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ABSTRACT

We review the dynamical evidence for dark matter in galaxies, groups of galaxies
and clusters of galaxies. A summary, expressed in terms of the mass-to-light ratios
of various systems, is presented in Figure 3 near the end of the review.

I. INTRODUCTION

In astronomy, most information regarding the presence of different kinds of mass
comes from photons at various wavelengths. Very hot gases emit X-rays, while stars
produce most of their energy at optical wavelengths. Some atomic or molecular
gases in interstellar space show emission lines at radio wavelengths (e.g., HI, CO,
etc.). In addition, there are non-luminous objects whose existence can be inferred
from other considerations. For example, interstellar dust grains are known to exist
because of interstellar reddening, and the number of non-luminous stellar remnants
(e.g., black holes, neutron stars or white dwarfs) can often be estimated from stellar
population and stellar evolution theory.

Sometimes, certain masses manifest themselves only through gravitational
interaction. We will use the term dark matter (abbreviated as DM) to denote
matter whose existence is inferred only through its gravitational effects. Therefore
the best—indeed only—way of studying dark matter is to accurately determine the
mass of astronomical objects from their dynamics and to compare this mass with
the mass inferred from the light emitted by the objects. A discrepancy indicates
the presence of dark matter.

The determination of dynamical mass, however, is not a trivial task. The main
difficulty is that even perfect observations gi.e., observations without error) cannot
always provide enough information to completely constrain theoretical models. This
is because we always observe projected positions on the plane of the sky and line-
of-sight velocities at a given instant rather than complete three-dimensional orbits
over an extended period of time. The ‘subject of these lectures is the methods
of determining dynamical masses of galaxies and systems of galaxies. The plan
of the lectures is as follows: the basic theoretical framework is discussed in the
next lecture. The subsequent four lectures describe the determination of masses of
various systems. The final lecture provides a summary. Additional details and other
topics are provided in many review articles, conference proceedings, and textbooks,
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including Binney and Tremaine (1987), Faber and Gallagher (1979), Kormendy and
Knapp (1987), Primack (1987), and Trimble (1987).

We would like first to discuss some introductory subjects that do not fit easily
into the main arguments in the other lectures.

1 Virial theorem

One of the simplest ways to determine the mass of a stellar system is through the
virial theorem.

Consider a self-gravitating system composed of N point masses. We denote
by my, 7}, and ¥; the mass, position and velocity of each particle. The moment of
inertia of such a system is

N
I=Y mi. (1.1)
i=1

Now take first and second time derivatives of the moment of inertia to get

N
I=2)"m -5 (1.2)
=1
and
" N 3
I=23 " mi@?+7 7). (1.3)
i=1

Since the system is self-gravitating, the acceleration of particle i can be computed
by summing over the contribution from all the particles

fi= Y om 0T (14
Ji |75 — il

so that equation (1.3) can be rewritten

N - - - N
ti=2k+>" % Gm.-m,-”'(r’;lﬁj) = 2K—% % T 9K+ W, (1.5)

i=1 j#i |75 — 7% i=1 j#i I7i — 75l
where

N
K=1>"m#?, (1.6)

is the total kinetic energy and

el m;m;
W=__2-ZZ—-—'—-’— (1.7

s L |75 = 75
=1 j#i

is the total gravitational potential energy of the system.
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If the system is in a stationary state, we may assume that (3, = 0, where ();
is the time average taken over several times the dynamical timescale of the system.
The dynamical timescale is the time required for typical particles to complete one
orbit, that is, to move across the whole system. In practice, we observe at only one
epoch. Thus, although the rigorous form of the virial theorem is 2(K)¢+ (W) =0,
in practice the theorem is used without the time average as follows:

2K + W ~0. (1.8)

Equation (1.8) is valid only if the system is in equilibrium and in a stationary
state. Such a condition is achieved if the age of the system is much longer than its
dynamical timescale.

The virial theorem formed the basis for most mass determinations of galaxies
and galaxy systems for decades, and although it has now largely been superseded
by more sophisticated methods, it is still used to provide rough mass estimates for
systems such as groups of galaxies with few members where detailed modelling is
inappropriate.

2 History of dark matter

The discovery of dark matter can be clearly traced to a seminal paper by Zwicky
(1933). By the early 1930’s, Hubble’s law relating radial velocities v of distant
galaxies to their distances d through

v = .Hod, (1.9)

was established, although the Hubble constant Ho was very poorly determined.
The above relation holds for galaxies with v 2 2000km s—1.  We will parametrize
the Hubble constant as

Hy = 100hkm s~ Mpc™?, (1.10)

where 1 Mpc = 1 megaparsec = 3.086 x 104 cm and h is a dimensionless parameter.
In the early 1930’s, h was known to be 5.58, while it is currently believed to lie
between 0.5 and 1.

At the time of Zwicky's paper, rotation curves were available for some spiral
galaxies so that the mass-to-light ratios of galaxies were determined to be

M Mo
4 o () | o

The subscript V in the above equation indicates that the luminosity is measured in
the visual band. The unit for mass-to-light ratios adopted in the above equation,
i.e., (Me/Lo)v, will be used throughout these lectures, and we will usually omit
the units in expressing M/L from here on.

For h = 5.58, the mass-to-light ratio in equation (1.11) was consistent with
observations of the Solar neighbourhood, which gave M/L ~ 3, not far from the
Solar value. This agreement, together with the fact that galaxy spectra resembled
the Solar spectrum, led to the simple and compelling picture that galaxies are made

up of stars like the ones around us and that the Sun is a typical star in a galaxy.
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Zwicky applied the virial theoremto the Coma cluster of galaxies. Radial
velocities were known for seven galaxies in Coma at that time. The mean and root
mean square velocities Zwicky used were

N 1/2
1
i)—"- /2 7300km S—l; Yl,rms = -}-V,Tl' Z(v"’i — "U_”)z 2 700 km S—l. (112)
i=1

For spherical systems, the gravitational potential energy can be expressed in the

form
GM?

R ?
where M and R are the total mass and radius of the system, respectively, and « is
a constant depending on the density distribution. For a uniform sphere a = 3/5,
while a = 3/(5 — n) for a polytropic sphere with polytropic index n. Note that this
constant is not very sensitive to the specific form of the density distribution, which
was poorly known at that time; thus the value for the uniform sphere (a = 3/5)
was used by Zwicky. If the cluster is spherical and the galaxies have the same mass,
the total kinetic energy can be computed from the formula K = 3M vﬁ,rms. After

plugging these numbers into equation (1.8), he obtained the total mass of the Coma
cluster

W= —a

(1.13)

5v|2

R
—"é'& ~1x 108871 Mg, (1.14)
where he took the size of the cluster to be 1.5° & 2h™! Mpec. The total luminosity
of the cluster was known to be

~

Ly ~2x10¥h~2 L, (1.15)

which gives the mass-to-light ratio M/L = 50h in Solar units. This is about a .
factor of 50 larger than the M/L’s of individual galaxies [eq. (1.11)], whatever the
value of h may be. Therefore he concluded that a large amotint of non-luminous
madtter is required if the Coma cluster is in dynamical equilibrium.-

By modern standards, Zwicky’s analysis has several problems, including crude
estimates for the cluster radius, luminosity, and density distribution, poor statis-
tics due to the small number of radial velocities, and possible contamination from
background or foreground galaxies. Nevertheless his principal result has survived.
The mass-to-light ratios for both galaxies and clusters of galaxies have gone up,
but the discrepancy of a factor of 50 found by Zwicky still remains. More detailed
analyses show that the best present estimate of M/L for the Coma cluster is about
400h, as will be discussed in greater detail in lecture 6.

Zwicky’s remarkable result implies that at least 95% of the mass in Coma
is in some invisible form. It suggests that' on scales larger than = 1Mpc, visible
stars represent only a minor contaminant in a vast sea of dark matter of completely
unknown nature.

3 A quick review of cosmology

One of the most important assumptions in standard cosmological models is that
the Universe is isotropic and homogeneous on large scales (say, between 30A~! and
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3000h™! Mpc). This means that there exists a set of #fundamental observers”
for whom the Universe looks isotropic, and a cosmic time such that Universe is
homogeneous for all fundamental observers at any fixed time. Any observer living
in a galaxy is a fundamental observer to a good approximation. Of course, this is not
the only available cosmological model, but one of the simplest and the most widely
used one, and the assumption of large-scale homogeneity and isotropy is consistent
with observations of galaxy counts and the microwave background. [This part of
the lecture is mainly based on Gunn (1978)]

Suppose l;;(t) denotes the distance between two fundamental observers i and

7, which can be written
1;j(t) = Lij(to) R(t), (1.16)

where o is the present time and R(t) is the scale factor, which depends only on
¢ because the Universe is isotropic and homogeneous. Note that R(to) = 1. The
subscript 0 in the above equation represents the value at the present epoch. The
relative velocity between i and j is simply the time derivative of ;;

out) = li(t)R(E) = Talitt) = HOLi(2), (117)

which is equivalent to Hubble’s law of expansion with the Hubble constant being

R(t).

H(t) = R(t)i

Ho = H(to). (1.18)

Next, consider a non-relativistic free particle passing a fundamental observer
at point A with a velocity v, at time t and passing an observer at point B at a later
time # + dt. If the separation between the points A and B is dl, the relationship
between dt and dl is

dl = vpdt. (1.19)
The velocity seen at the point B is
v; = v, — H(t)dl, (1.20)
so that do
—£ = —H(t)v,, (1.21)

dt

which can be integrated to give the relation v, oc 1/ Rg:) For the case of relativis-
tic particles like photons, a similar argument gives the relationship between the
frequency at which the photon is emitted and the frequency observed by us,

v _ Bi)_ 1 (1.22)

where the subscript e represents the time of emission and z is the redshift of the
photon.

Now let us consider dynamics. We will use Birkhoff’s theorem of general
relativity, which states that in a spherical system the acceleration at any radius
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depends only on the mass distribution within that radius. Thus if we consider
two galaxies separated by a distance I(t), when [ is sufficiently small their relative
acceleration is described by the Newtonian formula

2l oM

Rl (1.23)

where M is the mass inside a sphere of radius l. If the Universe is matter-dominated,
then M is constant in time [since the Hubble flow is smooth, galaxies neither enter
nor leave the comoving sphere of radius I(t)], and equation (1.23) can be integrated
over t to yield

3t — 'I— = E, (1.24)
where 4
M= §'rrp(t)l3 i I=ULR(), (1.25)

and E is the integration constant, which is equivalent to binding energy in Newto-
nian dynamics. Dividing through by 112, we get

R? — g-wG’pR2 =g, (1.26)
where € = 2E/12. At the present epoch, equation (1.26) can be written

8
HI - ngpo =g, (1.27)

or €

HZ
where the density parameter (2 is defined to be the value at the present epoch of

1-Qp = (1.28)

a=222 (1.29)
We may also express the density parameter as
Qo = po/pe, (1.30)
where the critical density
pe = 27112’;- =1.88x 1072*Ar?gem™® = 2.76 x 10"'A% Mg Mpc ™3, (1.31)

which corresponds the present mean density required to make the Universe bound

e <0).
( ’%he solutions to equation (1.26) can be divided into three cases: €y < 1,
Qo>1and Qp=1:
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(1) Qo < 1: In this case the parametrized solution to equation (1.26) is

R = A(coshn —1); t = B(sinhn — n), (1.32)
where P
rGp
Qo =sech’ (3m0);  Fr =3 . (1.33)

This solution represents a model for an open Universe. The curvature of
three-dimensional space for this solution is negative and the Universe expands
forever.

(2) Qo > 1: The parametrized solution for this case is
R = A(1 — cosp); t = B(n —sinp), (1.34)
where
A®  47Gpo
B2 3
This solution represents a closed Universe which eventually recollapses after

maximum expansion. The space part of this solution has positive curvature.
(3) Qo = 1: Finally, in this case, the solution for equation (1.26) becomes

2/3
R= (%f) : (1.36)

Qo = sec® (2mo); (1.35)

which represents a flat Universe. This solution also expands forever, but the
expansion rate becomes asymptotically zero. The space part of this solution
has zero curvature, and can be represented by Euclidean geometry.

The determination of g from observation is of great importance because this
parameter determines the future evolutionary path of the Universe. Notice that the
value of 2 changes through the evolution, but the sign of  — 1 remains unchanged.

4 Mass-to-light ratio in the Solar neighbourhood

The most important indicator of the presence of dark matter is the mass-to-light
ratio, M/L. It is very instructive to know M/L in the region close to the Sun,
where high precision observations are possible. Since we have a reasonably good
idea of the constituents in the Solar neighbourhood—certainly better than in any
other system—comparison of the dynamically determined M/L with that deduced
from an inventory of the constituents serves to indicate the amount of dark matter
more accurately than in more distant systems.

Since different stellar populations have different scale heights, the surface den-
sity integrated along the direction perpendicular to the Galactic plane is a more
fundamental quantity than the volume density. Table 1 summarizes the surface
density of mass and luminosity per square parsec integrated within |z| < 700 pc,
where z is the height above the Galactic midplane.

From this table we deduce M/L in the Solar neighbourhood to be £/I = 3.3
for all known constituents. A
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Table 1. Surface density and brightness of Solar

neighbourhood
Species “(Ma/pc?) I(Lo/pc?)
Visible stars 27 15
Dead stars 18 0
Gas 5 0
Total 50 15

The total mass density can be determined from carefully selected star samples
by analyzing the velocity dispersion and density profile in the direction normal to
the Galactic plane. These studies give the mass-to-light ratio within 700 pe,

-]g—(l.d < T00pc) = 5, (1.37)

which is slightly larger than that given by Table 1. Therefore, there is marginal
evidence for dark matter in the Solar neighbourhood. This subject is discussed in
greater detail in the lectures by John Bahcall.

The M/L’s derived for the Solar neighbourhood are only benchmarks and
should not necessarily be expected to apply to other systems. .For ‘extample, roughly
95% of the light in the Solar neighbourhood comes from stars brighter than the sun
but about 75% of the mass is contained in the stars fainter than the sun. Therefore,
any slight variation of the initial mass fiinction*can change M/L significantly.

% Classification scheme of dark matter

Dark matter has been discussed in various astronomical contexts, and it is worth
bearing in mind that both the reliability of the evidence and the nature of the dark
matter may be quite different in different contexts. There are at least four different
categories of possible dark matter (DM): (1) DM in the Solar neighbourhood, (2)
DM in galaxies, (3) DM in clusters and groups of galaxies, and (4) DM in cosmology.

As we discussed above, there is marginal evidence for DM in the Solar neigh-
bourhood. This is based on the discrepancy between the mass determined by local
vertical dynamics and the mass detected by direct observations. The study'of the
Solar neighbourhood is important even though_not-much DM may be present, be-
cause it is here that we have best hope of determining the nature of thé DM. One
further property of the DM in the Solar neighbourhéod is that it is concentrated in
a disk, and hence must almost surely be composed of baryons, since dissipation in
a rotating gas is by far the most common way to form disks.

Stronger evidence for DM can be found in galaxies. Recent 21-cm radio ob-
servations have revealed the ubiquity of flat rqtation curves in spiral galaxies out
to radii much larger than the radii containing most of the visible stars. (It is much
more difficult to measure the rotation curves for elliptical galaxies.) If the mass is
proportional to the light, the rotation curves should exhibit a Keplerian falloff at.
large radii (that is, Vior o r~1/2), The flat rotation curves, instead, suggest ‘that
the mass within the radius r

2
M(r) = Vr(";r xr, (1.38)
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which yields M/L’s of up to 30-40 for individual galaxies and possibly much more
depending on the extent of the flat rotation curve beyond the last measured point.
If the rotation curves remain flat to several hundred kiloparsecs (as¢proposed by
Ostriker et al. 1974), the M/L’s of individual spiral galaxies may be comparable to
those'in clusters.

Clusters of galaxies have provided the best evidence for DM ever since Zwicky’s
original work. The Coma cluster of galaxies provides perhaps the single strongest
piece of evidence for DM because of the dramatic difference in its M/L from that
of the Solar neighbourhood (see lecture 6).

The principal cosmological evidence for DM is that theoretical prejudice,.as
well as some specific models of the early Universe such as inflationary models,
require o=1. To determine what M/L this implies we must estimate the mean
luminosity density. The determinations of the present average luminosity density
in the Universe by Davis and Huchra (1982) and Kirshner ef al. (1983) can be
averaged to give

Jjo & 1.7 x 108h( Lo Mpc™?)y. (1.39)
Using equation (1.31), the density parameter can be expressed as
po M jo : way1 (M (M/L)v
Qp=—=——=n61%x10"%h —_ Ry A 1.4
" o L pe (L)V 1600k ° (140)

which means that M/L should be about 16004 in order for )y to be unity. This
M/L is larger than that of the Coma cluster by about a factor of four. There is
no known system of galaxies whose dynamical mass fmplies a mass-to-light ratio as
high as 1600A; hence, if the Universe is closed, the mass-to-light ratio must be much
larger outside galaxy systems—even those as large as Coma—than within them.

An independent constraint on the total amount of baryonic matter in the
Universe comes from the study of primordial nucleosynthesis. The present amount
of deuterium and helium is mainly produced during an early phase of the Universe.
The observed abundances of deuterium and helium set a limit on Qg in the form of
baryonic matter

Qp =~ (0.011 — 0.048)h72, (1.41)

which translates to 20h™! < (Mp/L),, < 80h~! through equation (1.40), where
Mp is the mass of baryons. .

If all these arguments are taken seriously, then (1) there must be both baryonic
DM (to provide the DM in the Solar neighbourhood) and non-baryonic DM [so that
) = 1 withoout violating equation (1.41)}; (2) the DM in galaxies may be baryonic
but the DM in clusters like Coma must be non-baryonic (unless h is as small as
0.5, in which case the upper limit to Mp/L implied by nucleosynthesis may be
barely consistent with the M/L’s of rich clusters); (3) the ratio of DM to luminous
mass must be larger outside galaxies, groups, and clusters than inside, since the
mass-to-light ratios of these systems are not sufficient to close the Universe.

The candidates for non-baryonic DM in the context of particle physics are
discussed by H. Harari in his lectures.

II. THEORY OF STELLAR DYNAMICS

In most cases the determination of masses of galaxies and systems of galaxies is
based on the dynamical theory of stellar systems. Here by “stellar systems” we
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mean systems composed of self-gravitating point masses, which may be either stars
or galaxies. For the following lectures, we will restrict ourselves to spherical systems,
although many of the objects we are interested in are not spherical. The main reason
for using the spherical approximation is simplicity. Also the potential distribution
is much more round than the density distribution so that even for flattened mass
distributions a spherical potential is often not a bad approximation.

1 Collisionless Boltzmann equation

We will first consider the equation of continuity for a fluid, and draw the analogy
to the dynamics of discrete point masses in the next paragraph. The rate of change
of mass within a volume V with surface S is

M [ e [ o 2a
o —-/Vatd 7= Spv 48, (2.1)

where p(7,t) is the density distribution and (7, t) is the velocity field. Using Gauss’s
theorem,

[3 o7 d25 = / V- (p0)d%F, 2.2)

so that equation (2.1) can be written,

d_}\i._ QB 3-‘__[ . 3=
- "/Vatd = [ V(e 2.3)

Since the equation must hold for an arbitrary volume in the absence of source and
sink terms, we have 5

Et’l.;.v.(pa) =0, (2.4)
which is the usual equation of continuity for fluids.

The dynamics of a system of point masses can be conveniently described by
employing the phase space density distribution f(7, ), where f(¥,; t)d*rd®v is
either the number, luminosity or mass contained in a phase space volume d*Fd?®.
Then one can derive a similar equation to the equation of continuity for the phase
space density distribution using the same particle conservation argument in six-
dimensional phase space rather than in normal three-dimensional space:

3
o, > [ai(féi) + a%(ff)f)] =o. (2:5)

z;

Now notice that #; = v;, and 8v;/8z; = 0. Furthermore v; = ~8®/8z;, where ® is
the gravitational potential, so that 9v;/8v; = 0. Thus we find

of (. Of 08 0f\ _
o +§ (V'EE B aT.-EE) =0, (2.6)
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which is called the Vlasov or collisionless Boltzmann equation. Now define a con-
vective derivative operator

D _ 9 a 0% d
5_t=a+2i:(v'5z—.-_6—x;6m)’ (2.7)

which gives the rate of change of a quantity as seen by an observer moving with a
given star. Thus the collisionless Boltzmann equation is simply

Df

Dt . (2.8)
The collisionless Boltzmann equation states that the local phase space density as
viewed by an observer moving with a given star is conserved. This is analogous to
a phenomenon seen in a marathon race. In the beginning of the race the spatial
density of runners is high but their speeds vary over a wide range. As the race
progresses, runners whose speed is nearly the same stay together so that near the
finish, the runners in any given location have a low spatial density but travel at
nearly the same speed. Therefore, phase space density remains roughly constant
throughout the race. (We have assumed that all the runners who started the race
finish so there are no sinks, and that each runner travels at constant speed.)

2 The Jeans theorem

If the stellar system is in a steady state, the partial derivative with respect to time
in equation (2.6) vanishes. We define integrals of motion I(Z,7) to be functions
such that

d
1 [E®), 9(0)] =0, (2.9)
along any trajectory [Z(2),7(t)]. The integrals satisfy the relation,

3

dI (. 81 . &I oI 8% oI
-E _-;(z,-—a;i--}-v,b-;) -—Z(v,-a-—;i--— 5;@;) =0. (2.10)

: i=1

Therefore, the integrals satisfy the time-independent collisionless Boltzmann equa-
tion and thus the phase space density distributionis a function only of the integrals,
ie., f = f(I1,I2,...). This is known as the Jeans theorem. In general an arbitrary
stellar system can have six different integrals. In spherical systems only four of
these are important for stellar dynamics: the energy per unit mass, E, and three

—

components of the angular momentum per unit mass, L. If the system is spheri-
cally symmetric in all respects (that is, any variable depends only on the distance
from the center), the distribution function depends only on E and the square of the
angular momentum, L2. Therefore, the general solution of the collisionless Boltz-
mann equation for a spherically symmetric stellar system is any function of the
form f(E,L?).

T

e number density distribution in a spherical system can be computed from

o0 Lo =}
v(r) = ] dv,/ 2mrvedog f (%vf + -;-vf + ®(r),rv}), (2.11)
—-00 [}
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where v, and v, are the tangential and radial velocities, respectively. If f repre-
sents the luminosity density or mass density, we can replace v(r) by j(r) or p(r),
respectively. The gravitational potential ® satisfies Poisson’s equation

1.d [ ,d8(r)] _

el s ] = 47 Gp(r). (2.12)
Ideal observations could give us, at best, the distribution of I (E, v)|), where

I(R,vy) &> Rdvy is the luminosity in the area d*R and velocity interval dvj at pro-

jected position R and line-of-sight velocity v. Even this information—far more
than we are able to glean from present-day observations—is insufficient to give
the distribution function f(E, L?), since we do not know the potential & to use in
equation (2.11). Therefore, the determination of f is always an intrinsically under-
determined problem. One must make additional assumptions to get the distribution
function and mass distribution [for example, j(r) « p(r)].

3 Examples of distribution functions

In general the distribution functions for real stellar systems are not well-known.
However, one often can make reasonable models using known analytic distribution
functions. We will give two very simple examples of such distribution functions.

3.1 Plummer model
This is a power-law model for the phase space distribution function

2y _ [ K|E|"/?, for E <0;
(B, L) = {o, for E > 0. (2.13)

In this case, the density distribution becomes

V212
v(r) = 4K / (18] - 3v*)*v*dv = Tn® . 272K |2, (2.14)
0

Now assume that v = p, i.e., »(r) satisfies Poisson’s equation

14 1'2d|—¢l- = —4nGr = —4nG - Tn? - 2712 K|35, (2.15)
r2 dr dr

A solution is a potential of the form
$o

RV

where & is the central potential and the characteristic length scale a satisfies the
relation,

(2.16)

3.27/2
2 _ —. 2.17
¢ = IPGK3} (2.17)
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We have normalized the potential so that it vanishes at infinity. The Plummer
model is one of the simplest models of stellar systems. The density distribution
extends to infinity, but the mass is finite. It is obvious from equations (2.14) and
(2.16) that the density falls off as r~® at large radius. Generally speaking, such
a rapid falloff of density at large r is not compatible with the observed brightness
distribution of galaxies, which decays somewhat more slowly (r~% to r—*). The
Plummer model has the same density distribution as a gaseous polytrope with
polytropic index n = 5.

3.2 Isothermal sphere
Consider a distribution function that follows the Maxwell-Boltzmann law

F(E) = Fe™El7" (2.18)

Such a distribution is achieved in gases through relaxation by collisions. However,
in galaxies, where the relaxation timescale due to two-body gravitational encounters
is much longer than the Hubble time, there is no fundamental reason to reach such
a state. Nonetheless, the cores of elliptical galaxies and bulges of spirals are often
found to be fitted with this model very well.

The density distribution for this model is

v(r) = 41rF/ v2dve=*/o" = /2" = F(27n72)3/26_q’/"2. (2.19)
0

If we set v = p, and choose the potential at the center to be zero, the density
distribution becomes

p(r) = pge"q’/"2 . (2.20)

By substituting equation (2.20) into Poisson’s equation, we get

1 d de _ _¢/0,2
o (r dr) = 4xGpge ; (2.21)

If we introduce the dimensionless variables, ¥ = —®/02, g = 1/902/4xGpo, s =
r/ro, we get the dimensionless equation for ¥

(2.22)

which also should satisfy the boundary conditions,
$(0) =0, #'(0)=0. (2.23)

Figure 1 shows the density and surface density distribution for the solution of
equation (2.22), which is called the isothermal sphere. The central surface density
satisfies £g & 2pore (more precisely the constant is 2.018), and the volume density
falls as r—2 at large r. The radius parameter ry is called the core radius and it



116 . TREMAINE & H. M. LEE

lll[lll I iilllll] 1 Illllill I

.01

001 N
p/pd
0001

Lol el
1 10 100

Figure 1: Density p(r) and surface density X(r) for an isothermal sphere, in units
of the central density po and core radius ro.

roughly corresponds to the radius where the surface density becomes half of the
central value.

However, the isothermal sphere is unrealistic in that the total mass is infinite
since p o v~ 2 at large radii. More realistic models can be obtained by decreasing
the phase space density at high energy. Models of this type are known as King
or Michie models, but we will not discuss them here since the truncation affects
only the outer parts, while we are concerned mostly with the inner parts in fitting
observations of elliptical galaxies.

4 Moments of the collisionless Boltzmann equation

By taking moments of the collisionless Boltzmann equation, we can get some usefal
equations relating observable quantities. The first step is just to integrate equation
(2.6) over velocity space to get

ov o, _\_
-5t— -+ -5;_—"(111),) = 0, (224)

where vv; = f fv;df’z'f, and we have adopted the Einstein summation convention
for simplicity of notation. The above equation is simply the equation of continuity

(2.4). We can also multiply equation (2.6) by v; and integrate over velocity space
to obtain

o, _ 8, _ . 0%
Et-(w’) + axi(uv.v,) + 03:,-V =0, (2.25)
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One can generalize the above formula a little if one assumes that the cores
of galaxies satisfy only the first three assumptions: spherical symmetry, isotropic
velocity distribution and constant M/L. In this case, one can write the mass-to-
light ratio as

M 902
T~ " 2rGlors’ (3.4)

where o': is the line-of-sight mean square velocity dispersion at the center, n is a
constant that depends on the actual distribution function of the stellar system, and
7 is the radius at which the surface brightness drops to half of its central value.
The constant 7 is found to be very insensitive to the details of the actual models.
For example, 7 = 0.971 for a Plummer model. One finds empirically that n =1
to within a few percent for most stellar systems satisfying the three assumptions
that have density distributions resembling those of real galaxies (Richstone and
Tremaine 1986). Equation (3.4) with 7 =1 is known as King’s core-fitting formula
and is commonly used for the determination of the mass-to-light ratios in the cores
of galaxies.

How accurate is the core-fitting formula likely to be? The most serious con-
cerns are the assumptions of velocity isotropy and spherical symmetry. A spherical
galaxy composed entirely of stars on circular orbits would have o, = 0 and hence
n — co. However, such models are unrealistic; in the more plausible case of radial
anisotropy (vZ > v}), the constant n can be as small as 0.65 (Merritt 1987b). For
non-spherical models 7 can be as low as 0.4 if the galaxy is viewed along its long axis

Merritt 1987b). The sensitivity to shape and velotity anisotropy is reduced if the
ispersion is averaged over the central core rather than being measured precisely
at the center.

Despite these concerns, in the absence of information on the orientation and
velocity anisotropy of a given'galaxy, the core-fitting formula (3.4) with 7 =1 offers
the best available estimate of the central M/L.

This technique has been applied to the cores of elliptical galaxies and bulges of
spiral galakies by Kormendy (1987a). No systematic differences are found between
bulges and elliptical cores. The median value for the elliptical cores is found to be
M/L = 12h, which is similar to the mass-to-light ratio expected from the Solar
neighbourhood if gas and young stars are remdved. This suggests that the DM
in the Solar neighbourhood is also present in ellipticals and probably is a normal
component of the stellar population.

“The same technique has been applied to dwarf sphergidal galaxies by Aaronson
and Olszewski (1987). There are about a half dozenléw mass'dw spheroidals that
are satellites of our own Galaxy. Such galaxies are good places to look for DM since
the density of luminous matter is very low. However, there are some difficulties in
obtaining reliable velocity dispersion data for dwarf spheroidals since the velocity
dispersion is low and the surface brightness is small. One has to measure accurate
velocities of a number of individual stars to get a reliable velocity dispersion.

The velocity dispersion may be misleading if the measured stars are members
of binary systems. To avoid contamination due to binaries, Aaronson and Olszewski
measured the velocities of individual stars more than once to see if there is any
velocity variation over the observation interval typically one year). Any stars
showing velocity variation are excluded in obtaining the velocity dispersion. The
resulting M/L’s for the dwarf spheroidals are listed in Table 2, as determined by
equation (3.4) with 7 = 1. Notice that the stars used in estimating o, are spread
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Table 2. Mass-to-light ratios of dwarf spheroidal galaxies

Name N op(kms™) Iy(Lopc™?) ru(kpe) M/L
Fornax 5 6.4+2 16.2 0.50 1.7
Sculptor 3 58%24 9.7 0.17 6.8
Carina 6 56+1.6 4.0 0.22 12
Ursa Minor 7 1143 1.2 0.15 220
Draco 9 9+ 2.5 0.15 71

Notes: N denotes the number of stars used to determine the
velocity dispersion. Parameters from Kormendy (1987b).

out over the galaxy rather than being concentrated at the center; this implies that
our estimates of M/L will be systematically low, by up to a factor of two or so.

The M/L’s of some dwarf spheroidals are normal (similar to the Solar neigh-
bourhood or central parts of elliptical alaxies), but two, Draco and Ursa Minor,
show very large M/L. If these large M/L’s are correct, they show that some dwarf
spheroidals are composed mostly of dark matter.

It has often been asked whether the exceptionally large M/L for Draco and
Ursa Minor could be due to binary stars. Thus, one needs to know how much
velocity dispersion can be attributed to the orbital motion of binaries, given the
selection criterion against velocity variation employed by Aaronson and Olszewski.
To address this question quantitatively, we have made a simple simulation. We
have calculated the velocity dispersion due to orbital motions of binaries assuming
that (1) all stars are in binary systems; (2) the primary component has mass M; =
0.8Mg_ and the cumulative mass distribution of the secondaries is o M3* with
M, < ‘M, similar to the distribution for binaries in the Solar neighbourhood;
(3) the binary periods P are uniformly distributed in log(P) over a interval £0.25,
centered on some value log(Fs); and (4) the eccentricity distribution is uniform in e?,
as expected in statistical equilibrium. Stars showing velocity variation > 4 kms™!
between two epochs separated by 1 year are excluded in computing the line-of-sight
velocity dispersion since the observers exclude them as well. Figure 2 shows the
line-of-sight velocity dispersion o, as a function of period Py. Also shown is the
ratio f, of the number of stars showing velocity variation to the number showing no
variation. This graph shows that there is a good correlation between the velocity
dispersion due to binary systems and the fraction of stars showing velocity variation.
Therefore, once the fraction of stars showing velocity variation among the sample
is known, one can estimate the contribution to the velocity dispersion from binary
orbital motions.

This result can be applied to the two observed dwarf spheroidals with high
M/L’s. The Draco system has 11 stars observed with radial velocities. Two of
them show velocity variation, so f, = 0.2. From Figure 2, the velocity dispersion
contribution due to binaries is then at most about 2kms™). The contribution of
binaries to the observed dispersion of 9kms~? is therefore less than about 5% in
quadrature. The same analysis for Ursa Minor, which has a dispersion of 11kms™?
from 7 stars (3 out of 10 measured stars show velocity variation, so f, & 0.43),
shows that the dispersion due to binaries is about 4kms=1 so that the observed
velocity dispersion is in error by at most 13%. Similar results are obtained for
other period distributions. Therefore it may safely be concluded that the effects of
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Figure 2: Plot of line-of-sight velocity dispersion o, due to binaries as a function
of binary period, as well as the ratio f, of the number of stars showing velocity
variation exceeding 4kms™! over a 1 year interval to the number showing variation
< 4kms—1. We have assumed that all stars are in binaries with log(P) uniformly
distributed over the interval £0.25 around the plotted value. The error bars indicate
the width of the assumed distribution in log(P) and the statistical uncertainty in
the results. The curves are not completely smooth because of resonance effects
between the mean binary period and the observation interval.

binaries are negligible in Draco and Ursa Minor.

Are there other effects that might contribute to erroneous M, /L’s? The radial
velocity data could be contaminated by motions of the stellar atmospheres. How-
ever, K-giants, which are the main sources of velocity determinations, have very
small atmospheric motions. The core-fitting formula 3?4) is already biased toward
low M/L’s because it is based on the central velocity dispersion while the measured
stars often lie outside the core where the dispersion is lower. Statistical errors are
also biased toward smaller M/L since the x* distribution is asymmetric.

Perhaps the most interesting alternative to the existence of large quantities
of dark matter is the possibility that Draco and Ursa Minor are unbound systems.
Their extremely low surface brightness, and their location in the plane of the orbit
of the Magellanic Clouds, suggest that they may be only apparent density enhance-
ments arising, for example, from the crossing of streams of tidal debris from the

Clouds.
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IV. THE EXTENT OF THE GALACTIC HALO

Most spiral galaxies, including our own, have flat rotation curves as far as one can
measure. This naturally leads to the question, how far beyond the last measured
point do rotation curves stay flat, that is, how far do dark galactic halos extend?
Here we will discuss various methods to determine the extent of the dark halo of
our Galaxy.

We shall employ a very simple spherical model in which the Galaxy has a flat
rotation curve up to the radius r,; thus

Vg forr<r,,

2 _
Vi = % % for r > ru; (4.2)
which gives the mass distribution
2
% for r < ry;
M(r) = . 4.2)
Vi ra
M,.=—? for r > r..

Now our aim is to determine the value of .. Rotation curve measurements show
constant rotation velocity up to r &~ 2Ry, where Ry is the Galactocentric distance
of the sun; thus r, 2 2Ry = 17kpe.

1 Local escape speed

The velocity distribution of stars in the Solar neighbourhood with respect to the
rest frame of our Galaxy shows a cut-off near vpax &~ 500km s~! (Carney and
Latham 1987). This is interpreted as a lower limit to the escape speed of stars in
the Solar neighbourhood. This means that the following equation holds,

1v2 .+ ®(Ro) <. ‘ (4.3)

The gravitational potential satisfies the equation,

d® GM(r)
dr —  r2 (4.4)
which in the model of equations (4.1) and (4.2) can be integrated to yield
Vg[h;—l} for r < ra,
® = . (4.5)
VO Te
R for r > r.,

where we have normalized the potential to vanish at infinity. By plugging Vo =
220kms™! and vmax = 500 kms{"1 into equation (4.3), we get r. 2 4.9R,. If we
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further use Ry = 8.5kpc, the extent of the halo of our galaxy is roughly r. 2 41kpe.
This corresponds to a mass M, 2 4.6 X 10'* M. Since the total luminosity of our
galaxy at the V band is Ly ~ 1.4 x 10! Lg, the mass-to-light ratio becomes

M

>
— % 33, (4.6)

at least a factor of six larger than the M/L in the Solar neighbourhood.

2 Magellanic Stream

The Large Magellanic Cloud (LMC: Galactocentric distance d = 52 kpc and M =
92 % 101° M) and Small Magellanic Cloud (SMC: d = 63kpc and M ~ 2 x 10° Mg)
are the two nearest satellite galaxies to us. They contain ~ 5 X 10° M@ of neutral
hydrogen gas. In addition, there is a stream or trail of HI extending away from the
clouds. This HI trail follows a great circle and contains almost 10° Mg of neutral
hydrogen. It is presumably composed of gas from the Clouds that has been stripped
off by the tidal field of the Galaxy.

Most of this gas is probably on free Kepler orbits, not too dissimilar from
that of the Clouds. At the tip of the stream, gas is falling towards us at high speed
(v =~ —220km s—1 in the Galactic rest frame). If the Galactic potential were that
of a point mass, this large velocity would suggest that the material at the tip has
fallen deep into the potential, to a Galactocentric "distance < 15kpe. However,
parallax effects due to the offset of the Sun’ftom the Galactic center should then
spoil the great circle shape of the stream. This argument suggests that there is a
massive halo in our Galaxy, since then the required infall velocity can be achieved
at a larger radius.

Detailed dynamical models have been constructed by Murai and Fujimoto
(1980) and Lin and Lynden-Bell (1982). If a flat rotation curve is assumed for our
Galaxy, the best fitting circular velocity is 244 & 20km s~1, and the rotation curve
must remain flat to at least T0kpc. This suggests that there is a very large amount
of DM in our Galaxy, much more than the lower limit obtained above using the
local escape velocity. The mass-to-light ratio of the Galaxy would exceed 56 in
Solar units if such an extended halo were present.

3 Local Group timing

The nearest giant spiral galaxy M31 is about 730 kpc away. Together with the
associated satellite galaxies, we and M31 compose a relatively isolated system of
galaxies, known as the Local Group. The relative radial velocity of the center
of mass of us and M31 is —119kms™?, which has the opposite sign to the usual
Hubble flow. It is possible that the two galaxies are approaching each other by
chance. However, a more natural explanation is that the two galaxies were once
moving apart due to the Hubble expansion, but that the expansion was slowed and
reversed by their mutual gravitational attraction. If we assume M31 and Galaxy
to be point masses and ignore the presumably small masses of other Local Group
members, the relative orbit of the two galaxies can be written parametrically as

a® ;
r =a(l — ecosn); t—\/aﬂ(n-csmn)+0, (4.7)
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where C is a constant, a is the semi-major axis, e is the eccenfricity, 7 is the eccentric
anomaly, and M is the total mass of the Local Group [compare eq..(1.34)]. Since
the two galaxies were presumed to be at the same place at the beginning of the
expansion, r=0 at t=0 so that we have to choose e=1 and C'=0, corresponding to
s radial orbit. The relative radial velocity may be written

dr _ [GM sinp _ rsinn(y —siny) (48
dt a 1—cosyp t (L—cosn)? ~ 8)

By plugging in dr/dt = —119kms™! and ¢ = 10-20 Gyr (1 Gyr = 10° years), we
get n = 4.11 (for ¢t = 10 Gyr) to 4.46 (t = 20 Gyr) radians. Then the mass of the
Local Group is found to be M = 5.5 x 102 Mg (for ¢ = 10Gyr) or 3.2 X 10'2 Mg
(for t = 20 Gyr). This gives the mass-to-light ratio of the Local Group

% — 76 — 130, (4.9)

which is again very large. We expect that this roughly represents the M/L of our
Galaxy if there is no big variation of M/L between M31.and the Galaxy.

4 Kinematics of satellite galaxies

In principle, the kinematics of satellite’ galaxies’ and globular clusters can provide
a useful tool to determine the mass of the Galaxy. However, this determiration is
intrinsically difficult since there are only a few objects and bnly the line-of-sight
velocities are known. In particular, the satellite galaxies are at distarices ldrge
compared to the distance to the Galactic center from the Sun; so we see mainly the
radial tomponent of their velocity. Thus we must make some sfatistical assumption
about the ratio of tangential to radial velocity. . :

If we assume r, is large compared to the distances of the sample objetts, the
gravitational potential (4.5) has the form

&(r) = V¢ Inr + constant. (4.10)

The moment of inertia per unit mass is
I=rk (4.11)

and its first and second derivatives are
f=o7.7 ; I=2FF+20% (4.12)

By taking an average over several galaxies, we get

(V¥ = (ri—%) = V¢ (4.13)

If the velocity distribution is isotropic, {v?) = }{v?) = 3V§'. For Vo =220km s71,
this gives (v2)1/? = 127kms~, while the actual data exhibit (v2)17? = 60kms™!
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Table 3. Globular clusters and satellite galaxies used for
CGalactic mass determination

Name do(kpc) vO(kms‘l)t vg(km s~1)8
LMC+SMC 52 245+ 5 62
Draco 75 —289+1 —95
Ursa Minor 63 —249+1 —88
Sculptor 79 107+ 2 75
Fornax 138 5515 —~34
Carina 91 230+ 1 14
AM1 116 116 + 15 —42
NGC 2419 90 —20+5 —26
Pal 3 91 8949 —59
Pal 4 105 7545 54

Notes: The list contains all known satellites with do >
50kpc and published velocity error < 20km s~!. Data
sources given by Little and Tremaine 1987).

1: radial velocity with respect to the Sun

§: radial velocity with respect to the Galactic center

(Table 3). This means that the existing data are consistent with a flat rotation
curve extending to very large distances only if the velocity distribution is primarily
tangential, a conclusion first reached by Lynden-Bell et al. (1983). Dissipationless
collapse leads to galaxies with a velocity distribution that varies from radial to
isotropic, and it is difficult to construct galaxies with predominantly tangential
velocities. Thus we are led to question the existence of an extended massive halo
for the Galaxy.

There have recently been substantial improvements in the accuracy of velocity
data for satellite galaxies. Furthermore, it is unlikely that the quality‘or quantity
of radial velocity data will be improved drastically in the near future. Therefore it
is perhaps appropriate to elaborate on the arguments above and to make a careful
statistical model of the currently available kinematic data for satellites (Little and
Tremaine 1987).

Let us introduce a fictitious mass for an observed satellite i

v2 .7y
p=—m (4.14)

where r; and vy,; are the distance from the Galactic center and the radial velocity
with respect to the rest frame of the Galaxy, respectively. For a Galactic mass M,
let us denote P{p;]M)dp as the probability of finding i in the range between u;
and g; + dg, which can be computed from

[ EFETF(F, )8 = vir/G)
[PidsfF o)

P(uiM) = (4.15)

where f(F, ) is the usual phase space density distribution. Two different models for
the Galactic potential, a point mass and an infinite halo, and two different models
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for the velocity distribution, radial and isotropic, are considered. For the point
mass potential,

2 max[0, 2M — )’

for isotopic orbits;

B 172 503

P(ulM) = 0.(2M — ) (419
1 max| i ( ) for radial orbits.
1r Nlle

Now what we want to know is the corresponding probability distribution for M
given p, that is, P(M|u). The relation between P(u|M) and P(M]|p) is given by

Bayes’s theorem
P(s|M)P(M)
TPGIMY PN

where P(M)dM is the a priori probability for a galaxy to have mass between M
and M + dM. If several objects are available the probability becomes

. n.li]P(F‘ilM)
P(MII‘I;" S HUN) _P(M)fH,"LIP(uaIM')P(M')dM"

P(Mlp) =

(4.17)

(4.18)

We now have to specify P(M) to proceed with our analysis. One of the most
reasonable choices is that the @ priori distribution is uniform in log M so that

P(M)dM o dlogM or P(M)x Kli (4.19)

This choice is obviously somewhat arbitrary. However, the results become less and
less sensitive to the choice of the functional form of P(M) as the number of data
points increases, and for the numbers we are dealing with (N = 10) the choice of
P(M) has no strong influence on the results.

The data set has been gathered from various sources. All globular clusters and
satellite galaxies at distances d > 50kpc with velocity errors less than 20kms™?! are
used. The data are listed in Table 3. The LMC and SMC are treated as one data
point at their center of mass since the motion of each Cloud is greatly influenced
by the other Cloud.

Using equations (4.16) and (4.18) we find that for isotropic orbits there is a
90% probability that the Galactic mass M lies in the range (1.4,5.2] x 10'* Mg
with the median value being 2.4 x 10! Mg. For radial orbits the mass is even
smaller. If we define r. so that the mass obtained above corresponds to Virs/G
with Vi = 220km s, we get r, < 46kpc at the 95% confidence level for isotropic
orbits. This result is self-consistent in that the upper limit to r. is smaller than
the lower limit of 50 kpc for the data so that the point mass approximation is valid
over most of the orbit of a typical satellite.

A similar analysis has been made assuming an infinite halo potential. In
this case, the unknown is the circular speed Vo rather than the total mass of the
Galaxy. Here we find the range of circular velocity at the 90% confidence level to
be [77,165]kms™!, with the median value being 107kms™2. This is clearly too
small compared to the local speed of 220km s~1, and once again implies that the
Galaxy’s massive halo has only a limited extent.
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Table 4. Values of r, from various methods

Method r«(kpc)
Direct measurement of rotation curve 220
Local escape velocity 2 40
Magellanic Stream =80
Local Group timing = 100
Kinematics of satellites =~ 50

This analysis strongly suggests that the Galactic halo does not extend much
beyond the outermost visible components of the Galaxy at r = 30 kpe. However, it
should be noted that the value for r, obtained here is considerably lower than the
values obtained from the Magellanic Stream and Local Group timing. If some un-
known formation mechanism has placed the satellites on orbits with predominantly
tangential velocities, then the satellite kinematics could be consistent with these
other arguments.

5 Summary

Wei) 1summarize the various results for the determination of the Galactic mass in
Table 4.

All of these estimates agree that the Galactic halo is much more extended
than the bulk of the visible stars and gas. Hence most of the mass of the Galaxy
is dark. However, there are some contradictions between various determinations of
the Galactic mass, particularly between the satellite kinematics on the one hand
and the Magellanic Stream and Local Group timing on the other. The source of
this discrepancy remains mysterious. Perhaps (1) the gas in the Magellanic Stream
is not on free Kepler orbits; (2) the Galaxy and M31 are embedded in a low-density
mass concentration so that most of the mass in the Local Group is not asssociated
with either galaxy; or (3) the satellite galaxies and distant globular clusters are on
nearly circular orbits.

Thus, it is still unclear whether the halo of the Galaxy—and by analogy, the
halos of other spiral galaxies—extends only to 50 kpc or so, about twice the optical

Y

extent, or out to much larger distances, up to several hundred kiloparsecs.
V. BINARY GALAXIES

Carefully selected samples of binary galaxies provide another opportunity to deter-
miné the mass of individual galaxies. However, copstructing a well-defined sample
is not an easy task. As an example, we discuss the sample used by Turner (1976).

From the Zwicky catalogue'of galaxies, he restricted his sample to galaxies in
the northern heniisphere (i.e., declination § > 0) in order to ensure completeness. To
avoid heavy Galactic extinction, he also selected only galaxies at Galactic latitude
[b] > 40°, The flux limit for his sample was taken to be 15th magnitude, again to
help ensure completeness. The selection criteria for binary galaxies were: %1) the
separation of the binary (6,3) does not exceed 8 arcminytes; (2) the next nearest
galaxy should li€ beyond 5612. The second criterion was used to avoid possible
contamination‘from groups and clusters. The final number of binary galaxies was
156 pairs out of some 30,000 galaxies in Zwicky catalogue.



DARK MATTER IN GALAXIES AND GALAXY SYSTEMS 127

Despite these stringent selection criteria, later close visual ‘examination by
White et al. (1983) showed that many of Turner’s pairs are members of larger
clusters or groups. There are two reasons why Turner’s selection criteria prove to
be insufficiently stringent. First, groups or clusters can easily have;one or two bright
members that are included in Turner’s sample, while the other group members fall
below the magnitude limit. Second, if two galaxies happen to be nearby in the plane
of the sky, there may well be no other galaxy within five times their separation even
in rich clusters. White et al, find that only 76 pairs out of Turner’s 156 survived
the additional culling of all pairs in visible clusters or groups. Clearly, it is very
difficult to construct a large, well-defined sample of isolated binaries.

If we ignore this concern, we can carry out some analysis using the existing
sample. We shall work with the moment equation (2.28) for spherical systems. If
we assume a flat rotation curve so that the potential &(r) = V2Inr+const, and the
degree of anisotropy f =1— vi /v? is a constant independent of r, then equation
(2.28) reduces to _
viy

d, — 2 vV2
2 (vv?) 4 AL
dr (vo?) r '

r

B = (5.1)

The statistical analysis of large catalogs of galaxies shows that the galaxies have
a two-point correlation function £ o« r~7, with v ~ 1.8. This implies that the
distribution of binary galaxies follows v o r~7. A solution to equation (5.1) is
then vZ = const = V2/(y — 2B). If the system has an isotropic velocity dispersion
tensor (8 = 0), we get Vo = 170km s~! after plugging in the observed rms velocity
difference (v"l')l/ 2 == 127kms™? from Turner’s sample (vj = v} since the velocities
are isotropics. This is more or less consistent with other determinations. However,
if the orbits are radial (8 = 1), no solution with v? and V2 positive is possible.
In general, we can get any value of V, < 170kms™! by adjusting the ynknown
parameter 3 between 0 and 0.5y = 0.9; thus the results are entirely dependent on
the unknown anisotropy of the orbits.

Do we learn anything from binary galaxies? Because of the problems we have
mentioned above, the answer is “not much”. Perhaps the most interesting result
so far is that the velocity difference between the galaxies does not correlate either
with the projected distance between binaries or the luminosity. This suggests that
mass is not related to the luminosity of the host galaxy.

VI. MASSES OF GROUPS AND CLUSTERS OF GALAXIES

1 Groups of galaxies

The virial theorem discussed early in these lectures can be used to determine the
masses of groups or clusters of galaxies in much the same way Zwicky did. The
virial theorem [eq. (1.8)] states

§=1 ! 2 i,j=1 17'1' - rJI
i#j

where we have used & rather than = because the equation is ogly precisely true
in a time averaged sense. We now take an average of equation (6.1) over angle,
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denoted by {}o. We have
v} = 3(vy,ide, (6.2)

where v denotes the line-of-sight velocity. The projected distances R, are likewise
related to the three-dimensional distances 7; through
1

1 1 T
- ) == = =5 6.3
<|R;—R,-l>n I"-'-fj|< >9 2 |7 — 7] (85)

where we have assumed that the direction of a vector 7 is random. The averages in
equations (6.2) and (6.3) are not meaningful if one looks at only one or two galax-
ies. However, these relations can be used to estimate average three-dimensional
velocities and separations when summed over many galaxies.

Thus we may write equation (6.1) as

1
sin#;;

Sim v3 ¢ i AL 0 (6.4)
Vi — — —= = = .
oo [ ) |R; - R;|

; i#]

We now have several different options for determining the mass of the system: (1)
we may assume that m; =~ (M/L)L; (i.e., the mass-to-light ratio is constant for all
galaxies) or (2) we may assume that m; = M/N, where N is the total number of
galaxies and M is the total cluster mass (i.e., the number distribution of galaxies

in phase space is proportional to the distribution of mass). If we take the second
assumption, the total mass-to-light ratio may be written

2
U o
M 3xN Xiv (65)

G EkLk Zi;&j l/léi —R'j|'

Several alternative methods to the virial theorem for estimating masses of
groups of galaxies have been proposed by Heisler et al. (1985). For example, there
1s the “median mass” estimator

Mye = i?;—emedi,i[(vu.i —vy,3)* 1R — Bjll, (6.6)

where med; ; denotes the median over all pairs of galaxies (2,4)- The proportionality
constant fue is determined to be approximately 6.5 from numerical experiments.

The median mass estimator is found to give similar masses to the virial the-
orem. No one method appears to be superior to another, and in a given case it
appears that all known estimators tend to err in the same direction.

These mass estimators are applied to the catalog of groups of galaxies compiled
by Huchra and Geller (1982). The median mass-to-light ratios are found to be
approximately 400k in Solar units with errors being about +0.4 in the logarithm
between the median and the quartiles (that is, a factor of 3). Thus there is clear
evidence for large quantities of DM in groups.
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2 Rich clusters: Coma cluster

We can make more elaborate models for rich clusters than for groups, since there
are many more galaxies available. For the sake of definiteness, we will concentrate
on the Coma cluster, which provides one of the best examples of the evidence for
DM. The virial theorem is not useful in this case because it is plagued by issues of
cluster membership in the outer parts. The core-fitting method discussed in lecture
3 is not particularly useful either, in part because there is no well-defined core in
the Coma cluster.
The moment equation (2.28) can be written

d — 2007 dd GM(r)
—_— 2 — T = e — - ——
& (VoR) + —=B(r) = ~v s,

dr T ©.7)

where the anisotropy parameter f(r) = 1 —;g/ v2Z. If we assume spherical symmetry,
we can determine the line-of-sight dispersion profile vﬁ(r) and the number density

profile v(r) from observations. However, equation (6.7) is still underdetermined,
since it involves four functions, B(r), M (r), v(r), and v(r), and we have only three
constraints aSi:he two observable quantities and the equation). Merritt (1987a) has
made several assumptions to determine the mass of the cluster as follows:

(1) Number traces mass (i.e., v < p): With this assumption, the observed disper-
sion and number density profiles imply a nearly isotropic velocity distribution
(i.e., B = 0). The determination of mass in this case is straightforward, and
gives M = 1.8 x 101°h~1 Me.

(2) Minimum mass model: Such models can be obtained by concentrating the
mass in the center as much as possible without violating observations. The
density profile is assumed to be

1

p(f‘) x W (68)
Then Merritt attempts to make ry as small as possible. He finds rather im-
plausible models in this case, that is, all the orbits are nearly circular out-
side the core. For these models the total mass never becomes lower than
0.7 x 103k~ Mg. The DM is mostly concentrated within two optical core
radii.

(3) Maximum mass model: One can obtain a rather high mass model by distribut-
ing the DM more or less uniformly. The total mass and central density vary
over a wide range. However, the mass within 12~ Mpc is within 25% of the
value obtained for case (1).

(4) Radial dependence of anisotopy: One also can choose a functional form for
the radial dependence of the velocity anisotropy,

2

B = 53— (6.9)

r? 412’

where r, is a free parameter. This choice has some nice features, in particular,
the orbits are more radial in the outer parts, as one expects from a collisionless
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Figure 3: Mass-to-light ratios of galaxies and galaxy systems discussed in the
text. The key to the labels is: “N”, nucleosynthesis; “1  inflation; “V”, Virgo
flow; “groups”, groups of galaxies; “Coma”, Coma cluster of galaxies; “LG”, Local
Group timing; “M87”, X-ray observations of M87 galaxy; “sat”, satellites of our
Galaxy; “MS”, Magellanic Stream; “esc”, escape speed from Solar neighbourhood;
“EC+SB”, elliptical cores and spiral bulges; “dSph”, dwarf spheroidal galaxies;
“yis”, visible components of the Solar neighbourhood; “Oo”, Oort limit. All values
are plotted for k = 1, but a line with an asterisk at the end is used to show how

results for M/L and scale change when h = 0.5. This is a revised version of a
diagram due to Ostriker et al. (1974).

collapse process. Furthermore, models of this kind have a known distribution
function of the form 2

= f(E+55)- 6.10
Models with the anisotropy radius r, exceeding the optical core radius 7o are
found to be consistent with observations. This means that models having
predominantly radial orbits outside the core radius, in which the DM is more
uniformly distributed than the galaxies, are allowed.

In conclusion, the mass of the Coma cluster is about 2 X 1035h"! Mg if the
dark matter is distributed like the galaxies; the mass cannot be less than 40% of
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this value but may be much more if the dark matter is more extended than the
galaxies. For a total luminosity of 5 x 1012h~2 L, the corresponding mass-to-light
ratio is about 400k in Solar units. The distribution of DM is not well-constrained,
but it seems to be inescapable that most of the mass in the Coma cluster is dark.

There are several other methods to .determine the masses of galaxies and
galaxy systems, and we will close by mentioning two.

X-ray observations of elliptical galaxies have been used to determine the mass
of these galaxies, assuming hydrostatic equilibrium for the X-ray emitting hot gas.
The advantage of this technique is that the distribution function of the gas is known
to be isotropic, so that the anisotropy parameter 8 = 0. However, existing spectral
data, which are essential to determine the temperature profile, have no spatial
resolution, and the results are sensitive to the assumed temperature profile. The
sole exception, where adequate resolution is available, is the giant elliptical galaxy
MS87. One problem in this case is that M87 is located in the center of the Virgo
cluster so that its mass may not be typical of other galaxies. The analyses derive a
very large mass-to-light ratio, at least 750 in Solar units (Fabricant and Gorenstein
1983). This technique will become more widespread when high-resolution spectral
data are available from the AXAF satellite.

The perturbations to the Hubble flow induced by the nearby Virgo cluster of
galaxies have been used to estimate the mass of the cluster. The mass-to-light ratio
appears to be comparable to that of Coma and other rich clusters, but substantially
less than the value required so that the Universe is closed.

VII. SUMMARY

The determinations of masses of galaxies and systems of galaxies on various scales
show large variations in M/L. Generally M/L increases as the scale of the object
increases. For example, M/L =~ 5 in the Solar neighbourhood (on a scale of a
few hundred parsecs) while M/L = 400h in the Coma cluster which has a scale of
several Mpc. One notable exception to this trend is that some dwarf spheroidal
galaxies show large M/L on scales less than a kiloparsec. The mass density implied
by these M/L’s is never large enough for closure, which corresponds to an average
M/L = 1600h for the entire Universe.

Baryonic matter can account for the DM on scales up to the size of dark halos
of galaxies, but non-baryonic mass is probably required to provide the dark mass
in rich clusters unless the Hubble constant is as small as 50 kms~! Mpc™*.

To summarize, we have prepared a schematic graph in Figure 3, which shows
the various determinations of M/L in different objects and on different scales.
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