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We discuss a number of unsolved problems in planetary ring dynamics and offer
some thoughts concerning their solution. The discussion is specialized to the
rings of Saturn because they are the best studied observationally. The depth of
treatment varies from problem to problem and reflects both limitations in our
understanding and the relative importance which we attach to different topics.
We make no attempt to present material in a wutorial style. We deal with phe-
nomena that are microscopic and macroscopic on the scale set by the resolution
of the Voyager cameras. We relate the physics of particle collisions (Sec. I) to
the local velocity dispersion (Sec. II) and the particle size distribution (Sec. II).
We discuss mechanisms which structure the rings (Sec. IV) and affect the or-
bital evolution of satellites which interact with them (Sec. V).

I. PARTICLE COLLISIONS

A. Mechanical Properties of the Particles

The mechanical properties are largely characterized by the elastic mod-
ulus E' and the yield modulus oy. These moduli are properly described by
tensors but for our rough calculations their scalar magnitudes suffice.

The elastic modulus is the ratio of the stress to the strain. It has the
dimensions of force per unit area or energy per unit volume. The latter reflects
its close relation to the molecular bond energy per unit volume. For common
materials the molecular bond energy is of order one electron volt and the
molecular size is of order one angstrom. It follows that the elastic modulus is
~ 10" dyne cm™*, For ice its value is smaller, ~ 10" dyne cm™ (Hobbs 1974),
because the hydrogen bond is weak.
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The yield modulus is the limiting stress beyond which ice fractures. Its
value decreases with increasing temperature, especially near to the melting
temperature. We have been able to find only a single reference to measure-
ments of the yield stress of ice at temperatures comparable to those in Saturn’s
rings. These experiments obtained values ~3 X 10° dynecm™ atT = 77K
for the compressive yield stress (Parameswaran and Jones 1975).

For future discussion we adopt the values E = 10" dyne cm™ and oy =
10° dyne cm ™. We choose a smaller value for oy than quoted above because
collisions generate comparable compressive, shear, and tensile stresses, and
the compressive yield modulus of ice is larger than either the shear or tensile
yield modulus. We also use u = 0.36 for the Poisson ratio. It must be kept in
mind that the numerical values we are adopting refer to solid and chemically
pure ice and thus may not directly apply to the properties of the particles in
Saturn’s rings.

B. Dynamics of Collisions

The imperfectly elastic nature of the impacts is described by the coeffi-
cient of restitution €, the factor by which the relative normal velocity is
reduced following a collision. We need to relate € to E and oy.

The Hertz (1881) law of contact describes purely elastic, low-velocity,
impacts. When applied to the collision of two identical smooth spheres of
radius R, density p, and relative impact velocity v, it gives the following
expressions for the maximum radius of the area of contact a and the maximum
stress oy

alR = (pvIE), (1)
oylE =0.7 (pvIE): . | @)

From the latter relation we find that the yield stress of ice is reached at an
impact velocity of 0.03 cm s ™.

For higher velocity impacts, account must be taken of brittle fracture near
the area of contact. The best theory that we have been able to find to apply in
this case is due to Andrews (1930). It is designed to treat impacts of soft
metals and includes plastic as well as elastic deformation. It is far from
rigorous even for its intended application and we shall apply it where failure
occurs by brittle fracture rather than by plastic flow. Thus the conclusions we
derive from Andrews’ theory are to be taken with caution.

Andrews views an impact as taking place in the three stages illustrated in
Fig. 1. There is an initial elastic compression which lasts until the critical
stress is reached. It is followed by continued compression during which there
is an inner circular plastic zone surrounded by an elastic annulus. The stress in
the plastic zone is set equal to oy. The restitution which finishes the process
is incomplete leaving the sphere permanently flattened. Andrews’ theory
predicts € = 1 for v/v* < 1 and
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Fig. 1. Three stages of impact in Andrews’ theory.
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For ice, Eq. (4) gives v* ~ 0.03 cm s™. Fig. 2 shows € as a function of v/v*.
It will be interesting to compare this theoretical prediction with measurements
of € (v), for example in the experiments with ice now in progress by Lin and
colleagues (see chapter by Stewart et al.).

Collisions between actual ring particles may differ considerably from
those considered here. The particles are not of a single size and their surfaces
are probably rough. The radii of curvature on a rough surface are smaller than
the particle radius so the stress generated in the collision of rough particles is
greater than that generated in a similar impact of smooth particles. Con-
sequently, surface roughness lowers the coefficient of restitution (see chapter
by Weidenschilling et al.).

I1. VELOCITY DISPERSION

The velocity dispersion in a planetary ring depends upon the mechanical
properties of the ring particles as expressed through the variation of the
coefficient of restitution with impact velocity.

A. Unperturbed Disks

There is a relation between the equilibrium coefficient of restitution and
the optical depth 7 in a Keplerian disk (Goldreich and Tremaine 1978a). This
relation depends upon the shape and size distribution of the particles. The
function € (r) obtained from the collisional Boltzmann equation, for spherical
particles of a single radius, is shown in Fig. 3. It is determined by requiring



716 N. BORDERIES ET AL.

0.5

0.0

Fig. 2. The coefficient of restitution as a function of impact velocity.

that the rate at which energy is fed into random motions by the viscous stress
balance the rate at which the energy of random motions is dissipated in
inelastic collisions. The following gedanken experiment may help to clarify
the point. Imagine setting up initial conditions such that every particle moves
on a circular equatorial orbit. Collisions would occur as a consequence of
differential rotation and the finite size of the particles. At first the impacts
would be very gentle and almost perfectly elastic and the random velocity
would grow. After a few collision times the radial distance traversed between
collisions would be larger than the particle radius. The random velocity would
begin to increase exponentially on the collision time scale and as it did so the
impacts would become less elastic. Eventually the rate at which energy was
being dissipated would balance the rate at which it was being converted into
random motions by collisional stresses acting on the differential rotation. At
this stage the random velocity would have reached equilibrium. The coeffi-
cient of restitution plotted in Fig. 3 is that which pertains to this equilibrium.

The monotonic increase of € with increasing 7 reflects the monotonic
decrease of the radial distance traversed between collisions with increasing 7
(at a fixed value of the random velocity). The latter implies that, per collision,
the efficiency of conversion of orbital energy into the energy of random
motions decreases with increasing optical depth. Thus, at equilibrium, the
fraction of the relative kinetic energy dissipated per collision must be a mono-
tonically decreasing function of 7.

We combine the e (v) relation obtained from Andrews’ theory with the
€ (7) relation described here to derive predictions for the random velocity v and
the vertical thickness as functions of 7. The results are displayed in Fig. 4.
They provide the theoretical justification for why Saturn’s rings are so flat.
We have neglected gravitational interactions between particles in the discus-
sion of the random velocity. Pure gravitational scatterings act like physical
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Fig. 3. The equilibrium value of the coefficient of restitution as a function of optical depth.

collisions with € = 1. Gravitational scatterings of small particles by large ones
could significantly increase the random velocities of the small particles (Cuzzi
etal. 1979).

B. Perturbed Disks

In regions of the rings where satellites exert torques, near sharp edges or
resonances, the local rate of energy dissipation is enhanced. An argument we
have given elsewhere (Borderies et al. 1982) shows that even in perturbed
regions the shear cannot be much larger than the orbital angular velocity ()
unless 7 >> 1. Thus the viscosity, and consequently the velocity dispersion
and ring thickness, must be enhanced in perturbed regions. In some places v
and 2 may be increased above their unperturbed values by between one and
two orders of magnitude.

HI. PARTICLE SIZE

The distribution of particle size must depend upon the mechanical prop-
erties of the particles. The detailed physics which determines this distribution
is not known.

A. Erosion Time Scale

Is the current size distribution the result of an equilibrium or of initial
conditions? The particles are constantly being eroded by collisions and they
accrete the resulting debris. The erosion time scale is the reciprocal of the
product of the collision rate ()7 and the fractional mass lost per collisionf. In a
Keplerian disk the impact velocity is typically a few times v*, the minimum
impact velocity at which fracture occurs. We estimate f to be of order (a*/R)’,
where a* is the radius of the contact area in an impact at relative velocity v*.
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Fig. 4. The random velocity and disk thickness as a function of optical depth.

From Egs. (1) and (4) and the values of E and oy adopted in Sec. I, we obtain

1 E\ 10

temslon_(? (U—y) __1'_— yr. (5)
Since the estimated erosion time scale is much shorter than the age of the
solar system we conclude that the particle size distribution results from an
equilibrium between ongoing processes.

Three assumptions implicit in the derivation of the erosion time scale are
worth mentioning: (1) we have assumed that a significant portion of the
fractured material is lost from the particles; (2) we have neglected surface
roughness which could affect the volume of fractured material; (3) we have
assumed that v* given by Eq. (4) is a typical value for the impact velocity.
This assumption is invalid if v* is smaller than {2R. In this case the collision
velocities would be of order (0R. This qualification clarifies the seemingly
unphysical conclusion that might otherwise be drawn from Eq. (5), namely,
that the erosion time scale diverges as oy approaches zero.

B. Range of Particle Sizes

If the processes responsible for establishing the particle size distribution
did not single out any characteristic length scales, the distribution would be a
" power law. In fact, the differential number density per unit radius deduced
from the Voyager radio occultation (Marouf et al. 1983) may be crudely fit by
the power law

n(R) = KR 33 (6)

for particle radii between a few centimeters and a few meters. The distribution
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is cut off outside this range although precise details of the cutoffs, in particular
the lower one, are lacking. The approximate power law is such that the larger
particles contain most of the mass and the smaller ones provide most of the
surface area. Independent information supports the existence of these two
cutoffs. The observation that the optical depth is similar at visible and radio
wavelengths proves that subcentimeter particles do not dominate the surface
area. An upper cutoff is indicated because the radio determination of the
surface mass density due to particles in the centimeter-to-meter-size range is,
if anything, somewhat greater than that determined from the wavelengths of
density and bending waves which provide a measure of the surface mass
density from particles of all sizes. The radio determination of the surface mass
density is based on the assumptions that the particles are made of solid ice and
that the filling factor is low. In fact, the previous comparison suggests that
one or both of these assumptions is invalid, a possibility to which we shall
return later.

1. Upper Cutoff. Consider two critical orbital radii related to gravitational
binding (see also chapter by Weidenschilling et al.). The inner r, is the limit
inside which small particles are not gravitationally bound to a synchronously
rotating, rigid sphere along the line passing from the center of the planet
through the center of the sphere. The outer r, is the Roche limit within which
no equilibrium exists for a synchronously rotating, incompressible, homo-
geneous fluid.

r /Ry = 1.44 (p, Ip)’, 7
r, IR, = 2.46 (p, Ip)’, (8)

where p, and p are the mean densities of the planet and the sphere and R,
is the planet’s radius. The Roche limit r, is larger than r, because the quad-
rupole potential of a tidally deformed fluid enhances the disruptive effect of *
the tidal potential.

‘The two critical orbital radii are precisely defined but their application to
planetary rings is fuzzy. A requirement for the persistence of a ring is that the
particles do not form large satellites. Gravity is almost certainly the dominant
force involved in satellite formation but it is difficult to see how to deduce a
precise criterion for the location of the outermost possible boundary for a
planetary ring.

The gravitational binding of small particles on the surface of a larger rigid
body would be an appropriate criterion if the small particles eventually be-
came chemically bound to the larger body. The large body would grow by
devouring small particles and would remain rigid. On the other hand, if small
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particles clustered gravitationally about a larger body and chemical bonding
did not occur, the assemblage would have low shear strength and thus be
mechanically similar to an incompressible, homogeneous, fluid body. Even if
we could decide which of these scenarios described more closely the behavior
of particles in Saturn’s rings, we could not use r, or r, to make precise
predictions because the bodies are not synchronously rotating.

It is of interest to compute the densities of particles for which r, or r,
would coincide with the outer edge of Saturn’s A Ring which is located at
2.26R,. We find p = 0.2 gcm ™ and p =~ 0.8 g cm™, respectively. It is
plausible that the particles in Saturn’s rings are less dense than solid ice for
which p = 0.9 g cm™; the Voyager radio occultation results offer some
support for this view (Marouf et al. 1983). We conclude that permanent,
gravitational binding of the ring particles does not generally occur, but that
our understanding of the reason for this is incomplete (see chapter by
Weidenschilling et al. for additional discussion of these issues).

Although gravity does not bind ring particles, molecular bonds can. The
tidal stress in a particle of radius R is approximately o; = p ((R)" It is equal
to the yield stress for R = 10° km. Obviously, this criterion is irrelevant to the
upper cutoff on the size of particles in Saturn’s rings.

A plausible argument can be made for identifying the vertical scale height
of the rings with the upper cutoff. Suppose that the principal processes which
-determine the size distribution are collisional erosion and the accretion of the
resulting debris. The accretion rate per unit area should be the same for all
bodies smaller than the vertical scale height. The erosion of bodies will
primarily be due to collisions with particles whose size is near the lower cutoff
since they dominate the total area. The erosion rate per unit surface area
should be similar for all bodies smaller than the vertical scale height. Typical
impact velocities on these bodies are of order the random velocity. For parti-
cles large enough to stick out of the main particle layer, i.e. for those with
R > h, due to differential rotation the typical impact velocity is of order
IR which is larger than the random velocity. The ratio of the average ero-
sion rate per unit area to the average accretion rate per unit area should be
independent of size for R < h and increase with R for R > h since the
volume of the material fractured during a collision must be an increasing
function of the impact velocity; Andrews’ theory predicts that it is pro-
portional to the 3/2 power of v for v >> v*, It follows that if the net
effect of erosion and accretion is to make dR/dr = O for bodies with
R < h, then dR/dt < O for bodies with R > h and the upper cutoff is naturally
explained.

A problem with this picture is that the vertical thickness of the rings
deduced from the damping lengths of density and bending waves appears to be
somewhat larger than the upper cutoff, at least in the A Ring (Cuzzi et al.
1981; Lane et al. 1982; Lissauer et al. 1982; Shu et al. 1983). However, a
smaller estimate is derived in Sec. V.B.5.



UNSOLVED DYNAMICAL PROBLEMS 721

2. Lower Cutoff. The lower cutoff may be due to the sticking of small
particles to bodies of comparable or larger size following collisions. To assess
this possibility we compare the elastic energy Wy stored during an impact to
the binding energy Wy which would be released if the material bonded across
the contact area. The elastic energy is a significant fraction of the relative
kinetic energy M v*/2. The surface binding energy is approximately Wy =< Eia®,
where i = 107 cm is the bond length and a is the radius of the contact area.
We evaluate the ratio of these energies for v = v*, since as we have seen, v is
of order a few times v* in unperturbed regions of the rings. We obtain

Weg  pRV* R

r )]

Wy Eia** i (E\* _10cm

( o Y)
This result suggests that if molecular bonds form across the contact area
particles smaller than a few centimeters may stick during collisions.

The sticking hypothesis needs to be critically examined,; it is not obvious
that molecular bonds form during low-velocity impacts and the fractures
which occur in the contact region complicate the dynamics. Also, it is difficult
to reconcile the sticking hypothesis with the observation that in certain por-
tions of the rings micron size particles make a detectable contribution to the
optical depth at visible wavelengths.

3. Thermal Stresses. Thermal stresses are produced as the particles spin
and move in and out of Saturn’s shadow. D. Stevenson (personal communica-
tion) has pointed out that thermal stresses may be responsible for a size-
dependent erosion rate. These stresses are of order

(TTmaATE, (10)

where « is the coefficient of linear thermal expansion and AT is the tempera-
tare variation. The value @ = 5 X 10~ K™ is appropriate for solid ice at the
ring temperature (Hobbs 1974) and eclipse cooling measurements indicate that
temperature variations of order 10 K penetrate to depths of several millimeters
(Froidevaux and Ingersoll 1980; Froidevaux et al. 1981). Thus o is of order
5 X 10° dyne cm™ which, although smaller than the yield stress, is large
enough to suggest that fractures may result from thermal stress.

It is probably at least as difficult to evaluate the erosion rate due to
thermal stresses as that due to collisional stresses. The thermal and collisional
time scales are of the same order of magnitude and the thermal and collisional
stresses penetrate to comparable depths. Unlike the collisional stresses which
are concentrated around the small area of contact, the thermal stresses are
spread over a large fraction of the particle surface.

The spin angular velocity must decrease with increasing particle size as a
consequence of the tendency of elastic collisions to promote equipartition of
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kinetic energy, although due to the imperfectly elastic nature of the collisions
equipartition is not achieved. The erosion rate per unit area due to thermal
stresses should increase with particle size because the depth of penetration
of the thermal wave is proportional to the square root of the spin period.

4. Commentary. Our discussion of the physical processes that determine
the size distribution is far from conclusive. Even some of the assumptions
made in deducing the distribution from the Voyager radio occultation data are
open to question. It is crucial that the particles have shapes that are not too
irregular and that they are well separated (Marouf et al. 1982, 1983).
Otherwise, some of the scattering attributed to small particles may be due to
surface roughness on larger bodies and the gravitational clustering of small
particles, such as proposed to explain the azimuthal asymmetry of the A Ring
(Colombo et al. 1976), could be partially responsible for the scattering attri-
buted to the larger bodies.

The high abundance of micron-size particles in the F Ring and the outer A
Ring suggests that small particles are collisionally produced since the random
velocity is enhanced in those regions by satellite perturbations. The surface
area of the micron size dust is so large that only a small fraction of it could be
produced on the collisional time scale. Most likely the dust grains adhere
weakly to the surfaces of larger particles and are shaken off in impacts. The
high abundance of micron-sized particles in the B Ring, where perturbations
due to external satellites are not especially significant, hints that an enhanced
velocity dispersion may be maintained in that ring by small imbedded satel-
lites. These satellites could be in part responsible for the qualitative mor-
phological differences between the A and B Rings.

IV. LARGE-SCALE STRUCTURE OF RINGS

Collisions conserve angular momentum and dissipate energy. As a con-
sequence of differential rotation, angular momentum is transferred outward
and the ring spreads. The characteristic spreading time for a ring of radial
width Ar is

tspread Z(A r)Z/V . (11)

The kinematic viscosity v is given by

2

~ns Y __ T
v 0'50 1+7

(12)
where v is the random velocity (Goldreich and Tremaine 1978a). We apply
~ Egs. (11) and (12) to estimate v in Saturn’s rings by assuming that the rings
have spread from a much narrower initial state to their present width over the
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age of the solar system. This procedure yields v = 0.2 cm s~ which is
between the theoretical estimate given in Sec. IT and the value obtained from
the damping lengths of density and bending waves.

The overall radial width of the rings could be explained by viscous
diffusion but the great amount and variety of structure seen on all smaller
scales implies that other mechanisms shape the detailed morphology. Among
the outstanding features to explain are: the differences between the classical
A, B and C Rings, the multiple ringlets which characterize the B Ring, the
sharp outer edges of the A and B Rings and the clear gaps which often contain
narrow elliptical ringlets. Two general mechanisms have been proposed to
account for some of the structure seen in the rings. They are the viscous
instability and satellite perturbations. We discuss them below. )

A. Viscous Instability

The torque exerted by the ring material inside radius r on the material
outside this radius is given by (Lynden-Bell and Pringle 1974)

T, =37 r’ . (13)

This torque is the rate at which angular momentum flows outward across the
circle of radius r; it is also referred to as the viscous angular momentum
luminosity L. The product »3, determines local structure since it is the only
part of T, which can vary on a scale small compared to r. We have computed
v2, as a function of optical depth from the v(7) relation shown in Fig. 4 and the
expression for the kinematic viscosity given by Eq. (12). The result is dis-
played in Fig. 5. Note that this theoretical result, which predicts that v3, has a
single maximum at 7 = 7,; = 0.5, is based on the assumption that the filling
factor is small. For sufficiently large 7, the random velocity would be so low
that this assumption would be invalid. We expect that a more complete theory
would show that v, increases for sufficiently large 7.

The viscous instability occurs in regions where »2 decreases with in-
creasing 7, i.e. for 7 > 7. The instability arises as follows (Lin and
Bodenheimer 1981; Lukkari 1981; Ward 1981; chapter by Stewart et al.). The
net viscous torque on a ringlet is proportional to d(vX)/8r = A(vX)/At -
ar/ar. If 8(w2)/dr <0, ringlets move toward regions of enhanced optical
depth and away from regions of reduced optical depth; thus a uniform disk
with 7 > 7, = 0.5 is unstable. The instability drives the disk toward a final
state in which there are contiguous regions of high and low optical depth with
identical values of T, or v3,.

The viscous instability is the leading contender for explaining the multi-
ringlet structure of the B Ring. However, the current version of the theory
predicts a bimodal optical depth distribution which is not observed. Also, it
seems far-fetched to imagine that this instability could be responsible for the
structure seen in regions of low average optical depth such as the C Ring and
the Cassini Division.
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Fig. 5. The product vZ as a function of optical depth.

B. Satellite Perturbations

Satellites exert torques on the ring material in the neighborhood of reso-
nances. The density and bending waves seen in Saturn’s rings are due to
torques produced by known satellites whose orbits are external to the main
rings. Torques exerted by the shepherd satellites confine the F Ring. The
sharp outer edge of the B Ring is maintained by the torque produced by
Mimas at its 2:1 resonance and the sharp outer edge of the A Ring appears to
be governed by the torque from the coorbital satellites at their 7:6 resonance.
Torques produced by small satellites imbedded in the rings have been pro-
posed to explain much of the small-scale structure. There is good circumstan-
tial evidence that the Encke Division is kept open by small satellites that orbit
within it (see chapter by Cuzzi et al.). However, in spite of a careful search,
the satellites suspected of maintaining the inner and outer clear gaps in the
Cassini Division were not detected by Voyager (Smith et al. 1982). Also, the
absence of clear gaps in the B Ring has been taken as evidence that imbedded
satellites are not responsible for its multi-ringlet structure (Lane et al. 1982).
However, see the final paragraph in Sec. V.C for further discussion of this
point.

V. SATELLITE TORQUES

Satellite torques are clearly associated with a variety of ring features.
Nevertheless, we are far from having achieved a complete understanding of
how they work. Some of the issues that remain to be settled are raised below.
A bewildering variety of satellite torques is discussed in this section. To
reduce confusion we adopt the following conventions: The satellite torques
are exerted on rings and not on satellites. Both satellites and ring particles are
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assumed to move on circular orbits. To simplify notation the satellite orbit is
taken to be larger than the ring particle orbits. With these conventions, the
satellite torques are negative. The discussion can be translated easily to the
case where the satellite orbit is smaller than that of the ring particles. We use T
to denote a torque; the superscripts L and NL indicate that the perturbation
where the torque is applied is either linear or nonlinear; the critical torque
which separates the linear and nonlinear torques is indicated by the superscript
C; the subscripts m and s denote the torque at an isolated resonance of order
m in a ring of uniform surface density and the total torque on a narrow
ringlet. The satellite torques will be compared to the viscous torque which is

given by Eq. (13).

A. Isolated and Overlapping Resonances

Two formulae for the satellite torque obtained from linear perturbation
theory are available. They apply to isolated and overlapping resonances and
read (Goldreich and Tremaine 1982)

L o~ 2 Ms ’ 2 4
Tm~—~flm(ATp) S Q5 (14)
Ti= (i) 15)

where M, and M, are the masses of the satellite and the planet. Equation (14)
gives the torque at a Lindblad resonance which is located where

QIQ, = (r, Ir) = mim—1) . (16)

Here Q,, Q and r,, r are the orbital angular velocities and orbital radii of the
satellite and ring particle, m is a positive integer and f, is a numerical coeffi-
cient which is equal to 8.46 for m >> 1. Equation (15) gives the total torque
on a narrow ringlet of width Ar which is separated from the satellite orbit by
adistancex =ry — r <<r;f, = 2.51.

To relate the torque formulae given by Egs. (14) and (15) we note that for
m >> 1, the radial separation between neighboring Lindblad resonances is

g=2T 17
3m2' ()

It is straightforward to derive Eq. (15) from Egs. (14) and (17). As long as
there are several resonances within a narrow ringlet Eq. (15) gives the total
satellite torque. It is the correct expression for the coarse grained satellite
torque.
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It is difficult to decide whether a resonance is truly isolated because
the width is not a precise concept. Where we can neglect the collective ef-
fects due to self-gravity, it is natural to define the width as the radial
distance over which the streamlines of the particle flow are significantly
distorted. This definition yields w = (M, /M )*r. Where self-gravity is
important a density wave is launched at the resonance and its first wave-
length provides a convenient measure for the resonance width. In this
casew = [(87'G2r)/[3Q0*(m — )]}

The resonances overlap if d < w. With either definition of w the A Ring
resonances associated with the coorbital satellites and the shepherd satellites
all qualify as isolated resonances and the shepherd satellite resonances in the
F Ring overlap.

B. Linear and Nonlinear Satellite Torques

In the derivation of the standard formula for the torque at an isolated
resonance, it is implicitly assumed that the ring has uniform surface density
and that the disturbance is sufficiently weak so that linear perturbation theory
is applicable. We examine these assumptions and the consequences of their
violation below.

1. Linear and Nonlinear Density Waves. We consider linear waves first,
and for the moment we neglect the effects of dissipation. The perturbation due
to a satellite at an inner Lindblad resonance launches a trailing spiral density
wave which propagates outward from the resonance. The density wave carries
away from the resonance all of the negative angular momentum which the
satellite torque adds to the disk. The ring particles undergo coherent oscilla-
tions in the wave. At the position of the resonance the oscillation frequency is
equal to the epicyclic frequency and it falls steadily below the epicyclic
frequency with increasing distance from the resonance. The lowering of the
collective oscillation frequency below the epicyclic frequency is accom-
plished by the self-gravity of the disk material. The direction of propaga-
tion of the density wave is determined because self-gravity can lower but not
raise the collective oscillation frequency. Since the necessary frequency tun-
ing due to self-gravity increases with distance from the Lindblad resonance,
the wavelength shortens in proportion to (r—r,)™". As a consequence of the
decreasing wavelength and the conservation of the angular momentum
luminosity carried by the wave, the amplitude of the surface density perturba-
tion increases in proportion to r—r,. Thus, in the absence of damping all
density waves would eventually become nonlinear.

We are primarily concerned with estimating the satellite torques at reso-
nances and not with the propagation of density waves. We distinguish linear
and nonlinear torques by the fractional surface density perturbation in the first
wavelength of the density wave.
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2. Linear Torques. For linear torques the important comparison is be-
tween the values of |T,,%| and Ty. If |T,%| < Ty, the surface density remains
uniform in the vicinity of the resonance and the actual satellite torque is equal
to T,,~. On the other hand, if |T,%| > T, a gap is opened in the ring and the
actual satellite torque is reduced to —Ty.

3. Nonlinear Torques. Nonlinear satellite torques are of great interest. All
of the well-observed density waves in Saturn’s rings are nonlinear in their
first wavelengths. These include waves excited at the strongest resonances of
the shepherd satellites, the coorbital satellites and Mimas.

The theory of nonlinear satellite torques has yet to be worked out. Most
likely it will require numerical calculations. However, we can make an edu-
cated guess for the value of the torque by an appropriate extension of the
linear theory. The basic assumption is that the nonlinear torque excites a
density wave whose fractional surface density perturbation is of order unity.
As such, the surface density perturbation is independent of the mass of the
satellite. Since the satellite torque arises from the interaction between the
satellite potential and the perturbed surface density, it must be proportional to
the first power of the satellite mass. This is in contrast to the linear torque
which is proportional to the second power of the satellite mass.

To obtain an explicit expression for the nonlinear satellite torque we use
the linear theory to determine both the critical satellite mass and the critical
torque for which the density wave is marginally nonlinear in its first
wavelength. The nonlinear torque is obtained by multiplying the critical tor-
que by the ratio of the actual satellite mass to the critical satellite mass.
Expressions for the critical mass and the critical torque follow directly from
results given in Goldreich and Tremaine (1978b). They are

2 2
me=t"" (18)
T o _17_22302 rE (19)
m 6Mp2
The nonlinear torque then reads
. 22 6
TmNL= f4 nﬂus2 QI‘ ) (20)

M,

Form>>1,f,=0.44andf, = 3.72.

The density wave associated with a nonlinear satellite torque does not
carry away from the resonance all of the angular momentum deposited in the
disk. The limitation on its amplitude implies that its angular momentum
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luminosity decays in proportion to (r—r,) ~ and that it is of order TS, within the
first wavelength of the resonance. The nonlinear wave enhances the viscous
stress which is responsible for its damping.

For nonlinear waves the important comparison is between |7,,*| and T .
If |7,V < Ty, the actual satellite torque is equal to T, On the other hand,
if [T,,"| > Ty, a gap opens in the ring and the actual torque is reduced to —T.

4. Satellite Torque at a Sharp Edge. Sharp edges such as the outer edges
of Saturn’s A and B Rings are maintained by satellite torques. To maintain the
edge the satellite torque must be equal to —T', evaluated in the unperturbed
region interior to the edge. In the limit M, < (or >) M,* = £,3 r’im,
the maximum value of the satellite torque on a sharp edge is equal to 75
(or TAL). The proof of this result follows directly from Egs. (22)—(25) of
Borderies et al. (1982).

5. Ring Viscosity. We apply the results of the preceding subsection to
estimate the viscosity in Saturn’s rings. The cleanest determination is obtained
for the outer A Ring. The strongest resonances in this regton are those due to
the larger coorbital satellite (Lissauer and Cuzzi 1982). A nonlinear density
wave but no gap is found at the position of the 6:5 resonance which implies
that the viscous luminosity of angular momentum just inside the resonance
exceeds the magnitude of the nonlinear satellite torque. The sharp outer edge
coincides with the 7:6 resonance which tells us that the viscous luminosity of
angular momentum just inside the edge is smaller than the magnitude of the
nonlinear satellite torque. From these deductions and Egs. (13) and (20) for 7',
and T,, ¥, we conclude that » is > 13(Z/100 g cm ™) cm® s just inside the 6:5
resonance and < 16(2/100 g cm™) cm® s~ just inside the 7:6 resonance.
To obtain the corresponding estimates for the velocity dispersion and ring
thickness, we adopt % = 50 g cm™ and 7 = 0.5 for the outer A Ring and
apply Eq. (12). We find v = 0.07 cm s~ and & = 5 m. These values are not
very precise because they were derived using the expression for the non-
linear satellite torque which is itself an estimate.

C. Shepherding Torques

There has been considerable discussion of the confinement of narrow
ringlets by pairs of small satellites (Goldreich and Tremaine 1979). Recent
work has focused on the role of dissipation (Greenberg 1983). The standard
explanation of the shepherding mechanism is as follows. Torques due to
satellites tend to repel ring material. Therefore, narrow rings can be located
between pairs of satellites where the net torque vanishes. The satellites exert a
net positive torque on the inner half of the ring and a net negative torque on
the outer half. These balance the viscous torque across the midline ring.

The explanation in the previous paragraph leads to a paradox which has
thus far escaped attention. The satellites transfer energy as well as angular
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Fig. 6. llustration of the shepherding geometry.

momentum to the ring. In a steady state the net torque vanishes but the net
energy transfer is positive. The energy is dissipated by particle collisions. We
now show that the viscous stress associated with the dissipation of energy
appears to be so large that the satellites cannot confine the ring. Consider two
identical satellites of mass M, spaced a distance x from a narrow ringlet of
width Ar (cf. Fig. 6). We assume that Ar << x << r. The ring and the
satellite orbits are taken to be coplanar circles. We imagine the ring to be
divided into an inner and an outer half. The total torques on the ring from the
inner and outer shepherd satellites are denoted by +7T;. For our purpose we
only need to know that the magnitude of 7; decreases with increasing x. It is
irrelevant whether the torque is linear or nonlinear. For definiteness we take T
to be proportional to x~% ¢ = 4 for linear torques and g = 3 for nonlinear
torques.

The standard treatment of the shepherding mechanism involves equating
to zero the net torque on each half of the ring. This procedure yields

Ty=——Ty, (21

where T is evaluated at the midline of the ring.

We extend the standard theory by relating 7T, to the energy dissipated in
the ring. For simplicity we assume that the ring is in a steady state. The Jacobi
constant
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J=E-QH | 22)

is conserved during an interaction with a satellite whose orbital angular
velocity is {),. Here E and H are the total energy and angular momentum
of the ring. From this relation we deduce that the satellites transfer energy
to the ring at a rate

dE X
—(Tt—z —3-;“07'8 . (23)

In a steady state this energy is dissipated in particle collisions so we have

dE \a
o ~M,—— = -2m rArZviQr. (24)

In writing Eq. (24) we have set the collision frequency equal to {7 and
assumed that a significant fraction of the relative kinetic energy of colliding
particles is dissipated. Next we use Egs. (12) and (13) to rewrite Eq. (24) as

U . Arﬂ |
P 3 a++ - T, . (25)

Finally, we add the contributions to dE/dr given by Eqgs. (23) and (25) which
sum to zero to obtain

Ar
T, =5 (L+7) —T. (26)

Comparison of Eqs. (21) and (26) reveals a contradiction with our beginning
assumption that Ar << x. The origin of the problem is clear. The satellites
produce torques that tend to confine the ring but they also transfer so much
energy to it that confinement is impossible.

Can this paradox be resolved or must the shepherding mechanism
be discarded? The answer lies in recognizing the weak link in the chain
of arguments which led to the paradox, namely the step relating the rate
of energy dissipation to the viscous luminosity of angular momentum. This
step would be valid if the satellite perturbations were axisymmetric but
they are not. We have shown elsewhere (Borderies et al. 1982, 1983) that in
nonaxisymmetric regions, the magnitude and even the sign of the viscous
angular momentum luminosity are not simply related to the rate of energy
dissipation. We believe that the resolution of the shepherding paradox follows
along these lines.
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Fig. 7. Collision between neighboring streamlines following perturbation by a shepherding
satellite. The horizontal scale is compressed relative to the vertical scale by a factor 75.

Some insight concerning the relation between energy dissipation and
angular momentum transport in the shepherding process may be gained from
Fig. 7. Shown there are two neighboring streamlines of initially circular test
particle orbits perturbed by a shepherd satellite. Since the perturbed stream-
lines oscillate with slightly different wavelengths (A = 3mx) they eventually
intersect. The intersection occurs at quadrature, i.e., midway between
periapse and apoapse. At the point of intersection the orbital angular velocity
increases outward. Thus, if we were to assume that all of the energy dissipa-
tion and associated angular momentum transport occurred there, we would
conclude that the angular momentum flowed inward, rather than outward as it
does in unperturbed regions. The foregoing argument illustrates the subtlety
of the relation between energy dissipation and angular momentum transport in
perturbed regions. A more complete analysis indicates that the balance of the
energy dissipation and angular momentum transport occurs well before the
hypothetical streamline crossing for 7 <<< 1 and close to it for 7 >> 1.

Our assessment of this paradox suggests to us that the accepted descrip-
tion of the shepherding mechanism is seriously flawed. The old picture is
correct in so far that the narrow rings are located between pairs of satellites
where the net torque vanishes. However, the satellite torques are not respon-
sible for confining the ring material. The confinement is due to the inward
transport of angular momentum which accompanies the dissipation of the
energy associated with the disturbances created in the ring by the shepherd
satellites. This new view removes the problem of understanding the sharp
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edges of the narrow rings. Also, although less obvious, the minimum sizes
predicted for the satellites inferred to shepherd rings are diminished by a
factor Ar/x.

A speculative possibility is that there are regions in Saturn’s rings where
the optical depth is so high that small imbedded satellites might be unable to
clear gaps although they could still produce optical depth variations. Perhaps
small satellites may still prove to be the cause of structure in the B Ring.

VI. TIME SCALE FOR SATELLITE ORBIT EVOLUTION

As external satellites extract angular momentum from the rings their
orbits expand. Calculations based on the formula for the linear satellite torque
predict remarkably short time scales for the recession of close satellites from
the rings (Goldreich and Tremaine 1982). Accounting for the effects of non-
linearity lengthens the estimated time scales, perhaps by as much as an order
of magnitude for 1980527 and the coorbital satellites, less for 1980526 and
not at all for 1980528. Thus these short time scales remain perhaps the most
intriguing puzzle in planetary ring dynamics.

Since angular momentum may be transferred outward in resonant interac-
tions between satellites (Goldreich 1965; Peale 1976), it is natural to inquire
whether the inner satellites in question are involved in any orbital resonances
with the more massive outer satellites. If they were, the time scale problem
would be alleviated because the angular momentum taken from the rings by
the inner satellites would largely go into expanding the orbits of these more
massive bodies. We have spent considerable effort fruitlessly searching
for appropriate two- and three-body resonances. We identified several close
misses and a number of excellent candidates for past or future resonances
but failed to find a single active resonance.

The severe nature of the problem is well-illustrated by the system com-
posed of the F Ring and its two shepherd satellites, 1980826 and 1980S27,
hereafter called S26 and S27. Taken by themselves, S26 and S27 could have
moved from the outer boundary of the A Ring to their present locations in
approximately 2 X 107 yr and 4 X 10° yr, respectively. (These values are
based on an assumed % = 50 g cm~.) The actual situation is more compli-
cated. S27 is trapped between the A Ring and the F Ring and some of the
angular momentum it takes from the A Ring is transferred outward to the F
Ring. S26 takes angular momentum from the F Ring as well as from the A
Ring. Since S27 is located closer to the A Ring and is more massive than S26,
and presumably the F Ring as well, in the absence of interactions with addi-
tional bodies, the entire system would recede from the A Ring at the rate
determined for S27 alone.

The outward movement of the system could be reduced if S26 were
involved in a resonance with a more massive outer satellite. When the early
results of the orbit determination of S26 showed that its mean motion was
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close to 3/2 that of Mimas, everything seemed to be falling in place. S26
would transfer angular momentum to Mimas which would then pass most of
it along to the more massive Tethys with which it is involved in a resonance.
Hope for this solution died when a more accurate orbit determination dem-
onstrated that the suspected resonance between S26 and Mimas was just a
close miss.

No resonance has been found linking S26 with one or more outer satel-
lites. What might this imply? Are the F Ring and its shepherd satellites very
young? Does the long sought resonance exist awaiting detection? A most
interesting possibility is that S26 is transferring angular momentum to Mimas
even though the two bodies are not in an exact orbital resonance. This could
be accomplished if the motion of S26 were chaotic, i.e., if the value of its
mean motion were undergoing a slow random walk. We have proven that if
the mean longitude of S26 were subject to a significant random drift, in
addition to its dominant secular increase, angular momentum transfer to
Mimas would take place by virtue of the near resonance between S26 and
Mimas. By significant drift we mean of order one radian on the circulation
time scale of the critical argument associated ‘with the near resonance. To
check this hypothesis, we must first determine whether the orbital motion of
S26 is chaotic. To do so we need to investigate the perturbations of its orbit
produced by S27. Solution of this and the other outstanding theoretical prob-
lems will await results of ongoing research.
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