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1. INTRODUCTION

It is difficult to improve on Holmberg's (1940) introduction
to this subject:

The average space separation of extragalactic
objects is rather small, compared with the dimensions
of single objects. In a stationary universe we must
expect a large numbe¥ of encounters. Every close
encounter between two objects will create large tidal
disturbances, and the resulting loss of kinetic energy
may be sufficient to effect a capture, i.e., to change
the hyperbolic orbits of the objects into elliptical
ones. Immediately after the capture, the elliptical
orbits may be assumed to have rather large eccentricities,.
Every subsequent passage of a component through the peri-~
center of the relative orbit will, however, create new
tidal effects and thus tend to decrease the eccentrieity.
The general result will be a gradual contraction of the
relative orbit, which may continue until the two compo-
nents form practically one object.

Helmberg (1941) also obtained quantitative estimates of the tidal
energy loss in a close passage of two disk galaxies. He used an
analog computer based on 74 movable lamps representing stars. The
gravitational force on each star was determined from the net £lux,
which Holmberg measured by temporarily replacing the lamp with a
photocell.

Despite Holmberg's pioneering work there was only a trickle
of papers on mergers in the next thirty years. The main reason
for the lack of interest was that close encounters and mergers
seemed to be rare events. Suppose that any encounter with impact
parameter less than R leads to a merger. The probability that a
galaxy undergoes merger within a time T is

o2
p = "R <v__ > NT, L

67



SCOTT TREMAINE

where N is the number density of galaxies and <v,,,> is the mean
relative velocity, Let the Hubble constant be H = 100h km s~! Mpc‘l;
then

P=2x10_4( w> ) m VI Trer” )
0.05 Mpc-3/ 20 kpe )\ 300 km s_l/

We see that if the capture radius R is identified with the visible
size of galaxies, then the merger rate at present is very small.

The probability p is independent of the Hubble constant since
observations yield Nh~3 and Rh, and HT v 0(l). Thus, the conclusion
that the merger probability is small was already reached by Holmberg
(1940), even using a Hubble comstant which was badly in error.

(HT) . (2)

In the last decade three separate lines of argument have
suggested that mergers are a common and important event in galactic
evolution. In 1974 Ostriker, Peebles & Yahil argued that "there
are reasons, increasing in number and quality, to believe that -the
masses of ordinary galaxies may have been underestimated by a factor
of 10 or more." The evidence has continued to mount since then (see
Faber & Gallagher 1979 for a review), and it now seems likely that
most giant galaxies have massive halos which may extend 100 kpc
or more in radius. In this case the capture radius R and merger
probability p in (2) must be increased by large and uncertain
amounts; moreover, the drag exerted by this halc on bound companion
galaxies (see section 3) will lead to the orbital decay and merger
of many bound systems.

Second, Toomre & Toomre (1972) and Toomre (1977) have argued
that if galaxies are formed without large peculiar velocities, then
it is natural to suppose that in many cases a galaxy and its nearest
neighbor will form a bound pair. In the absence of tidal torquing,
the galaxies will fall together and collide; if the collision is
close enough to head—-on then merging will occur. One argument that
this scenario is common is that our Galaxy appears to form a bound
pair with M31. Also, Aarseth & Fall (1980) found many mergers of
loosely bound binaries in their cosmological N-body simulations.

The third and most striking argument is that the observed °
merger rate appears greatly to exceed the value given by equation
(2). Toomre (1977) identifies ten pairs of interacting galaxies
"in fairly advanced throes of merger' from ~ 4000 NGC galaxies.

He argues that the tails by which he identifies his candidates
cannot last much more than 5x108 yr; assuming a uniform rate
throughout the past 1010 yr yields a merger probability p = 0.05.
A reasonable extrapolation to higher rates in the past would yield
an even higher value of p.

In this review I will discuss only mergers occurring after the

process of galaxy formation is complete. Mergers between proto-
galaxies may also be an important process (e.g. White & Rees 1978)
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but the details are less certain and will not be discussed here.

2, MERGERS OF GALAXIES OF COMPARABLE MASS

Consider a perturbing mass my, which passes a galaxy at impact
parameter p with a large velocity v = vz, The center of the galaxy
is at the origin and the perturber'’s orbit is in the xz plane. For
|£| << p the perturbing potential is

N G (F-r )2 -
i@ = —I;R[%rz—%-———i?—:[ i (3)
r r
p p

- 3 . . + - »
Thus, in the impulse approximation, a star at r receives a velocity
increment
2Gm

av o= - [vuat = —F (x,-y,0). (4)
vp
Assuming AV is uncorrelated with v the change in energy per unit
mass is 2 9
2G mp 9
bE = ——— (7 +y7). (5)
vp
Averaging over a spherical galaxy of mass m_ gives
4G2m2m &
AR = —D2 8 % (6)
2 4
3v'p

Thus, in the encounter of two identical galaxies, we get

23 2
8G m <xr >
—_— @)
2 4
3v'p

AE

The orbital energy is E = %-mgv2 so merging occurs if AE > E or

pv < [%g szz <r2>] 1/4. ' (8

The derivation above follows closely the argument of Spitzer
(1958), who was concerned with the disruption of open clusters by
interstellar clouds. Spitzer also recognized that the derivation
failed when v/p s 2, where Q is a typical angular velocity of a
star in the galaxy or open cluster. In this limit the approximation
that the stars are stationary during the encounter fails; for
v/p << Q the stars orbit many times during the encounter and, by
adiabatic invariance, their energy change is small,
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We can also treat another limit, the head-on collision at
large velocity. Consider a single star passing a spherical galaxy
with mass distribution M(r). If the star has impact parameter p,
the perpendicular impulse which it receives is

v, = 2%3 Ip _deM(r) (9)
2/

Now if we letrz(r) be the surface density of the galaxy, and if
M(x) = Zﬂfo Irdr is the projected mass inside a cylinder of
radius r, the formula above can be written as

AYL = 29%521 . (10)

If the star is regarded as a member of a second identical galaxy
colliding head-on, then the total change in energy in both galaxies
during the collision is

AE = 2-27 f %AVJ? frdr
0
= EE%J"” [M(g) 3 ip. b
3 v2 0 P

Merger occurs if AE > E or

2 o
4 _ 326 Mip) | 3
v < =M f [“—pL} dp. (12)

For example, a modified Hubble lawZl = 20(1+r2/a2)—1 (Rood, Page,

Kintner & King 1972) has M(r) = nZOazﬁn(1+r2/a2) and AE = 298.2
Gzﬁgaafvz.

The head-on formula (12) complements the tidal formula 8,
and with a smooth interpolation between them they should yield
fairly accurate results for the energy loss in high-velocity
collisions. For low velocity collisions v and p may be replaced
by the velocity and distance at closest approach (where closest
approach is computed from the galaxy orbits on the assumption that
they are rigid, possibly interpenetrating spheres). The usefulness
and accuracy of the impulsive approximation have been stressed
primarily by Alladin and his coworkers (Alladin 1965, Sastry &
Alladin 1970, Sastry 1972, Alladin, Potdar & Sastry 1975); Toomre
(1977) and Dekel, Lecar & Shaham (1980) also point out that the
impulsive formulae are surprisingly accurate for low-velocity
collisioms.
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The simple capture criteria (8) and (12) can be checked by
numerical simulations. However, even with our crude arguments the
main uncertainty is in the observations because the galactic mass
distribution is so poorly known (e.g. Faber & Gallagher 1979).
Thus, the main purpose of numerical calculations is to determine
the properties of the merger remmant (rotation speed, ellipticity,
velocity dispersion, etc.).

There are two main approaches to numerical simulations of
collisions and mergers of galaxies of comparable mass:

(1) Full N-body calculations have been carried out by Holmberg
(1941), with 37 bodies per galaxy, by White (1978, 1979a) with 250
bodies per galaxy, by Roos & Norman (1979) with ~ 30 bodies per
galaxy, and by Dekel et al. (1980) with a 250 body galaxy perturbed
by a single body of comparable total mass. White concentrates on
mergers from bound or parabolic orbits while Dekel et al. examine
hyperbolic collisions.

The disadvantages of N-body calculations are that statistical
fluctuations are large because of the small number of bodies and
that two-body relaxation effects cause evolution of the galaxies
even when they are isolated (White 1978). For head-on collisions
N rings can be used instead of N point masses (Toomre 1977),

(2) An alternative approach is to expand the potential in a
complete set of harmonic functions and keep only the lowest orders
of the expansion. The advantage of this method is that if K orders
are kept and N particles are followed, only ~ NK operations are
needed per step, whereas an N-body code needs n N2. Thus more
particles can be used and statistical errors are reduced; however,
all features on small scales are washed out., wvan Albada & van
Gorkom (1977) studied the head-on collisions of two galaxies with
N = 1000 particles per galaxy; because the system was axially
symmetric they expanded the potential using Legendre polynomials
up to index & = 4, Villumsen (1980) used N = 600 particles per
galaxy and expanded the potential in tesseral harmonics up to & = 4,
Miller & Smith (1980) use N = 50,000 particles per galaxy, work
within a cube of side L, and keep the lowest (64)3 Fourier coeffi-
cients of the potential,

A useful trick introduced by van Albada & van Gorkem is to
use two separate coordinate systems in the potential calculations,
one centered on each galaxy. This reduces the higher-order potential
components during the initial approach.

Some of the results from these calculations include:

(1) The cross-section for mergers between rotating galaxies
is strongly enhanced if the spin and orbital angular momenta are
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aligned, and sharply reduced if the spins are opposite to the
orbital angular momentum (White 1979a). This is not surprising
since the velocity of the perturber relative to a prograde star
is small so the perturbation acts for a longer time.

(2) The merger remmant usually has both a higher central
density and a more extended outer envelope than its progenitors
(e.g. Dekel et al. (1980) £find that the radius containing half
the mass shrinks but the radius containing 90% of the mass grows).

(3) Escaping stars carry away relatively little mass or
energy, although they may carry away significant amounts of angular
momentum in off-center collisions.

(4) Head-on collisions lead to prolate galaxies elongated
along the line of the initial trajectory; off-center collisions
lead to oblate galaxies flattened along the initial orbital plane.

All of the work done so far has been on mergers of spheroidal
systems, These calculations are mainly useful for determining the
properties of merger remmants at the centers of rich clusters (see
section 4). It is at least as interesting to try to understand
the merging of two disk systems, since spiral-spiral mergers are
likely to be much more common than elliptical-elliptical mergers
in the field. However, there has been relatively little progress
in this area because, among other reasons, it is difficult to
construct isolated stable disk systems, and the number of parameters
to be studied is so large.

.

3. MERGERS OF SATELLITE GALAXIES

3.1 Dynamical friction

In the impulsive calculations of the previous_section the
energy change due to a perturber of mass mp is « . Thus the
frictional effects which lead to mergers are due to second-order
perturbations. Since the orbital kinetic energy is « »
sufficiently low mass perturber will not be captured from an unbound
orbit. However, a satellite galaxy of mass mg in a bound orbit
around a galaxy of mass my, >> mg may still merge because its
orbital energy is lost gradually over many orbits.

This process may be regarded as a manifestation of dynamical
friction {Chandrasekhar 1960). A galaxy of mass mg moving at
velocity v through an infinite homogeneous background of stars
with density p and a Gaussian velocity distribution with one-
dimensional dispersion o suffers a drag

& - - an6m v i [p (0 - ' 0] mh (13)
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where x = 2_§v/0, ¢ is the error function and A = p_../ppiy, where
Pmax and Ppip are the maximum and minimum impact parameters con-
sidered. Usually ppjp = max(rg,CGmg/vZ), where rg is the size of

the satellite, and ppax is the scale size of the background. Notice
that dynamical friction is a second-order effect in mg since the
force on my is « msz.

One example of the use of equation (13) is Tremaine's (1976)
estimate of the decay rate of the orbit of the Magellanic Clouds
in the halo of our Galaxy. Alar Toomre has pointed out that Cox
(1972) also treated the decay of a satellite orbit in a spherical
galaxy using equation (13).

The frequency of mergers of satellite galaxies is relatively
small unless the central galaxies have extended massive halos. If
the halo mass distribution is an isothermal sphere with a very small
core radius, then p(r) = 02/(2wGr2), and a satellite in a circular
orbit has v = ¥2g. From equation (13) the orbital radius evolves
as

2 2 Gm t
r“(t) = r°(0) - 0.605 ‘EE‘ %n A, (14)

or
r(t) = [£2(0) - (52kpc)2(t/1010yr)(mS/IOIOMG)(IOOkm s L /oyen 1.
(15)

Now suppose that initially the number density of satellites is
n(r). The flux through a given radius is = rZ2n(r)dr/dt = rn(r).
Thus if n(r) = r~Y we expect depletion of bright (i.e. massive)
satellite galaxies at small radii for v > 1 and an overabundance
of bright close satellites for vy < 1. In fact v = 1.8 (Peebles
1980) so there should be depletion; however, the amount of depletion
is uncertain and small because tidal stripping may réduce mg and
thus |dr/dt| as the galaxy spirals in. Ostriker & Turner (1979)
point out that depletion may also be masked by brightening of
incoming galaxies due to tidal shocks which induce star formation.
The observational evidence for depletion has been discussed by
Ostriker & Turner (1979), White & Valdes (1980), and White (1980).
The interpretation of the observations is uncertain but there is
no strong evidence for or against the rapid decay rate and short
lifetimes of nearby satellites predicted by the dynamical friction
formula if massjve halos are present.

How much has a typical galaxy eaten? Peebles (1980) writes

the number density of galaxies of mass mg at separation r from a
given galaxy as n(r,ms)ch'n.s = no(mé)dms (r/ro)"Y where no(m.s)dmS is
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the field density, v = 1.8, and rg & 3h 1Mpc (Davis, Geller &
Huchra 1978). This expression is valid for r << rg. We obtain
the field density from Schechter's (1976) luminosity functionm,
assuming constant M/L: ng(m;)dm; = n*( £m#) "% exp(-mg/w*) dmg /m*,
where n* = 0.04 h3 Mpc™3, w+ = 6 8x10% h 2(M/L)M,, o = 1.25.
Using equation (14) to determine r(0) for x(t) =. 0, we find that
the accreted mass is

@ r(0) _
m [k = jo ny(m) (m_/u) dm fo 4m(r/ry) r'dr
= 0.06 [ (B,t) tn A (M/hL)(100 km s™+/0)]°"C. (16)

For the luminous central parts of galaxies M/hL * 15 (Faber &
Gallagher 1979{ and if we adopt n A®2, Hyt * 1, then m,../m* =
0.5 (100 km s~1/g)0- 1ndependent of h. Within the large uncer-
tainties a typical giant galaxy has eaten somewhat less than its
own mass.

3.2 The validity of the dynamical friction formula

The dynamical friction formula (13) is appealing because of
its simplicity. However, it is not rigorous; in particular, the
formula is difficult to generalize from an infinite homogeneous
background to a spherical system. To see this, consider (for
example) a star in a galaxy which is initially on a circular orbit
in the plane of the satellite orbit. Suppose the satellite orbit
is also circular with radius rg. The potential of the central
galaxy may be written U(r), and the angular speed of an object in
a circular orbit of radius r is Q, where 92 = r~ldu/dr. The
potential from the satellite may be written as a series of terms
of the form ¢p(r) cos m(e-0g5t), where Q. = Q(rg), m is an integer,
and 6 is the azimuthal angle in the orbital plane. Then the
equations of motion of the star due to a single term in the per-
turbing potential are

2 2 d¢
d'r J du m dJ .
ol 3 dr T T oo n(0-a.6), T = + msin n(6-R €)

(17)

where J = r2d¢/dt is the angular momentum. If the perturbation is
turned on at t = 0 then to first order in ¢, the solution is

¢ .
3 = -(ﬁ:gls-)' {cos[m(ﬂo-ﬂs)tmeo] - cos md g} ,
r
(0]
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[dq,m/dr + 29¢m/r(n-ns)]r
0

r_=-—- X
1 2 2 2
Kg — M (90 ﬂs)
m(ﬂo-ﬂs)
{cos [m(QO-QS)t + m60] - COSKOtcosmeo + TO—- sin Kotsz.n meo}
206 (r.)
+ _Om 0 cos mBO(l—cosxot) R (18)

2
romo(ﬂo Qs)

where the staxr is at (rg, 6g) at t 0 Qg = a(r ) and the eplcyc11c
frequency kg is given by Ka (d2 U/dr + 3r"1dU/8r)r . There is

no secular torque on the star to first order. The calculatlon

can also be carried to second order and there is still no secular
torque. There is also no secular increase in the star's energy E
since dE/dt = Q.dJ/dt by Jacobi's integral, and consequently no

drag on the satellite analogous to dynamical friction, which is

also second order in the perturbing potential. A similar conclusion
was reached by Kalnajs (1972) in a more artificial but exactly
soluble system.

There are two aspects to the resolution of this problem,
First, consider only relatively close encounters (say, by setting
Pmax in the Chandrasekhar formula equal to 2p_;,.). For these
encounters the approximation of an infinite homogeneous background
is valid since the impact parameter is much less than the scale
size and a given star is unlikely to have more than one close
encounter. However, this restriction decreases Chandrasekhar's
drag force only by a factor~2n A. Thus, a conservative estimate
of the drag force is given by considering only close encounters,
i.e, by formula (13) with #n A ~ 1. The difference of a factor
of 2n A is not generally large enough to have observable consequences.

Second, and more important, the first order perturbations Ji
and rp in equation (18) dlverge at resonances where Q = Qg (co-
rotation resonance) and k§ = m?(Qp - 2g)2 (Lindblad resonance).
Thus, perturbations near these resonances are large. Moreover, the
formula for the second order torque dJ;/dt contains periodic terms
of long period near these resonances. Let us restrict ourselves
for the moment to the vicinity of the Lindblad resonance; the
corotation resonance can be handled by similar techniques. The
second~order torque near the Lindblad resonance at k = m(QO - Qs)
due to divergent long-period terms is

2
dJ m d¢m 2mf sin At (19)

2 dr * K ¢m A
LL r
where A = k - m(ﬂo—ﬂs). The resonance radius r_ is defined by

L
75

[
1
a1

2 =
dt



SCOTT TREMAINE

A(rL) = 0 and we have dropped the distinction between rp and r
except in A. The torque on a given star (fixed 4) grows like t
until it drops out of resonance at |At| ~ m. As time goes on the
number of stars in resonance decreases like t~l but each one feels
a torque = t. Thus the total torque is independent of time. The
existence of secular torques at resonances was recognized by
Lynden-Bell & Kalnajs (1972), who also derived a more general form
of (19) for resonances in an arbitrary flat axisymmetric system.
Eventually equation (19) fails because the perturbations on the
stars which are still in resonance become non-linear. However,
evolution of the satellite orbit will generally bring fresh stars
into resonance so that a secular torque continues to be present.

In a real galaxy, with eccentric satellite and star orbits,
the resonance structure is much more complicated than a single
Lindblad resonance. The purpose of the simple example presented
here is to show that near-resonant stars in a galaxy can exert
secular torques on a satellite. These torques are the analogs,
for spherical or axisymmetric systems, of the drag force described
by Chandrasekhar's dynamical friction formula for infinite homo-
geneous systems. _(To see this consider a resonance with azimuthal
wavenumber m of order unity. Then ¢, ~ Gmg/r, where mg is the
satellite mass, and r is the orbital radius. We may set k Vv Q,
and the number of field stars in an interval dA is » prsz/Q where
p is the mean galaxy density. Then integrating (19) over A we
have dJ2/dt ~ szszplﬂzr. The classical formula (13) gields the
same result, dJo/dt v m rdv/dt ~ G2mg2prv=2 ~ szszplﬂ r, using
v ~ Qr.) In principle it is possible to compute exactly the
frictional force on a satellite in a specified orbit in a specified
axisymmetric galaxy.

There are at least two situations where this kind of calculation
will yield important new results. First, we can determine how fast
frictional forces fall off beyond the outer edge of a galaxy; if
the galactic halo ends at 50 kpe, what is the fate of a satellite
in orbit at 100 kpc? Second, we can determine the orbital evolution
of close companions of spiral galaxies which are influenced by the
disk component of the central galaxy. For example, the disk may
slow or halt merging of companions in prograde orbits by adding
angular momentum to the orbit as fast as the halo removes it.

3,3 Numerical techniques

Numerical calculations of the merging of bound companions
can be done using the methods described in the previous section.
These techniques are best suited for systems of two galaxies of
comparable mass although White's (1978) N-body experiments include
a test of Chandrasekhar's dynamical friction formula for a satellite
with 0.1 times the mass of the main galaxy; the formula works
quite well,
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If the mass of the satellite is much less than the mass of
the central galaxy, then many dynamical times are needed for
merger to occur, In this case N-body experiments are both expensive
and subject to numerical error and two-body relaxation effects. An
alternative approach has been proposed independently by Borne (1980)
and by Lin & Tremaine (1980). They investigate a system containing
three types of objects: (1) a central galaxy described by a potential
U(r); Lin & Tremaine use a point mass potential U(r) = - GM/r while
Borne uses a more realistic potential, (2) N stars of mass m which
orbit the central galaxy, (3) a satellite galaxy of mass mg, also
orbiting the central galaxy. The stars interact gravitatiomally
with the central galaxy and the satellite; the difference from a
standard N-body program is that the stars do not interact with each
other. Turning off the star-star attraction in this way eliminates
two-body relaxation, increases numerical accuracy and greatly in-
creases computational speed (v N calculations per step instead of
N2). The only sacrifice is that the self-gravity of the outer parts
of the central galaxy has been neglected.

I will describe two sample results using this technique. To
investigate frictional effects on a satellite orbiting beyond the
outer edge of a galaxy, Lin and I comstructed a galaxy with central
mass M = 1 (in units with G = 1) surrounded by a halo of N = 450,
stars with total mass Nm = 1. The stars were initially dlstrlbuted
with a phase space density f depending only on energy ¢ = M/r- %v .
We chose f(g) « e2:3 for 0.5 < ¢ < 2.5 and f(e) = 0 for ¢ < 0.5 or
€ > 2.5. Thus the maximum radius which a star could reach in its
unperturbed orbit was r = 2; however, over 957 of the stars have
r <1 and we will call r = rg =1 the "edge" of the halo. The
satellite galaxy mass was mg = 0.1; it was placed in a circular
orbit of radius rg = 2.28, over a factor of two lagger than the
halo edge at rg. Its initial orbital period was 227-(2. 28)3
15.30 units. (Recall that mg is attracted by an effective mass
M+Nm = 2, since it interacts with both the stars and the central
mass.) The evolution of the angular momentum Jg; of the satellite
1s shown in Figure 1. The angular momentum changes slowly at first
but with increasing speed as the orbit decays. An arrow marks the
point corresponding to a circular orbit at the edge of the halo
rg = 1; notice that the orbital decay is very fast beyond this
point as the satellite is within the halo itself. These results
show that strong frictional effects are present even in a satellite
orbiting well outside the radius of most of the stars.

Our second experiment began with the same initial conditionms,
but the satellite galaxy was frozen into its initial circular orbit
at rg = 2.28 for 120 time units (v 8 orbital times) before it was
permitted to decay. An initial freezing period may correspond more
closely to the way the satellite galaxy was actually formed. In
this case the decay time for the satellite to reach the edge of the
halo was 138 units after release, whereas in the first experiment
the decay time was only 51 units. The late stages of the decay are
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very similar in both cases, suggesting that the system loses all
memory of the initial 'freezing' once the decay has begun.

frozen for
1 =400

l+— halo edge

Js

Fig. 1. Decay of the orbital angular momentum Jg of a satellite of
mass mg = 0.1 in orbit around a point mass M = 1 surrounded by a
halo of N = 450 stars of mass m = 1/450. 1In one case the satellite
was frozen into its initial circular orbit for 120 time steps before
it was released.

4, MERGERS IN RICH CLUSTERS

The one~-dimensional Veiocity dispersion in a typical rich
cluster is deg v 1000 km s~ ~. Thus encounters between cluster
galaxies usually take place at high relative velocity and mergers
do not occur. However, mergers can occur by a slightly more subtle
process. Dynamical friction causes the orbits of cluster galaxies
to decay, just like the orbits of satellite galaxies in a halo
(Lecar 1975). From equation (15), substituting 2n A ~ 1 (a lower
limit, see section 3) and o "~ ogg, we see that the orbit of a
typical giant galaxy with mg v 10121\10 will decay all the way to the
cluster center in 1010 yr if r(0) s 150 kpc. As galaxies accumulate
in the cluster center they merge by the processes we have already
discussed. Thus a single large merger remnant may be built up
(Ostriker & Tremaine 1975, White 1976).

There is strong evidence that these remnants correspond to the
cD galaxies identified by Morgan and his colleagues by morphological
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examination of photographic plates. These are defined by Matthews,
Morgan & Schmidt (1964) and Morgan, Kayser & White (1975) as super-—
giant galaxies having an elliptical-like nucleus surrounded by an
extensive envelope. Most known ¢D's are in rich clusters though
some are found in groups (Morgan et al. 1975). It is attractive

to identify the eD's in rich clusters as merger remnants because:

(1) The cD is often much more luminous than any other galaxy in

the cluster (e.g. Dressler 1978). This statement is not very
precise as it stands since cD’s are already defined to be very
luminous ('supergiant'). More accurately, we can say that the
brightest members of clusters of galaxies are often more luminous
than we would expect from the statistics of the luminosity function
and that these exceptionally bright galaxies usually have extended
halos (Oemler 1976, Tremaine & Richstone 1977, Dressler 1979).

Both characteristics are necessary for a cD, and both are consistent
with cD's being merger products:; the observed luminosities are
roughly equal to the total luminosity of the galaxies which spiral
to the center in a Hubble time (White 1976) and the extended halos
are obgserved to form in N-body simulations of mergers (cf. section 2),

(2) The ¢D galaxy is usually found near the cluster center (Morgan
& Lesh 1965, Leir & van den Bergh 1977, R.A. White 1978), consistent
with the buildup of a remmant at the bottom of the cluster's poten-

tial well,

(3) Many cD's have double or multiple nuclei (Morgan & Lesh 1965).
A good example is NGC 6166, the cD in A2199 (Minkowski 1961).

These may be tidally stripped remnants of galaxies which have
spiralled into the cD. Hoessel (1980) finds that the fraction of
first-ranked cluster galaxies with multiple nuclei separated by

< 10n71 kpc (about 1 in 4 from a sample of 100 galaxies) is con~-
sistent with theoretical estimates of merger rates. Similarly,
Rood & Leir (1979) point out that in ~ 257 of Bautz-Morgan Type I
clusters (clusters containing a central ¢D, Bautz & Morgan 1970},
the first-ranked galaxy is part of a 'dumb~bell' system containing
two galaxies differing by s 1 magnitude. Contrary to Rood & Leir's
conclusion, I believe that the observed fraction is roughly con-
sistent with theoretical merger rates. The mean spatial separation
of Rood & Leir's pairs is ~ 20h'1kpc. From Jenner (1974) and
Dressler (1979) the velocity dispersion in a typical cD envelope

is v 500 km s™*, corresponding to a circular velocity of ~ 700 km gL,
The resulting orbital time is n~ 1.8x108 h~lyr. The decay time for
equal mass galaxies is about one orbital time; since the second
galaxy is perhaps a factor of two fainter than the c¢D, a rough
estimate for the decay time is 4x10% h~lyr. Since 25% of the cD's
are in dumbbells we conclude that a dumbbell is formed about every
(1 to 2)x109 h'lyr. For want ?f better information we take the
typical cluster age to be {Hy © = 5x10° h"lyr; thus Rood & Leir's
Bautz-Morgan Type I clusters have gone through 2-5 dumbbell stages
on average. This is roughly the rate predicted by merger simulations
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(Hausman & Ostriker 1978), and is also roughly the rate required
to produce a cD galaxy one or two magnitudes brighter than the
other galaxies in the cluster.

(4) Galaxies get fat when they eat. Ostriker & Hausman (1977) and
Hausman & Ostriker (1978) have stressed that this effect should be
detectable as a correlation between the luminosity of the first
ranked galaxy and the structure parameter o = (d#nL/d¢nR)g., where
L is the luminosity inside an aperture of radius R. Hoessel (1980)
has measured o for 90 first ranked galaxies at Ry = 10 h-l kpe and
finds a strong correlation which follows the predictions of Hausman
& Ostriker.

(5) The major axes of cD galaxies are aligned with the major axes
of their clusters (Sastry 1968, Carter & Metcalfe 1980). This
alignment is natural if the cD has grown by accreting cluster
members.

Many further details of all these tests are given in the
references. In the last five years an impressive array of evidence
has been accumulated in support of the hypothesis that many first
ranked cluster galaxies (and possibly all cD galaxies) are merger
remnants. We must remember, however, that the center of a rich
cluster is a complex environment, and many other processes may
play a role in the evolution of galaxies there (e.g. Cowie & Binney
1977).

5. DO MERGED SPIRALS MAKE ELLIPTICALS?

Toomre & Toomre (1972) and Toomre (1977) have speculated
that most or all elliptical galaxies may be the remnants of merged
spirals. The original motivation for this suggestion was the cal-
culation described in section 1, which showed that the observed
merger rate (times a factor of three extrapolation to account for
a higher rate in the past) could produce the observed fraction of
ellipticals (v 15Z) in a Hubble time.

Since elliptical galaxies have_virtually no interstellar gas,
the merger process must remove v 10 0Me of gas in the collision of
two normal spiral galaxies. This does not appear to present serious
difficulties. The most plausible mechanism is that a burst of star
formation driven by tidal or collisional shocks produces enough
supernovae to drive a wind which expels the gas from the merger
remnant., The peculiar colors of interacting galaxies suggest that
star formation bursts do occur in galaxy collisions (Larson &
Tinsley 1978). The average supernova rate in our Galaxy already
supplies a large fraction of the energy input to the interstellar
medium, so it is plausible that a burst of supernovae could sweep
the gas out. .
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A second potential problem was raised by White (1979b), who
pointed out that if mergers occur between unbound systems of com—
parable mass, then the merged remnant may have more angular momentum
than observed elliptical galaxies. This is not a serious problem
since most mergers occur between initially bound systems, as des-—
cribed in section 1 and mentioned by White. In fact, N~body simu-
lations by Jones & Efstathiou (1979) and Aarseth & Fall (1980)
yield quantitative agreement with observations. The latter authors
expressed Ehei7 results in terms of the dimensionless number A =
J|E|1/2 o 2, where J, E and M are the angular momentum, energy
and mass of the merged remnant. They found <\A> = 0.07+0.02, and
estimated <A> * 0,08 from observations, in good agreement. This
result is encouraging but does not provide a strong test of the
merger hypothesis since tidal torques also yield <A> = 0.07+0.03
(Efstathiou & Jones 1979)., A more stringent test is to ask whether
mergers produce the observed relation between flattening and V/o
(the ratio of rotation speed to velocity dispersion). This test
requires accurate numerical experiments on the merging of disk
systems.

However, there are several serious problems with the hypothesis
that ellipticals are merged spirals:

(1) Ostriker (1980) has pointed out that the fractional
abundance of ellipticals in the centers of cD clusters is high
(e.g. Oemler 1974), but, as pointed out in section 4, mergers
cannot occur in this environment because the encounter velocities
are too high to lead to capture (cf. equation 12), Merging can
only occur during the collapse of the cluster, when the velocity
dispersion is low, but at this stage the density enhancement is
also small so one would not expect an enhanced merger rate. This
argument can and should be checked by N-body simulations since it
is possible that merging may occur in sub-clumps during the collapse;
existing simulations (Aarseth & Fall 1980) are inconclusive because
they do not produce rich clusters (structures with velocity dis-
persion &~ 1000 km s'l).

(2) Ostriker (1980) also points out that ellipticals satisfy
both a color-luminosity relation (Visvanathan & Sandage 1977) and
a metallicity-luminosity relation (Faber 1977) while spirals do
not. This is difficult to explain if ellipticals are made from
merged spirals.

(3) Dwarf elliptical satellite galaxies cannot form by

mergers with other satellites since their relative velocities are

too high. Also, it is difficult to imagine what they merged from:
there are ~ 10 dwarf ellipticals within a few hundred kpc of our
Galaxy and M31 and no spiral or irregular galaxies except for the
Magellanic Clouds and M33, which are much more massive. Moreover,

the properties of dwarf ellipticals (metallicity, number demsity,
radius, etc.) appear to join smoothly onto those of giant ellipticals,
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which suggests a common formation process.

(4) Elliptical galaxies have more globular clusters per unit
luminosity than spirals, by a factor of v~ 3 (Harris & Racine 1979).
However, the number of globulars per unit of luminosity in the
spheroidal component is about the same for both types, as might be
expected since the globulars and the spheroid are both Population II.
This result is not expected in the merger picture, since in a merger
the light of the disk is added to the spheroidal luminosity while
the number of globulars remains the same. The problem could in
principle be reduced if new globulars were produced in the merger
process in the right amount, but there is no evidence that this
process has occurred.

Let me make one final objection (though I will not dignify it
with a number). 1In many ways the bulges of spiral galaxies look
very similar to ellipticals (surface brightness distribution,
metallicity, ellipticity, velocity dispersion, etc.). Occam's
razor suggests that both should be made the same way, and spiral
bulges are certainly not made by merging spirals.

Many of the arguments in this section can be sharpened (or
dulled) considerably by more careful thought. At the moment
there seem to be grave doubts that most ellipticals can be made
from merged spirals. However, there is strong evidence, described
in section 1, that several hundred NGC galaxies have undergone
mergers in the past. Then where are they, and what do they look
like? Are some ellipticals merger remnants? If so, can they be
recognized in any way? And if not, as Toomre (1977) remarked,
"Where else have they possibly gone?"

6. CONCLUSIONS

The work on mergers which I have described is perhaps most
important as part of a fundamental change in our conception of
galaxies. Over the last few years we have finally discarded the
idea of galaxies as "island universes" which are born and die in
splendid isolation. The replacement is a richer and more complex
picture, only partly drawn, which (we hope) will lead to a marked
improvement in our understanding of the observations.

I have benefited enormously from conversations with S.M. Fall,
J.P. Ostriker and Alar Toomre. I am grateful to John Bahcall,
James Binney, and Herb Rood for comments on a draft manuscript.
This work was supported in part by NSF Grant PHY 79-19884.
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