their
mutual self-gravity, and the distribution will collapse, undergoing a compli-
cated motion which eventually leads to the formation of a stationary, smooth,
final distribution of stars that turns out to strongly resemble many real galax-
ies. During the collapse, many of the stars experience a rapidly changing
gravitational potential, which causes their energies and angular momenta to
change in an irregular manner. This process redistributes the energies and
angular momenta of the stars, in much the same way that two-body collisions

5 The criterion h(E) > 0 is a special case of Lynden-Bell's criterion, which applies to
the more general situation where the orbits are not necessarily radial and the potential
perturbation is stationary in a rotating frame. In this case the so-called fast action rather
than the energy is conserved.
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redistribute energy and angular momentum in a gas. Lynden-Belll®) sug-
gested that this redistribution, which he called violent relazation, could lead
to a unique final state that was largely independent of the initial conditions.
Subsequent numerical calculations have verified this suggestion, at least so
long as the initial state is sufficiently irregular and its random velocities are
sufficiently small41+42:22),

What I want to discuss here is whether there are simple and general
arguments that determine the nature of this unique final state.

As a preliminary step, it is useful to examine the evolution of the en-
tropy during violent relaxation. Differentiating equation (37) and using the
collisionless Boltzmann equation (3), we have

ds of
E—-—/dxdv(1+logf) 3¢

= /dxdv(l + log f) [v,- g:‘: - gf gt{] (48)
- d(flogf) 8% 8(flog f)
= ,[ dxdv [”" oz; 0z 9w ]

The first and second terms in the square brackets on the last line can be
integrated over z; and v; and yield zero if f — 0 as |x|,|v| — co. Hence

ds

=~ =0 49

dt ] ( )
and the entropy is conserved. This is in contrast to systems like the ideal gas,
in which particles interact via short-range forces, where the entropy is known
to increase by the Boltzmann H-theorem.

For collisionless systems, it turns out to be more useful to define the
entropy in terms of the coarse-grained DF f defined in §1.1. Thus I write

Sy = — / dxdv flog f. (50)

With this definition of the entropy, there is an analog of the Boltzmann
H-theorem, which can be stated as follows: Assume that at the initial time
t = 0, the DF has no fine-scale structure (or, what ts equivalent, choose the
macrocells small enough so that the DF is nearly constant within each macrocell
att = 0). Then at any other time t we have S,(t) > S.(t = 0). I shall call
this the H-theorem for galazses.
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—flog f

=1log(f")
‘*[f|'°9(f1)+'z'°9(fg)]

Figure 6. An analogy to
the H-theorem for galaxies:
If equal volumes of paint
with colors f; and fo are
mixed to give paint with color
' = 2(f1 + f2), the selling
price —f log f goes up.

The proof is given in a number of places3®, and rather than repeat it
here I will describe an analogy. Suppose that I own a paint store but that
I have only red and white paint in stock. A customer comes in and wants
to buy pink paint. I can make pink paint by mixing red and white paint;
to be quantitative I assign the value f = 0 to white paint, f = 1 to red
paint, and f = A to paint made by mixing red and white paint with relative
volumes X and 1 — A (of course, strictly f is a “coarse-grained” color, since on
a sufficiently fine scale the red paint globules and the white paint globules are
still distinct). The customer is willing to purchase paint of color f at a rate
per unit volume — flog f, while the cost per unit volume of red and white

paint is the same. How can I mix up the red and white paint to maximize my
profit?

Consider mixing unit volumes of paint of colors f; and f;. The final color

Will be f/ = ‘1‘(f 1 + f2). The selling price per unit volume before mixing is

( J1log f1+ falog f2), and the price after mixing is — f’log f'. It is easy to

see from Figure 6 that the selling price and hence the profit has increased as
a result of the mixing.

It is clear that any possible mixing strategy increases my profit, no matter
what the relative volumes and initial colors of the paints may be. Thus we
can formulate a kind of Boltzmann H-theorem for paint, which says that the
profit can never decrease as a result of mixing. This may seem like a curious
story, but I hope that the analogy with the H-theorem for galaxies is clear.
The selling price is the entropy and the color is the coarse-grained DF ; both
paint and the phase-space fluid are incompressible so that the effects of mixing
are very similar.

There are important differences between the H-theorem for galaxies and
the usual Boltzmann H-theorem?®16:2%);
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(i) The H-theorem for galaxies does not say that the entropy can never
decrease; it only says that the entropy at all times other than t = 0 is
larger than the entropy at ¢ = 0. Thus the entropy could increase for a
while and then decrease, so.long as it never drops below its initial value.

(ii) There is no arrow of time in the H-theorem for galaxies. Thus, the entropy
is larger than the entropy at t = 0 not only for all times ¢ > 0 but also
for all times ¢ < 0. The arrow of time is only defined implicitly, in that
t = 0 is the time when the DF is smooth on small scales, and this is more
natural for an initial state than a final state.

(iii) The function — [ dxdvflogf is not the only function for which an H-
theorem can be proved. In fact, the theorem has equal validity if flog f
is replaced by any convex function C(f) (a convex function is one for
which d2C(z)/dz? > 0). Thus the entropy, equation (50), loses much of
the central role that it plays in conventional statistical mechanics, and
we can state a generalized version of the H-theorem for galaxies: Assume
that at the initial time t = 0, the DF has no fine-scale structure. Then at
any other time t we have Hg(t) > He(t = 0), where

Ho= - / dxdvC(f), (51)

and C is any convez function.

Having established that there is an H-theorem for galaxies, it is natural
to ask whether the final state after violent relaxation is.a maximum-entropy
state [i.e. a maximum of equation (50) for fixed mass and energy]. The answer
is no, since the following simple argument due to James Binney shows that
there is no maximum-entropy state. Take a small fraction eM, ¢ < 1, of
the mass M of the galaxy and place it in an extended halo of typical radius
r. The typical velocity of material in this halo is v = \/GM/r. Thus the
typical DF in the halo is f ~ eM/(r®v®). The contribution to the entropy
is —eMlog f ~ eM[log M - 3log(rv)] = eM(-—--,‘l;logM - -g-logG — %log r).
Now let r — oco. The change in energy is = GeM/r, which tends to zero,
but the contribution of the halo to the entropy diverges; hence there is no
maximum-entropy state. '

This result is consistent with the generalized H-theorem for galaxies,
which tells us that all H-functions of the form (51) are non-decreasing dur-
ing violent relaxation, and hence that there is no obvious reason why the
entropy—which is just one of many H-functions—is maximized in the final
state. This lack of a unique final state shows that statistical mechanics is less
powerful in its application to galaxies than to gases.
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Although the generalized H-theorem does not predict a unique final state
for violent relaxation, it does provide a strong inequality constraint on the
final state, since every H-function must be larger in the final state than the
initial state. We say that a DF T(x,v) is more mized than a DF f(x,Vv) with

the same total mass if He [T’] > Hc(f] for all convex functions C; thus, violent
relaxation leads to a more mixed DF.

The most convenient characterization of the constraint provided by the
generalized H-theorem is provide by the mizing theorem, which may be stated
as follows. Let V (¢) be the volume of phase space in which the coarse-grained
phase-space density exceeds ¢,

V()= [ dxavelfix,v) - o) (52)

where ©(z) is the step function, ©(z) = 1 for z > 0, ©(z) = 0 for z < 0.
Similarly let M(#) be the mass contained in the volume V(¢),

M(4) = f dxdv(x,v)0[F(x,v) - dl. (53)

Eliminating ¢ between equations (52) and (53), we obtain a function M (V).

The mixing theorem states: The DF T’ is more mized than the DF f if and
only if M'(V) < M(V) for all V. (See reference 39 for a proof.)

Notice that the slope of the M (V) curve at ¥V = 0 is simply the maximum
value of the coarse-grained DF, f. ... Thus a corollary of the mixing theorem

is that ?;nax < f max & constraint that we have used already in §1.1.

The mixing theorem is the strongest general constraint of which I am
aware on the final state after violent relaxation. This constraint is not strong
enough to specify the final state uniquely. Therefore I think that it is unlikely
that general arguments from statistical mechanics provide a useful approach
to determining the outcome of violent relaxation. Instead, I think it is more
fruitful to examine the physics of violent relaxation, to search for an crude

description of the relaxation process to guide the construction of a heuristic
DF.

In particular, violent relaxation redistributes the energies and angular
momenta of stars through rapid potential fluctuations in the central region of
the collapsing system. These fluctuations only affect stars that pass through
the central region and hence cannot give stars angular momenta that are
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so large that their pericenters lie outside the central region. This argument
suggests that the DF should have the general form

(54)

Furthermore, the number of stars per unit energy should be smooth near
E = 0, since the potential fluctuations redistribute stars over a wide range
of energy and there is no physical reason why the location E = 0 should be
special. Since the phase-space volume corresponding to unit energy interval
is proportional to the radial period 7, (eq. 30), we expect that15:57)

. cutoff in peri-
f o¢ (function of energy ) X ( center o J2 ) .

1 cutoff in peri smooth function
f Z7y * ( 2-) of E which is . (55)
T.(E,J%) center or J oW

This prescription is still pretty vague, but I believe that it contains much
of the physics of violent relaxation, and it would be worthwhile to compare
some families of functions of this kind with numerical simulations of violent
relaxation. One simple functional form consistent with the criterion (55) is
the Bertin-Stiavelli®) DF ,

f(E,J?) = K|E[*/? exp(-BE — aJ?). (56)

Once the mass and energy are fixed, the Bertin-Stiavelli DF has one free
parameter, which would reflect the size of the region in which the relaxation
occurs.

This approach to violent relaxation suggests many interesting research
possibilities. How sensitive is the DF to the exact choice of functional form,
so long as the constraint (55) is satisfied? Are the resulting DFs subject to
the radial-orbit instability? Can these arguments be made more accurate or
rigorous to give us more clues about the best analytic choice for a family of
DFs? To what extent are these concepts valid when mergers or infall contribute
to the formation process?

I am grateful to Zhou Zhi-hong for preparing a careful and accurate
transcription of my lecture, from which this account was prepared.
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